Show simple item record

dc.contributor.authorHelgøy, Ingvild Margrethe
dc.contributor.authorLi, Yushu
dc.date.accessioned2024-08-07T10:51:02Z
dc.date.available2024-08-07T10:51:02Z
dc.date.created2023-11-08T14:03:51Z
dc.date.issued2023
dc.identifier.issn0361-0918
dc.identifier.urihttps://hdl.handle.net/11250/3145069
dc.description.abstractThe Bayesian Lasso is constructed in the linear regression framework and applies the Gibbs sampling to estimate the regression parameters. This paper develops a new sparse learning model, named the Bayesian Lasso Sparse (BLS) model, that takes the hierarchical model formulation of the Bayesian Lasso. The main difference from the original Bayesian Lasso lies in the estimation procedure; the BLS uses a learning algorithm based on the type-II maximum likelihood procedure. Opposed to the Bayesian Lasso, the BLS provides sparse estimates of the regression parameters. The BLS is also derived for nonlinear supervised learning problems by introducing kernel functions. We compare the BLS model to the well known Relevance Vector Machine, the Fast Laplace, the Bayesian Lasso, and the Lasso, on both simulated and real data. The numerical results show that the BLS is sparse and precise, especially when dealing with noisy and irregular dataset.en_US
dc.language.isoengen_US
dc.publisherTaylor & Francisen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleA Bayesian Lasso based sparse learning modelen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.1080/03610918.2023.2272230
dc.identifier.cristin2194012
dc.source.journalCommunications in Statistics - Simulation and Computationen_US
dc.identifier.citationCommunications in Statistics - Simulation and Computation. 2023.en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal