Vis enkel innførsel

dc.contributor.authorDrange, Pål Grønås
dc.contributor.authorReidl, Felix
dc.contributor.authorVillaamil, Fernando Sánchez
dc.contributor.authorSikdar, Somnath
dc.date.accessioned2016-05-30T08:06:19Z
dc.date.available2016-05-30T08:06:19Z
dc.date.issued2015
dc.PublishedLeibniz International Proceedings in Informatics 2015, 43:402-413eng
dc.identifier.issn1868-8969en_US
dc.identifier.urihttps://hdl.handle.net/1956/12028
dc.description.abstractWe study two clustering problems, Starforest Editing, the problem of adding and deleting edges to obtain a disjoint union of stars, and the generalization Bicluster Editing. We show that, in addition to being NP-hard, none of the problems can be solved in subexponential time unless the exponential time hypothesis fails. Misra, Panolan, and Saurabh (MFCS 2013) argue that introducing a bound on the number of connected components in the solution should not make the problem easier: In particular, they argue that the subexponential time algorithm for editing to a fixed number of clusters (p-Cluster Editing) by Fomin et al. (J. Comput. Syst. Sci., 80(7) 2014) is an exception rather than the rule. Here, p is a secondary parameter, bounding the number of components in the solution. However, upon bounding the number of stars or bicliques in the solution, we obtain algorithms which run in time O(2^{3*sqrt(pk)} + n + m) for p-Starforest Editing and O(2^{O(p * sqrt(k) * log(pk))} + n + m) for p-Bicluster Editing. We obtain a similar result for the more general case of t-Partite p-Cluster Editing. This is subexponential in k for a fixed number of clusters, since p is then considered a constant. Our results even out the number of multivariate subexponential time algorithms and give reasons to believe that this area warrants further study.en_US
dc.language.isoengeng
dc.publisherDagstuhl Publishingen_US
dc.rightsAttribution CC BY 3.0eng
dc.rights.urihttp://creativecommons.org/licenses/by/3.0eng
dc.subjectgraph editingeng
dc.subjectsubexponential algorithmseng
dc.subjectParameterized complexityeng
dc.titleFast biclustering by dual parameterizationen_US
dc.typeConference object
dc.typePeer reviewed
dc.typeJournal article
dc.date.updated2016-03-30T10:15:34Z
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright Pål Grønås Drange, Felix Reidl, Fernando Sánchez Villaamil, and Somnath Sikdaren_US
dc.identifier.doihttps://doi.org/10.4230/lipics.ipec.2015.402
dc.identifier.cristin1344937
dc.subject.nsiVDP::Matematikk og Naturvitenskap: 400en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution CC BY 3.0
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution CC BY 3.0