Show simple item record

dc.contributor.authorYousefian, Maryam
dc.contributor.authorTonello, Elisa
dc.contributor.authorFrank, Anna-Simone Josefine
dc.contributor.authorSiebert, Heike
dc.contributor.authorRöblitz, Susanna
dc.date.accessioned2024-11-05T14:07:03Z
dc.date.available2024-11-05T14:07:03Z
dc.date.created2024-09-20T10:51:12Z
dc.date.issued2024
dc.identifier.issn0302-9743
dc.identifier.urihttps://hdl.handle.net/11250/3163472
dc.descriptionUnder embargo until: 2025-09-19en_US
dc.description.abstractBoolean models provide an intuitive framework for the investigation of complex biological networks. Dynamics that implement asynchronous update rules, in particular, can help embody the complexity arising from non-deterministic behavior. These transition systems allow for the emergence of complex attractors, cyclic subgraphs that capture oscillating asymptotic behavior. Techniques that explore and attempt to describe the structures of these attractors have received limited attention. In this context, the incorporation of process rate information may yield additional insights into dynamical patterns. Here, we propose to use a spectral clustering algorithm on the kinetic rate matrix of time-continuous Boolean networks to uncover dynamic structures within cyclic attractors. The Robust Perron Cluster Analysis (PCCA+) can be used to unravel metastable sets in Markov jump processes, i.e. sets in which a system remains for a long time before it switches to another metastable set. As a proof-of-concept, we apply this method to Boolean models of the mammalian cell cycle. By considering the categorization of transitions as either slow or fast, we investigate the impact of time information on the emergence of significant sub-structures.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.titleUncovering dynamic structures within cyclic attractors of asynchronous Boolean networks with spectral clusteringen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionacceptedVersionen_US
dc.rights.holderCopyright 2024 Springeren_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1
dc.identifier.doi10.1007/978-3-031-71671-3_16
dc.identifier.cristin2299493
dc.source.journalLecture Notes in Computer Science (LNCS)en_US
dc.source.pagenumber226–246en_US
dc.relation.projectNorges forskningsråd: 324080en_US
dc.identifier.citationLecture Notes in Computer Science (LNCS). 2024, 14971, 226–246.en_US
dc.source.volume14971en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record