Vis enkel innførsel

dc.contributor.authorEl-Khawaldeh, Rama
dc.contributor.authorGuy, Mason
dc.contributor.authorBork, Finn
dc.contributor.authorTaherimakhsousi, Nina
dc.contributor.authorJones, Kris N.
dc.contributor.authorHawkins, Joel M.
dc.contributor.authorHan, Lu
dc.contributor.authorPritchard, Robert P.
dc.contributor.authorCole, Blaine A.
dc.contributor.authorMonfette, Sebastien
dc.contributor.authorHein, Jason Ellis
dc.date.accessioned2024-03-26T14:01:29Z
dc.date.available2024-03-26T14:01:29Z
dc.date.created2024-01-12T10:20:52Z
dc.date.issued2024
dc.identifier.issn2041-6520
dc.identifier.urihttps://hdl.handle.net/11250/3124269
dc.description.abstractThis work presents a generalizable computer vision (CV) and machine learning model that is used for automated real-time monitoring and control of a diverse array of workup processes. Our system simultaneously monitors multiple physical outputs (e.g., liquid level, homogeneity, turbidity, solid, residue, and color), offering a method for rapid data acquisition and deeper analysis from multiple visual cues. We demonstrate a single platform (consisting of CV, machine learning, real-time monitoring techniques, and flexible hardware) to monitor and control vision-based experimental techniques, including solvent exchange distillation, antisolvent crystallization, evaporative crystallization, cooling crystallization, solid–liquid mixing, and liquid–liquid extraction. Both qualitative (video capturing) and quantitative data (visual outputs measurement) were obtained which provided a method for data cross-validation. Our CV model's ease of use, generalizability, and non-invasiveness make it an appealing complementary option to in situ and real-time analytical monitoring tools and mathematical modeling. Additionally, our platform is integrated with Mettler-Toledo's iControl software, which acts as a centralized system for real-time data collection, visualization, and storage. With consistent data representation and infrastructure, we were able to efficiently transfer the technology and reproduce results between different labs. This ability to easily monitor and respond to the dynamic situational changes of the experiments is pivotal to enabling future flexible automation workflows.en_US
dc.language.isoengen_US
dc.publisherRoyal Society of Chemistryen_US
dc.rightsNavngivelse-Ikkekommersiell 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/deed.no*
dc.titleKeeping an “eye” on the experiment: computer vision for real-time monitoring and controlen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2024 The Author(s)en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2
dc.identifier.doi10.1039/d3sc05491h
dc.identifier.cristin2225134
dc.source.journalChemical Scienceen_US
dc.source.pagenumber1271-1282en_US
dc.identifier.citationChemical Science. 2024, 15, 1271-1282.en_US
dc.source.volume15en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse-Ikkekommersiell 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse-Ikkekommersiell 4.0 Internasjonal