Vis enkel innførsel

dc.contributor.authorGolovach, Petr
dc.contributor.authorStamoulis, Giannos
dc.contributor.authorThilikos, Dimitrios M.
dc.date.accessioned2024-08-14T09:12:55Z
dc.date.available2024-08-14T09:12:55Z
dc.date.created2024-01-15T15:19:04Z
dc.date.issued2023
dc.identifier.issn0895-4801
dc.identifier.urihttps://hdl.handle.net/11250/3146236
dc.description.abstractA linkage in a graph 𝐺 of size 𝑘 is a subgraph 𝐿 of 𝐺 whose connected components are 𝑘 paths. The pattern of a linkage of size 𝑘 is the set of 𝑘 pairs formed by the endpoints of these paths. A consequence of the Unique Linkage Theorem is the following: there exists a function 𝑓:β„•→β„• such that if a plane graph 𝐺 contains a sequence C of at least 𝑓⁑(𝑘) nested cycles and a linkage of size at most 𝑘 whose pattern vertices lay outside the outer cycle of C, then 𝐺 contains a linkage with the same pattern avoiding the inner cycle of C. In this paper we prove the following variant of this result: Assume that all the cycles in C are “orthogonally” traversed by a linkage 𝑃 and 𝐿 is a linkage whose pattern vertices may lay either outside the outer cycle or inside the inner cycle of C:=[𝐶1,…,𝐶𝑝,…,𝐶2⁒𝑝−1]. We prove that there are two functions 𝑔,𝑓:β„•→β„•, such that if 𝐿 has size at most 𝑘, 𝑃 has size at least 𝑓⁑(𝑘), and |C|≥𝑔⁑(𝑘), then there is a linkage with the same pattern as 𝐿 that is “internally combed” by 𝑃, in the sense that 𝐿∩𝐶𝑝⊆𝑃∩𝐶𝑝. This result applies to any graph that is partially embedded on a disk (where C is also embedded). In fact, we prove this result in the most general version where the linkage 𝐿 is 𝑠-scattered: every two vertices of distinct paths are within a distance bigger than 𝑠. We deduce several variants of this result in the cases where 𝑠=0 and 𝑠>0. These variants permit the application of the Unique Linkage Theorem on several path routing problems on embedded graphs.en_US
dc.language.isoengen_US
dc.publisherSIAMen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleCombing a Linkage in an Annulusen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionacceptedVersionen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1
dc.identifier.doihttps://doi.org/10.1137/22M150914X
dc.identifier.cristin2226841
dc.source.journalSIAM Journal on Discrete Mathematicsen_US
dc.source.pagenumber2332-2364en_US
dc.relation.projectNorges forskningsråd: 314528en_US
dc.identifier.citationSIAM Journal on Discrete Mathematics. 2023, 37 (4), 2332-2364.en_US
dc.source.volume37en_US
dc.source.issue4en_US
ο»Ώ

Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal