Show simple item record

dc.contributor.authorMosincat, Razvan-Octavian
dc.contributor.authorPilod, Didier Jacques Francois
dc.date.accessioned2024-08-15T06:57:55Z
dc.date.available2024-08-15T06:57:55Z
dc.date.created2024-01-18T13:20:35Z
dc.date.issued2023
dc.identifier.issn2578-5893
dc.identifier.urihttps://hdl.handle.net/11250/3146379
dc.description.abstractWe study the unconditional uniqueness of solutions to the Benjamin–Ono equation with initial data in Hs, both on the real line and on the torus. We use the gauge transformation of Tao and two iterations of normal form reductions via integration by parts in time. By employing a refined Strichartz estimate we establish the result below the regularity threshold s=16. As a by-product of our proof, we also obtain a nonlinear smoothing property on the gauge variable at the same level of regularity.en_US
dc.language.isoengen_US
dc.publisherMathematical Sciences Publishersen_US
dc.titleUnconditional uniqueness for the Benjamin-Ono equationen_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
cristin.ispublishedtrue
cristin.fulltextpostprint
dc.identifier.doi10.2140/paa.2023.5.285
dc.identifier.cristin2229541
dc.source.journalPure and Applied Analysisen_US
dc.source.pagenumber285-322en_US
dc.identifier.citationPure and Applied Analysis. 2023, 5 (2), 285-322.en_US
dc.source.volume5en_US
dc.source.issue2en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record