Vis enkel innførsel

dc.contributor.authorJaffke, Lars
dc.contributor.authorKwon, O-Joung
dc.contributor.authorTelle, Jan Arne
dc.date.accessioned2020-05-25T10:58:33Z
dc.date.available2020-05-25T10:58:33Z
dc.date.issued2020
dc.PublishedJaffke, Kwon, Telle. Mim-Width II. The Feedback Vertex Set Problem. Algorithmica. 2020;82:118-145eng
dc.identifier.issn0178-4617en_US
dc.identifier.issn1432-0541en_US
dc.identifier.urihttps://hdl.handle.net/1956/22364
dc.descriptionUnder embargo until: 2020-07-18
dc.description.abstractWe give a first polynomial-time algorithm for (WEIGHTED) FEEDBACK VERTEX SET on graphs of bounded maximum induced matching width (mim-width). Explicitly, given a branch decomposition of mim-width w, we give an nO(w)-time algorithm that solves FEEDBACK VERTEX SET. This provides a unified polynomial-time algorithm for many well-known classes, such as INTERVAL graphs, PERMUTATION graphs, and LEAF POWER graphs (given a leaf root), and furthermore, it gives the first polynomial-time algorithms for other classes of bounded mim-width, such as CIRCULAR PERMUTATION and CIRCULAR k-TRAPEZOID graphs (given a circular k-trapezoid model) for fixed k. We complement our result by showing that FEEDBACK VERTEX SET is W[1]-hard when parameterized by w and the hardness holds even when a linear branch decomposition of mim-width w is given.en_US
dc.language.isoengeng
dc.publisherSpringeren_US
dc.titleMim-Width II. The Feedback Vertex Set Problemen_US
dc.typePeer reviewed
dc.typeJournal article
dc.date.updated2020-02-19T10:44:39Z
dc.description.versionacceptedVersionen_US
dc.rights.holderCopyright 2019 Springeren_US
dc.identifier.doihttps://doi.org/10.1007/s00453-019-00607-3
dc.identifier.cristin1795778
dc.source.journalAlgorithmica


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel