Vis enkel innførsel

dc.contributor.authorFatemi, Bahareh
dc.contributor.authorRabbi, Fazle
dc.contributor.authorOpdahl, Andreas Lothe
dc.date.accessioned2024-02-02T09:41:08Z
dc.date.available2024-02-02T09:41:08Z
dc.date.created2024-01-01T13:17:57Z
dc.date.issued2023
dc.identifier.issn2169-3536
dc.identifier.urihttps://hdl.handle.net/11250/3115218
dc.description.abstractNews classification plays a vital role in newsrooms, as it involves the time-consuming task of categorizing news articles and requires domain knowledge. Effective news classification is essential for categorizing and organizing a constant flow of information, serving as the foundation for subsequent tasks, such as news aggregation, monitoring, filtering, and organization. The automation of this process can significantly benefit newsrooms by saving time and resources. In this study, we explore the potential of the GPT large language model in a zero-shot setting for multi-class classification of news articles within the widely accepted International Press Telecommunications Council (IPTC) news ontology. The IPTC news ontology provides a structured framework for categorizing news, facilitating the efficient organization and retrieval of news content. By investigating the effectiveness of the GPT language model in this classification task, we aimed to understand its capabilities and potential applications in the news domain. This study was conducted as part of our ongoing research in the field of automated journalism.en_US
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleEvaluating the Effectiveness of GPT Large Language Model for News Classification in the IPTC News Ontologyen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doihttps://doi.org/10.1109/ACCESS.2023.3345414
dc.identifier.cristin2218409
dc.source.journalIEEE Accessen_US
dc.source.pagenumber145386-145394en_US
dc.identifier.citationIEEE Access. 2023, 11, 145386-145394.en_US
dc.source.volume11en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal