Vis enkel innførsel

dc.contributor.authorSkeltved, Alexander Broberg
dc.contributor.authorØstgaard, Nikolai
dc.contributor.authorMezentsev, Andrey
dc.contributor.authorLehtinen, Nikolai
dc.contributor.authorCarlson, Brant Edward
dc.date.accessioned2018-08-14T11:26:38Z
dc.date.available2018-08-14T11:26:38Z
dc.date.issued2017-08
dc.PublishedSkeltved AB, Østgaard N, Mezentsev A, Lehtinen N, Carlson BE. Constraints to do realisticmodeling of the electric field ahead of the tip of a lightning leader. Journal of Geophysical Research - Atmospheres. 2017;122(15):8120-8134eng
dc.identifier.issn2169-897Xen_US
dc.identifier.issn2169-8996en_US
dc.identifier.urihttps://hdl.handle.net/1956/18073
dc.description.abstractSeveral computer models exist to explain the observation of terrestrial gamma‐ray flashes (TGFs). Some of these models estimate the electric field ahead of lightning leaders and its effects on electron acceleration and multiplication. In this paper, we derive a new set of constraints to do more realistic modeling. We determine initial conditions based on in situ measurements of electric field and vertical separation between the main charge layers of thunderclouds. A maximum electric field strength of 50 kV/cm at sea level is introduced as the upper constraint for the leader electric field. The threshold for electron avalanches to develop of 2.86 kV/cm at sea level is introduced as the lower value. With these constraints, we determine a region where acceleration and multiplication of electrons occur. The maximum potential difference in this region is found to be ∼52 MV, and the corresponding number of avalanche multiplication lengths is ∼3.5. We then quantify the effect of the ambient electric field compared to the leader field at the upper altitude of the negative tip. Finally, we argue that only leaders with the highest potential difference between its tips (∼600 MV) can be candidates for the production of TGFs. However, with the assumptions we have used, these cannot explain the observed maximum energies of at least 40 MeV. Open questions with regard to the temporal development of the streamer zone and its effect on the shape of the electric field remain.en_US
dc.language.isoengeng
dc.publisherAmerican Geophysical Unionen_US
dc.rightsAttribution CC BY-NC-NDeng
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/eng
dc.titleConstraints to do realistic modeling of the electric field ahead of the tip of a lightning leaderen_US
dc.typePeer reviewed
dc.typeJournal article
dc.date.updated2018-03-06T12:26:43Z
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2017 The Author(s)en_US
dc.identifier.doihttps://doi.org/10.1002/2016jd026206
dc.identifier.cristin1549642
dc.source.journalJournal of Geophysical Research - Atmospheres
dc.relation.projectNorges forskningsråd: 223252
dc.relation.projectEU: 320839


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution CC BY-NC-ND
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution CC BY-NC-ND