Vis enkel innførsel

dc.contributor.authorRismyhr, Bjarte
dc.contributor.authorBjærke, Tor
dc.contributor.authorOlaussen, Snorre
dc.contributor.authorMulrooney, Mark Joseph
dc.contributor.authorSenger, Kim
dc.date.accessioned2019-05-29T08:45:06Z
dc.date.available2019-05-29T08:45:06Z
dc.date.issued2019
dc.PublishedRismyhr B, Bjærke T, Olaussen S, Mulrooney MJ, Senger K. Facies, palynostratigraphy and sequence stratigraphy of the Wilhelmøya Subgroup (Upper Triassic–Middle Jurassic) in western central Spitsbergen, Svalbard. Norsk Geologisk Tidsskrift. 2019;99(4):35-64eng
dc.identifier.issn0029-196Xen_US
dc.identifier.issn1502-5322en_US
dc.identifier.urihttps://hdl.handle.net/1956/19796
dc.description.abstractThe Wilhelmøya Subgroup (Norian–Bathonian) is considered as the prime storage unit for locally produced CO2 in Longyearbyen on the Arctic archipelago of Svalbard. We here present new drillcore and outcrop data and refined sedimentological and sequence-stratigraphic interpretations from western central Spitsbergen in and around the main potential CO2-storage area. The Wilhelmøya Subgroup encompasses a relatively thin (15–24 m) siliciclastic succession of mudstones, sandstones and conglomerates and represents an unconventional potential reservoir unit due to its relatively poor reservoir properties, i.e., low-moderate porosity and low permeability. Thirteen sedimentary facies were identified in the succession and subsequently grouped into five facies associations, reflecting deposition in various marginal marine to partly sediment-starved, shallow shelf environments. Palynological analysis was performed to determine the age and aid in the correlation between outcrop and subsurface sections. The palynological data allow identification of three unconformity-bounded sequences (sequence 1–3). These sequences record intermittent deposition in the Early Norian, Early–Middle Toarcian, and Late Toarcian–Aalenian, interrupted by extended periods of erosion, bypass and/or non-deposition. The stratigraphically condensed development of the Wilhelmøya Subgroup in western central Spitsbergen is interpreted to be the result of very low subsidence rates coupled with a physiographic setting characterised by a very gentle depositional gradient. This facilitated rapid shoreline shifts in response to even relatively modest variations in relative sea level with considerable influence on the resulting depositional patterns. We present a revised depositional model for the regionally distinct Brentskardhaugen Bed at the top of the Wilhelmøya Subgroup involving condensation and partial reworking of a series of Upper Toarcian–Aalenian, high-frequency sequences. Coarse-grained extraformational fractions observed within conglomerates of the Wilhelmøya Subgroup are suggested to have been supplied from uplifted and exposed margins to the west (northern Greenland) and north (northern Svalbard).en_US
dc.language.isoengeng
dc.publisherGeological Society of Norwayen_US
dc.rightsAttribution CC BYeng
dc.rights.urihttp://creativecommons.org/licenses/by/4.0eng
dc.subjectWilhelmøya Subgroupeng
dc.subjectBrentskardhaugen Bedeng
dc.subjectSequence stratigraphyeng
dc.subjectFacies analysiseng
dc.subjectPalynologyeng
dc.subjectcondensed uniteng
dc.titleFacies, palynostratigraphy and sequence stratigraphy of the Wilhelmøya Subgroup (Upper Triassic–Middle Jurassic) in western central Spitsbergen, Svalbarden_US
dc.typePeer reviewed
dc.typeJournal article
dc.date.updated2019-01-17T13:29:04Z
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2018 The Author(s)en_US
dc.identifier.doihttps://doi.org/10.17850/njg001
dc.identifier.cristin1648319
dc.source.journalNorsk Geologisk Tidsskrift


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution CC BY
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution CC BY