Vis enkel innførsel

dc.contributor.authorAga, Olav Nicolay Larsson
dc.contributor.authorBrun, Morten
dc.contributor.authorDauda, Kazeem Adesina
dc.contributor.authorDiaz-Uriarte, Ramon
dc.contributor.authorGiannakis, Konstantinos
dc.contributor.authorJohnston, Iain
dc.date.accessioned2024-11-14T14:20:34Z
dc.date.available2024-11-14T14:20:34Z
dc.date.created2024-09-25T10:01:37Z
dc.date.issued2024-09-04
dc.identifier.issn1553-734X
dc.identifier.urihttps://hdl.handle.net/11250/3165045
dc.description.abstractAccumulation processes, where many potentially coupled features are acquired over time, occur throughout the sciences from evolutionary biology to disease progression, and particularly in the study of cancer progression. Existing methods for learning the dynamics of such systems typically assume limited (often pairwise) relationships between feature subsets, cross-sectional or untimed observations, small feature sets, or discrete orderings of events. Here we introduce HyperTraPS-CT (Hypercubic Transition Path Sampling in Continuous Time) to compute posterior distributions on continuous-time dynamics of many, arbitrarily coupled, traits in unrestricted state spaces, accounting for uncertainty in observations and their timings. We demonstrate the capacity of HyperTraPS-CT to deal with cross-sectional, longitudinal, and phylogenetic data, which may have no, uncertain, or precisely specified sampling times. HyperTraPS-CT allows positive and negative interactions between arbitrary subsets of features (not limited to pairwise interactions), supporting Bayesian and maximum-likelihood inference approaches to identify these interactions, consequent pathways, and predictions of future and unobserved features. We also introduce a range of visualisations for the inferred outputs of these processes and demonstrate model selection and regularisation for feature interactions. We apply this approach to case studies on the accumulation of mutations in cancer progression and the acquisition of anti-microbial resistance genes in tuberculosis, demonstrating its flexibility and capacity to produce predictions aligned with applied priorities.en_US
dc.language.isoengen_US
dc.publisherPLoSen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleHyperTraPS-CT: Inference and prediction for accumulation pathways with flexible data and model structuresen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2024 the authorsen_US
dc.source.articlenumbere1012393en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.1371/journal.pcbi.1012393
dc.identifier.cristin2302256
dc.source.journalPLoS Computational Biologyen_US
dc.identifier.citationPLoS Computational Biology. 2024, 20 (9), e1012393.en_US
dc.source.volume20en_US
dc.source.issue9en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal