dc.contributor.author Sasák, Róbert eng dc.date.accessioned 2010-12-02T12:10:41Z dc.date.available 2010-12-02T12:10:41Z dc.date.issued 2010-08-02 eng dc.date.submitted 2010-08-02 eng dc.identifier.uri https://hdl.handle.net/1956/4329 dc.description.abstract Many parametrized problems were decided to be FPT or W-hard. However, there is still thousands of problems and parameters for which we do not know yet whether are FPT or W-hard. In this thesis, we provide a tool for extending existing results to additional parametrized problems. We use the comparison relation for comparing graph parameters, i.e. we say that parameter p1 is bounded by parameter p2 if exists a function f that for every graph G holds p1(G)<=f(p2(G)). This allows us to extend results for parametrized problem P in two ways. If problem P parametrized by p1 is FPT then also P parametrized by p2 is FPT. Or wise-versa, if problem P parametrized by p2 is W-hard then also P parametrized by p1 is W-hard. Moreover, we show whether is a parameter bounded by another parameter for the 17 graph parameters: path-width, tree-width, branch-width, clique-width, rank-width, boolean-width, maximum independent set, minimum dominating set, vertex cover number, maximum clique, chromatic number, maximum matching, maximum induced matching, cut-width, carving-width, degeneracy and tree-depth. To avoid all 272 different comparisons, we introduce methodology for examining graph parameters which rapidly reduce number of comparisons. And finally, we provide comparison diagram for all 17 parameters. en_US dc.format.extent 745190 bytes eng dc.format.mimetype application/pdf eng dc.language.iso eng eng dc.publisher The University of Bergen en_US dc.title Comparing 17 graph parameters en_US dc.type Master thesis dc.rights.holder The author en_US dc.rights.holder Copyright the author. All rights reserved en_US dc.description.degree Master i Informatikk en_US dc.description.localcode MAMN-INF dc.description.localcode INF399 dc.subject.nus 754199 eng dc.subject.nsi VDP::Matematikk og Naturvitenskap: 400::Informasjons- og kommunikasjonsvitenskap: 420 nob fs.subjectcode INF399
﻿