Show simple item record

dc.contributor.authorBlaser, Nello
dc.contributor.authorBrun, Morten
dc.contributor.authorSalbu, Lars Moberg
dc.contributor.authorVågset, Erlend Raa
dc.date.accessioned2024-09-27T09:42:04Z
dc.date.available2024-09-27T09:42:04Z
dc.date.created2024-05-21T09:57:56Z
dc.date.issued2024
dc.identifier.issn0925-7721
dc.identifier.urihttps://hdl.handle.net/11250/3154805
dc.description.abstractFinding the smallest d-chain with a specific (d − 1)-boundary in a simplicial complex is known as the Minimum Bounded Chain problem (MBCd). MBCd is NP-hard for all d ≥2. In this paper, we prove that it is also W[1]-hard for all d ≥ 2, if we parameterize the problem by solution size. We also give an algorithm solving MBC1 in polynomial time and introduce and implement two fixed parameter tractable (FPT) algorithms solving MBCd for all d. The first algorithm uses a shortest path approach and is parameterized by solution size and coface degree. The second algorithm is a dynamic programming approach based on treewidth, which has the same runtime as a lower bound we prove under the exponential time hypothesis.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleThe parameterized complexity of finding minimum bounded chainsen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2024 the authorsen_US
dc.source.articlenumber102102en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.1016/j.comgeo.2024.102102
dc.identifier.cristin2269613
dc.source.journalComputational geometryen_US
dc.identifier.citationComputational geometry. 2024, 122, 102102.en_US
dc.source.volume122en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal