Show simple item record

dc.contributor.authorFranch, Ermes
dc.contributor.authorLi, Chunlei
dc.date.accessioned2024-08-12T07:36:00Z
dc.date.available2024-08-12T07:36:00Z
dc.date.created2024-01-11T15:49:25Z
dc.date.issued2023
dc.identifier.issn2157-8095
dc.identifier.urihttps://hdl.handle.net/11250/3145711
dc.description.abstractDue to their weak algebraic structure, low rank parity check (LRPC) codes have been employed in several post-quantum cryptographic schemes. In this paper we propose new improved decoding algorithms for [n, k]qm LRPC codes of dual rank weight d. The proposed algorithms can efficiently decode LRPC codes with the parameters satisfying n − k = rd − c, where r is the dimension of the error support and c ≤ d − 2. They outperform the original decoding algorithm of LRPC codes when d > 2 and allow for decoding LRPC codes with a higher code rate and smaller values m.en_US
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.titleTwo new algorithms for error support recovery of low rank parity check codesen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionacceptedVersionen_US
dc.rights.holderCopyright 2023, IEEEen_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1
dc.identifier.doi10.1109/ISIT54713.2023.10206683
dc.identifier.cristin2224852
dc.source.journalIEEE International Symposium on Information Theory. Proceedingsen_US
dc.source.pagenumber2368-2373en_US
dc.relation.projectNorges forskningsråd: 311646en_US
dc.identifier.citationIEEE International Symposium on Information Theory. Proceedings. 2023, 2368-2373.en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record