Vis enkel innførsel

dc.contributor.authorAndrikou, Carmen
dc.contributor.authorPassamaneck, Yale J
dc.contributor.authorLowe, Christopher J.
dc.contributor.authorMartindale, Mark Q.
dc.contributor.authorHejnol, Andreas
dc.date.accessioned2020-03-16T12:56:41Z
dc.date.available2020-03-16T12:56:41Z
dc.date.issued2019
dc.PublishedAndrikou C, Passamaneck YJ, Lowe CJ, Martindale MQ, Hejnol A. Molecular patterning during the development of Phoronopsis harmeri reveals similarities to rhynchonelliform brachiopods. EVODEVO. 2019;10:33eng
dc.identifier.issn2041-9139
dc.identifier.urihttps://hdl.handle.net/1956/21508
dc.description.abstractBackground: Phoronids, rhynchonelliform and linguliform brachiopods show striking similarities in their embryonic fate maps, in particular in their axis specification and regionalization. However, although brachiopod development has been studied in detail and demonstrated embryonic patterning as a causal factor of the gastrulation mode (protostomy vs deuterostomy), molecular descriptions are still missing in phoronids. To understand whether phoronids display underlying embryonic molecular mechanisms similar to those of brachiopods, here we report the expression patterns of anterior (otx, gsc, six3/6, nk2.1), posterior (cdx, bra) and endomesodermal (foxA, gata4/5/6, twist) markers during the development of the protostomic phoronid Phoronopsis harmeri. Results: The transcription factors foxA, gata4/5/6 and cdx show conserved expression in patterning the development and regionalization of the phoronid embryonic gut, with foxA expressed in the presumptive foregut, gata4/5/6 demarcating the midgut and cdx confined to the hindgut. Furthermore, six3/6, usually a well-conserved anterior marker, shows a remarkably dynamic expression, demarcating not only the apical organ and the oral ectoderm, but also clusters of cells of the developing midgut and the anterior mesoderm, similar to what has been reported for brachiopods, bryozoans and some deuterostome Bilateria. Surprisingly, brachyury, a transcription factor often associated with gastrulation movements and mouth and hindgut development, seems not to be involved with these patterning events in phoronids. Conclusions: Our description and comparison of gene expression patterns with other studied Bilateria reveals that the timing of axis determination and cell fate distribution of the phoronid shows highest similarity to that of rhynchonelliform brachiopods, which is likely related to their shared protostomic mode of development. Despite these similarities, the phoronid Ph. harmeri also shows particularities in its development, which hint to divergences in the arrangement of gene regulatory networks responsible for germ layer formation and axis specification.en_US
dc.language.isoengeng
dc.publisherBMCeng
dc.rightsAttribution CC BYeng
dc.rights.urihttp://creativecommons.org/licenses/by/4.0eng
dc.titleMolecular patterning during the development of Phoronopsis harmeri reveals similarities to rhynchonelliform brachiopodseng
dc.typeJournal articleeng
dc.typePeer reviewedeng
dc.date.updated2020-01-10T13:12:07Z
dc.description.versionpublishedVersion
dc.rights.holderCopyright 2019 The Author(s)eng
dc.identifier.doihttps://doi.org/10.1186/s13227-019-0146-1
dc.identifier.cristin1759985
dc.source.journalEVODEVO


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution CC BY
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution CC BY