Vis enkel innførsel

dc.contributor.authorTyssøy, Hilde Nesse
dc.contributor.authorSandanger, Marit Irene
dc.contributor.authorStadsnes, Johan
dc.contributor.authorZawedde, Annet Eva
dc.contributor.authorØdegaard, Linn-Kristine Glesnes
dc.contributor.authorÅsnes, Arne
dc.date.accessioned2017-06-12T10:46:48Z
dc.date.available2017-06-12T10:46:48Z
dc.date.issued2016-06
dc.PublishedTyssøy H, Sandanger MIS, Stadsnes J, Zawedde AE, Ødegaard LKG, Åsnes A. Energetic Electron Precipitation into the Middle Atmosphere – Constructing the Loss Cone Fluxes from MEPED POES. Journal of Geophysical Research - Space Physics. 2016;121(6):5693-5707eng
dc.identifier.issn2169-9380en_US
dc.identifier.urihttps://hdl.handle.net/1956/15960
dc.description.abstractThe impact of energetic electron precipitation (EEP) on the chemistry of the middle atmosphere (50–90 km) is still an outstanding question as accurate quantification of EEP is lacking due to instrumental challenges and insufficient pitch angle coverage of current particle detectors. The Medium Energy Proton and Electron Detectors (MEPED) instrument on board the NOAA/Polar Orbiting Environmental Satellites (POES) and MetOp spacecraft has two sets of electron and proton telescopes pointing close to zenith (0°) and in the horizontal plane (90°). Using measurements from either the 0° or 90° telescope will underestimate or overestimate the bounce loss cone flux, respectively, as the energetic electron fluxes are often strongly anisotropic with decreasing fluxes toward the center of the loss cone. By combining the measurements from both telescopes with electron pitch angle distributions from theory of wave-particle interactions in the magnetosphere, a complete bounce loss cone flux is constructed for each of the electron energy channels >50 keV, >100 keV, and >300 keV. We apply a correction method to remove proton contamination in the electron counts. We also account for the relativistic (>1000 keV) electrons contaminating the proton detector at subauroral latitudes. This gives us full range coverage of electron energies that will be deposited in the middle atmosphere. Finally, we demonstrate the method's applicability on strongly anisotropic pitch angle distributions during a weak geomagnetic storm in February 2008. We compare the electron fluxes and subsequent energy deposition estimates to OH observations from the Microwave Limb Sounder on the Aura satellite substantiating that the estimated fluxes are representative for the true precipitating fluxes impacting the atmosphere.en_US
dc.language.isoengeng
dc.publisherWileyen_US
dc.relation.ispartof<a href="http://hdl.handle.net/1956/16244" target="_blank">Energetic particle precipitation into the middle atmosphere - optimization and applications of the NOAA POES MEPED data</a>en_US
dc.rightsAttribution CC BY-NC-NDeng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.titleEnergetic Electron Precipitation into the Middle Atmosphere – Constructing the Loss Cone Fluxes from MEPED POESen_US
dc.typePeer reviewed
dc.typeJournal article
dc.date.updated2017-05-08T12:14:55Z
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2016 The Author(s)en_US
dc.identifier.doihttps://doi.org/10.1002/2016ja022752
dc.identifier.cristin1427836
dc.source.journalJournal of Geophysical Research - Space Physics
dc.relation.projectNorges forskningsråd: 223252
dc.relation.projectNorges forskningsråd: 223252/F50


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution CC BY-NC-ND
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution CC BY-NC-ND