Vis enkel innførsel

dc.contributor.authorLaurent, Adrien Ange Andre
dc.date.accessioned2023-03-31T12:13:54Z
dc.date.available2023-03-31T12:13:54Z
dc.date.created2022-11-10T11:30:48Z
dc.date.issued2022
dc.identifier.issn0036-1445
dc.identifier.urihttps://hdl.handle.net/11250/3061473
dc.description.abstractIn molecular dynamics, penalized overdamped Langevin dynamics are used to model the motion of a set of particles that follow constraints up to a parameter ε. The most used schemes for simulating these dynamics are the Euler integrator in Rd and the constrained Euler integrator. Both have weak order one of accuracy, but work properly only in specific regimes depending on the size of the parameter ε. We propose in this paper a new consistent method with an accuracy independent of ε for solving penalized dynamics on a manifold of any dimension. Moreover, this method converges to the constrained Euler scheme when ε goes to zero. The numerical experiments confirm the theoretical findings, in the context of weak convergence and for the invariant measure, on a torus and on the orthogonal group in high dimension and high codimension.en_US
dc.language.isoengen_US
dc.publisherSIAMen_US
dc.titleA uniformly accurate scheme for the numerical integration of penalized Langevin dynamicsen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright © by SIAM. Unauthorized reproduction of this article is prohibited.en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2
dc.identifier.doi10.1137/21M1455188
dc.identifier.cristin2071722
dc.source.journalSIAM Reviewen_US
dc.source.pagenumberA3217-A3243en_US
dc.identifier.citationSIAM Review. 2022, 44 (5), A3217-A3243.en_US
dc.source.volume44en_US
dc.source.issue5en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel