On the hunt for metalloenzyme inhibitors: Investigating the presence of metal-coordinating compounds in screening libraries and chemical spaces
Journal article, Peer reviewed
Published version
View/ Open
Date
2024Metadata
Show full item recordCollections
- Department of Biomedicine [751]
- Registrations from Cristin [10863]
Abstract
Metalloenzymes play vital roles in various biological processes, requiring the search for inhibitors to develop treatment options for diverse diseases. While compound library screening is a conventional approach, the exploration of virtual chemical spaces housing trillions of compounds has emerged as an alternative strategy. In this study, we investigated the suitability of selected screening libraries and chemical spaces for discovering inhibitors of metalloenzymes featuring common ions (Mg2+, Mn2+, and Zn2+). First, metal-coordinating groups from ligands interacting with ions in the Protein Data Bank were extracted. Subsequently, the prevalence of these groups in two focused screening libraries (Life Chemicals' chelator library, comprising 6,428 compounds, and Otava's chelator fragment library, with 1,784 fragments) as well as two chemical spaces (GalaXi and REAL space, containing billions of virtual products) was investigated. In total, 1,223 metal-coordinating groups were identified, with about a quarter of these groups found within the examined libraries and spaces. Our results indicate that these can serve as valuable starting points for drug discovery targeting metalloenzymes. In addition, this study suggests ways to improve libraries and spaces for better success in finding potential inhibitors for metalloenzymes.