Vis enkel innførsel

dc.contributor.authorGharehbaghi, Arash
dc.contributor.authorPartovi, Elaheh
dc.contributor.authorBabic, Ankica
dc.date.accessioned2023-09-20T08:55:15Z
dc.date.available2023-09-20T08:55:15Z
dc.date.created2023-08-28T14:14:36Z
dc.date.issued2023
dc.identifier.issn0926-9630
dc.identifier.urihttps://hdl.handle.net/11250/3090715
dc.description.abstractThis paper presents the results of a study performed on Parallel Convolutional Neural Network (PCNN) toward detecting heart abnormalities from the heart sound signals. The PCNN preserves dynamic contents of the signal in a parallel combination of the recurrent neural network and a Convolutional Neural Network (CNN). The performance of the PCNN is evaluated and compared to the one obtained from a Serial form of the Convolutional Neural Network (SCNN) as well as two other baseline studies: a Long- and Short-Term Memory (LSTM) neural network and a Conventional CNN (CCNN). We employed a well-known public dataset of heart sound signals: the Physionet heart sound. The accuracy of the PCNN, was estimated to be 87.2% which outperforms the rest of the three methods: the SCNN, the LSTM, and the CCNN by 12%, 7%, and 0.5%, respectively. The resulting method can be easily implemented in an Internet of Things platform to be employed as a decision support system for screening heart abnormalities.en_US
dc.language.isoengen_US
dc.publisherIOS Pressen_US
dc.rightsNavngivelse-Ikkekommersiell 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/deed.no*
dc.titleParralel Recurrent Convolutional Neural Network for Abnormal Heart Sound Classificationen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2023 2023 European Federation for Medical Informatics (EFMI) and IOS Pressen_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.3233/SHTI230198
dc.identifier.cristin2170261
dc.source.journalStudies in Health Technology and Informaticsen_US
dc.source.pagenumber526-530en_US
dc.identifier.citationStudies in Health Technology and Informatics. 2023, 302, 526-530.en_US
dc.source.volume302en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse-Ikkekommersiell 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse-Ikkekommersiell 4.0 Internasjonal