dc.contributor.author | Franch, Ermes | |
dc.contributor.author | Li, Chunlei | |
dc.date.accessioned | 2024-08-12T07:36:00Z | |
dc.date.available | 2024-08-12T07:36:00Z | |
dc.date.created | 2024-01-11T15:49:25Z | |
dc.date.issued | 2023 | |
dc.identifier.issn | 2157-8095 | |
dc.identifier.uri | https://hdl.handle.net/11250/3145711 | |
dc.description.abstract | Due to their weak algebraic structure, low rank parity check (LRPC) codes have been employed in several post-quantum cryptographic schemes. In this paper we propose new improved decoding algorithms for [n, k]qm LRPC codes of dual rank weight d. The proposed algorithms can efficiently decode LRPC codes with the parameters satisfying n − k = rd − c, where r is the dimension of the error support and c ≤ d − 2. They outperform the original decoding algorithm of LRPC codes when d > 2 and allow for decoding LRPC codes with a higher code rate and smaller values m. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | IEEE | en_US |
dc.title | Two new algorithms for error support recovery of low rank parity check codes | en_US |
dc.type | Journal article | en_US |
dc.type | Peer reviewed | en_US |
dc.description.version | acceptedVersion | en_US |
dc.rights.holder | Copyright 2023, IEEE | en_US |
cristin.ispublished | true | |
cristin.fulltext | postprint | |
cristin.qualitycode | 1 | |
dc.identifier.doi | 10.1109/ISIT54713.2023.10206683 | |
dc.identifier.cristin | 2224852 | |
dc.source.journal | IEEE International Symposium on Information Theory. Proceedings | en_US |
dc.source.pagenumber | 2368-2373 | en_US |
dc.relation.project | Norges forskningsråd: 311646 | en_US |
dc.identifier.citation | IEEE International Symposium on Information Theory. Proceedings. 2023, 2368-2373. | en_US |