Show simple item record

dc.contributor.authorFinne, Eirik Aasmo
dc.contributor.authorVarpe, Øystein
dc.contributor.authorDurant, Joël
dc.contributor.authorGabrielsen, Geir W.
dc.contributor.authorPoste, Amanda
dc.date.accessioned2022-04-22T11:46:37Z
dc.date.available2022-04-22T11:46:37Z
dc.date.created2022-03-22T15:58:27Z
dc.date.issued2022
dc.identifier.issn0722-4060
dc.identifier.urihttps://hdl.handle.net/11250/2992286
dc.description.abstractSeabirds are important vectors for nutrient transfer across ecosystem boundaries. In this seasonal study, we evaluate the impact of an Arctic colony (Alkhornet, Svalbard) of Black-legged Kittiwakes (Rissa tridactyla) and Brünnich’s Guillemots (Uria lomvia) on stream nutrient concentrations and fuxes, as well as utilization by coastal biota. Water samples from seabird-impacted and control streams were collected regularly throughout the melt season (June–September) for nutrient and organic carbon analysis. Stable carbon and nitrogen isotope analysis (δ13C and δ15N) was used to assess whether seabird derived nitrogen (N) could be traced into flamentous stream algae and marine algae as well as consumers (amphipods). Concentrations of nitrate (NO3−) and nitrite (NO2) peaked in July at 9200 µg N L−1 in seabird-impacted streams, 70 times higher than for control streams. Mean concentrations of phosphate (PO4 3−) in seabird-impacted streams were 21.9 µg P L−1, tenfold higher than in controls. Areal fuxes from seabird-impacted study catchments of NO3− + NO2− and PO4 3− had estimated ranges of 400–2100 kg N km−2 and 15–70 kg P km−2, respectively. Higher δ15N was found in all biota collected from seabird-impacted sites, indicating utilization of seabird-derived nitrogen. Acrosiphonia sp. from seabird-impacted sites had higher δ15N values (20–23‰ vs. 3–6‰) and lower C:N ratios (10.9 vs. 14.3) than specimens collected from control sites, indicating reliance on seabird-derived nitrogen sources and potentially higher N-availability at seabird-impacted nearshore sites. Our study demonstrates how marine nutrients brought onshore by seabirds also can return to the ocean and be utilized by nearshore primary producers and consumers. Cross-ecosystem fuxes · Runof · Svalbard · Seabird guano · Rissa tridactyla · Uria lomvia · Macroalgaeen_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleNutrient fuxes from an Arctic seabird colony to the adjacent coastal marine ecosystemen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2022 The Author(s)en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.1007/s00300-022-03024-5
dc.identifier.cristin2011795
dc.source.journalPolar Biologyen_US
dc.relation.projectEgen institusjon: University Centre in Svalbarden_US
dc.relation.projectNorges forskningsråd: 268458en_US
dc.relation.projectEgen institusjon: University of Osloen_US
dc.relation.projectAndre: Jan Christensen’s endowment granten_US
dc.relation.projectAndre: The Nansen Legacy; No. 276730)en_US
dc.subject.nsiVDP::Zoologiske og botaniske fag: 480en_US
dc.subject.nsiVDP::Zoology and botany: 480en_US
dc.identifier.citationPolar Biology. 2022en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal