Show simple item record

dc.contributor.authorTarling, Matthew S.
dc.contributor.authorDemurtas, Matteo
dc.contributor.authorSmith, Steven A.F.
dc.contributor.authorRooney, Jeremy S.
dc.contributor.authorNegrini, Marianne
dc.contributor.authorViti, Cecilia
dc.contributor.authorPetriglieri, Jasmine R.
dc.contributor.authorGordon, Keith C.
dc.date.accessioned2022-06-27T06:31:36Z
dc.date.available2022-06-27T06:31:36Z
dc.date.created2022-05-18T14:09:15Z
dc.date.issued2022
dc.identifier.issn0935-1221
dc.identifier.urihttps://hdl.handle.net/11250/3000935
dc.description.abstractThe serpentine mineral lizardite displays strong Raman anisotropy in the OH-stretching region, resulting in significant wavenumber shifts (up to ca. 14.5 cm−1) that depend on the orientation of the impinging excitation laser relative to the crystallographic axes. We quantified the relationship between crystallographic orientation and Raman wavenumber using well-characterised samples of Monte Fico lizardite by applying Raman spectroscopy and electron backscatter diffraction (EBSD) mapping on thin sections of polycrystalline samples and grain mounts of selected single crystals, as well as by a spindle stage Raman study of an oriented cylinder drilled from a single crystal. We demonstrate that the main band in the OH-stretching region undergoes a systematic shift that depends on the inclination of the c-axis of the lizardite crystal. The data are used to derive an empirical relationship between the position of this main band and the c-axis inclination of a measured lizardite crystal: y=14.5cos 4 (0.013x+0.02)+(3670±1), where y is the inclination of the c-axis with respect to the normal vector (in degrees), and x is the main band position (wavenumber in cm −1) in the OH-stretching region. This new method provides a simple and cost-effective technique for measuring and quantifying the crystallographic orientation of lizardite-bearing serpentinite fault rocks, which can be difficult to achieve using EBSD alone. In addition to the samples used to determine the above empirical relationship, we demonstrate the applicability of the technique by mapping the orientations of lizardite in a more complex sample of deformed serpentinite from Elba Island, Italy.en_US
dc.language.isoengen_US
dc.publisherCopernicus Publicationsen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleCrystallographic orientation mapping of lizardite serpentinite by Raman spectroscopyen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright Author(s) 2022en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.5194/ejm-34-285-2022
dc.identifier.cristin2025265
dc.source.journalEuropean Journal of Mineralogyen_US
dc.source.pagenumber285-300en_US
dc.identifier.citationEuropean Journal of Mineralogy. 2022, 34 (3), 285-300.en_US
dc.source.volume34en_US
dc.source.issue3en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal