Vis enkel innførsel

dc.contributor.authorWrona, Thilo
dc.contributor.authorPan, Indranil
dc.contributor.authorBell, Rebecca E.
dc.contributor.authorJackson, Christopher A.-L.
dc.contributor.authorGawthorpe, Rob
dc.contributor.authorFossen, Haakon
dc.contributor.authorOsagiede, Edoseghe Edwin
dc.contributor.authorBrune, Sascha
dc.date.accessioned2024-08-08T09:21:01Z
dc.date.available2024-08-08T09:21:01Z
dc.date.created2024-01-03T14:12:09Z
dc.date.issued2023
dc.identifier.issn1869-9510
dc.identifier.urihttps://hdl.handle.net/11250/3145329
dc.description.abstractUnderstanding where normal faults are located is critical for an accurate assessment of seismic hazard; the successful exploration for, and production of, natural (including low-carbon) resources; and the safe subsurface storage of CO2. Our current knowledge of normal fault systems is largely derived from seismic reflection data imaging, intracontinental rifts and continental margins. However, exploitation of these data sets is limited by interpretation biases, data coverage and resolution, restricting our understanding of fault systems. Applying supervised deep learning to one of the largest offshore 3-D seismic reflection data sets from the northern North Sea allows us to image the complexity of the rift-related fault system. The derived fault score volume allows us to extract almost 8000 individual normal faults of different geometries, which together form an intricate network characterised by a multitude of splays, junctions and intersections. Combining tools from deep learning, computer vision and network analysis allows us to map and analyse the fault system in great detail and in a fraction of the time required by conventional seismic interpretation methods. As such, this study shows how we can efficiently identify and analyse fault systems in increasingly large 3-D seismic data sets.en_US
dc.language.isoengen_US
dc.publisherCopernicus Publicationsen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleComplex fault system revealed by 3-D seismic reflection data with deep learning and fault network analysisen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.5194/se-14-1181-2023
dc.identifier.cristin2220011
dc.source.journalSolid Earth (SE)en_US
dc.source.pagenumber1181-1195en_US
dc.identifier.citationSolid Earth (SE). 2023, 14 (11), 1181-1195.en_US
dc.source.volume14en_US
dc.source.issue11en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal