• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Faculty of Mathematics and Natural Sciences
  • Department of Physics and Technology
  • Department of Physics and Technology
  • View Item
  •   Home
  • Faculty of Mathematics and Natural Sciences
  • Department of Physics and Technology
  • Department of Physics and Technology
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Design of an Embedded Readout System for the ALOFT Gamma-Ray Detector Instrument

Heigre, Mats Fredrik
Master thesis
Thumbnail
View/Open
master thesis (7.202Mb)
URI
https://hdl.handle.net/1956/18671
Date
2018-10-24
Metadata
Show full item record
Collections
  • Department of Physics and Technology [1343]
Abstract
Birkeland Center for Space Science has proposed a campaign known as the Airborne Lightning Observatory for FEGS & TGFs (ALOFT) to study Terrestrial Gamma-Ray Flashes (TGFs). TGFs are the most energetic natural phenomena occurring in the Earth’s atmosphere, and are important to our knowledge about the relationship between the Earth and space. The ALOFT campaign will use a gamma-ray detector instrument built by the University of Bergen which will be mounted to the NASA ER-2 High-Altitude Airborne Science Aircraft. This work covers the design and development of the embedded software used to offload and operate the detector readout system of said instrument. A similar instrument was built and flown in 2017. The new instrument differs from this by being implemented on a System on a Chip (SoC) embedded platform, reusing relevant modules from the old instrument. The software has been implemented with the FreeRTOS Realtime Operating System (RTOS). Design considerations to limit complexity, and the impact of the radiation environment the instrument is to be operated in, has been performed trough implementation of a checksum algorithm, cyclic rewriting of registers, and modular design strategies. A verification system has been realized with a prototype hardware setup, in which test systems has been added to process synthetic TGF-events in the software and hardware. Test with emulated data and a Telnet control interface has been successfully implemented. The current implementation focuses on modularity, and thus offers a very good framework for further development of the instrument when campaign specifications are decided.
Publisher
The University of Bergen
Copyright
Copyright the Author. All rights reserved

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit