Vis enkel innførsel

dc.contributor.authorEkanger, Camilla Tvedt
dc.contributor.authorZhou, Fan
dc.contributor.authorBohan, Dana
dc.contributor.authorLotsberg, Maria Lie
dc.contributor.authorRamnefjell, Maria
dc.contributor.authorHoareau, Laurence
dc.contributor.authorRøsland, Gro Vatne
dc.contributor.authorLu, Ning
dc.contributor.authorAanerud, Marianne
dc.contributor.authorGärtner, Fabian
dc.contributor.authorSalminen, Pirjo-Riitta
dc.contributor.authorBentsen, Mariann
dc.contributor.authorHalvorsen, Thomas
dc.contributor.authorRæder, Helge
dc.contributor.authorAkslen, Lars Andreas
dc.contributor.authorLangeland, Nina
dc.contributor.authorBrokstad, Rebecca Jane Cox
dc.contributor.authorMaury, Wendy
dc.contributor.authorStuhr, Linda Elin Birkhaug
dc.contributor.authorLorens, James
dc.contributor.authorEngelsen, Agnete Svendsen Tenfjord
dc.date.accessioned2022-06-09T13:50:42Z
dc.date.available2022-06-09T13:50:42Z
dc.date.created2022-03-14T13:28:05Z
dc.date.issued2022
dc.identifier.issn2235-2988
dc.identifier.urihttps://hdl.handle.net/11250/2998188
dc.description.abstractThe ongoing coronavirus disease 2019 (COVID-19) pandemic has led to the initiation of unprecedented research efforts to understand the pathogenesis mediated by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). More knowledge is needed regarding the cell type-specific cytopathology and its impact on cellular tropism. Furthermore, the impact of novel SARS-CoV-2 mutations on cellular tropism, alternative routes of entry, the impact of co-infections, and virus replication kinetics along the respiratory tract remains to be explored in improved models. Most applied virology models are not well suited to address the remaining questions, as they do not recapitulate the histoarchitecture and cellular composition of human respiratory tissues. The overall aim of this work was to establish from single biopsy specimens, a human adult stem cell-derived organoid model representing the upper respiratory airways and lungs and explore the applicability of this model to study respiratory virus infection. First, we characterized the organoid model with respect to growth pattern and histoarchitecture, cellular composition, and functional characteristics. Next, in situ expression of viral entry receptors, including influenza virus-relevant sialic acids and SARS-CoV-2 entry receptor ACE2 and TMPRSS2, were confirmed in organoids of bronchiolar and alveolar differentiation. We further showed successful infection by pseudotype influenza A H7N1 and H5N1 virus, and the ability of the model to support viral replication of influenza A H7N1 virus. Finally, successful infection and replication of a clinical isolate of SARS-CoV-2 were confirmed in the organoids by TCID50 assay and immunostaining to detect intracellular SARS-CoV-2 specific nucleocapsid and dsRNA. The prominent syncytia formation in organoid tissues following SARS-CoV-2 infection mimics the findings from infected human tissues in situ. We conclude that the human organotypic model described here may be particularly useful for virology studies to evaluate regional differences in the host response to infection. The model contains the various cell types along the respiratory tract, expresses respiratory virus entry factors, and supports successful infection and replication of influenza virus and SARS-CoV-2. Thus, the model may serve as a relevant and reliable tool in virology and aid in pandemic preparedness, and efficient evaluation of antiviral strategies.en_US
dc.language.isoengen_US
dc.publisherFrontiers Mediaen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleHuman organotypic airway and lung organoid cells of bronchiolar and alveolar differentiation are permissive to infection by influenza and SARS-CoV-2 respiratory virusen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2022 Ekanger, Zhou, Bohan, Lotsberg, Ramnefjell, Hoareau, Røsland, Lu, Aanerud, Gärtner, Salminen, Bentsen, Halvorsen, Ræder, Akslen, Langeland, Cox, Maury, Stuhr, Lorens and Engelsen.en_US
dc.source.articlenumber841447en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.3389/fcimb.2022.841447
dc.identifier.cristin2009545
dc.source.journalFrontiers in Cellular and Infection Microbiologyen_US
dc.identifier.citationFrontiers in Cellular and Infection Microbiology. 2022, 12:841447.en_US
dc.source.volume12en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal