On connection algebras of symmetric spaces and reductive homogeneous spaces
Doctoral thesis
Permanent lenke
https://hdl.handle.net/11250/3158351Utgivelsesdato
2024-10-25Metadata
Vis full innførselSamlinger
- Department of Mathematics [1001]
Sammendrag
Betrakt en glatt reell mangofldighet med en affin kobling. Denne koblingen former en algebra over vektorrommet av glatte seksjoner av tangentbunten. Vi kaller denne algebraen for koblingsalgebraen.
Runge-Kutta-metoder er en klasse med numeriske metoder som finner tilnærmede løsninger til initialverdiproblemer ved å kombinere nøye utvalgte kurver som har konstant hastighet. Den passende generaliseringen av kurver med konstant hastighet til glatte mangfoldigheter kalles geodeter, og disse kurvene er avhengig av koblingen. For å kunne generalisere Runge-Kutta-metoder må vi forstå koblingsalgebraen til mangfoldigheten vi ønsker å arbeide med.
Reduktive homogene rom og symmetriske rom er mangfoldigheter som kommer utstyrt med en naturlig foretrukket kobling kalt den kanoniske koblingen. Koblingsalgerbraene vi kan fremstille i disse tilfellene kalles henholdsvis post-Lie-Yamaguti-algebraer og Lie-tillatelige trippel-algebraer.
Den frie algebraen av en gitt type er en kilde til destillert kunnskap om akkurat denne algebraen. Vi beskriver den frie post-Lie-Yamaguti-algebraen og den frie Lie-tillatelige trippel-algebraen ved hjelp av kombinatorikk på ord og rotfestede trær. Consider a smooth real manifold with an affine connection. This connection makes the vector space of smooth sections of the tangent bundle into an algebra over the field of real numbers. We call this algebra the connection algebra.
Runge-Kutta methods is a class of numerical methods that approximate the solution of an initial value problem by combining carefully selected curves of constant velocity. The appropriate generalization of constant velocity curves to smooth manifolds is called geodesics, and these curves are dependent on the connection. To be able to generalize Runge-Kutta methods, we need to understand the connection algebra of the manifold we want to work on.
Reductive homogeneous spaces and symmetric spaces are manifolds that come with a naturally preferred choice of connection called a canonical connection. The connection algebras we obtain from these connections are called post-Lie-Yamaguti algebras and Lie admissible triple algebras respectively.
The free algebra of a given type is a source of distilled knowledge about that particular algebra. We describe the free post-Lie-Yamaguti algebra and the free Lie admissible triple algebra by means of combinatorics on words and rooted trees.
Består av
Paper 1. Hans Munthe-Kaas and Jonatan Stava, Lie admissible triple algebras: The connection algebra of symmetric spaces. Submitted manuscript. Not available in BORA awaiting publishing.Paper 2. Jonatan Stava, The connection algebra of reductive homogeneous spaces. Submitted manuscript. Not available in BORA awaiting publishing.
Paper 3. Erlend Grong, Hans Munthe-Kaas and Jonatan Stava, Post-Lie algebra structure of manifolds with constant curvature and torsion. Submitted manuscript. Not available in BORA awaiting publishing.