• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Research centres and projects
  • Nansen Environmental and Remote Sensing Center (NERSC)
  • View Item
  •   Home
  • Research centres and projects
  • Nansen Environmental and Remote Sensing Center (NERSC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Heat and Mass Transfer Laws for Turbulent Convective Flows in the Atmosphere over Leads in Ice Covered Oceans, C32A-1123, American Geophysical Union (AGU) Fall Meeting, 5-9 December, San-Francisco, USA

Esau, Igor N.; Zilitinkevich, Sergej S.
Conference object
Thumbnail
View/Open
Esau_Zilitinkevich_AGU_Dec2005_poster.pdf (1.397Mb)
URI
https://hdl.handle.net/1956/3815
Date
2005
Metadata
Show full item record
Collections
  • Nansen Environmental and Remote Sensing Center (NERSC) [62]
Abstract
Patches of open water (cracks, leads and polynias, Figure 1) in theice cover give major contributions to turbulent exchanges of heat, moisture, CO2 and other gases between the atmosphere and Polar oceans. Here, convective wind flows over leads (Figure 2) are investigated through numerical large-eddy simulations (LES, Figure 3), scaling theoretical analyses (Figure 4) –to estimate basic parameters of turbulence, namely, convective wind speed, depths-scales of convective zones, horizontal extension of circulations and turbulent fluxes at the air-water interface. The model allowed deriving a heat/mass transfer law for a heat island, which expresses analytically the turbulent fluxes of heat and water vapour from the water surface to the atmosphere through external parameters: the temperature difference between the open water and the ambient air over surrounding ice,and the static stability in the basic-state atmospheric environment. An important role of the lead width is disclosed (Figure 1 insertion): with increasing widths, the efficiency of the heat/mass transfer first increases and, after achieving a maximum, decreases (Figure 3). Figure 2. Vertical cross sections of the convective wind (arrows) and upward temperature flux (colour shading) after 6 hours of integration. Integrations were started from motionless,stratified states. The ice-water temperature difference was kept constant during the integrations.
Publisher
Nansen Environmental and Remote Sensing Center

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit