Sparse Boolean equations and circuit lattices
Peer reviewed, Journal article
Published version

View/ Open
Date
2011Metadata
Show full item recordCollections
- Department of Informatics [1056]
Original version
https://doi.org/10.1007/s10623-010-9465-xAbstract
A system of Boolean equations is called sparse if each equation depends on a small number of variables. Finding efficiently solutions to the system is an underlying hard problem in the cryptanalysis of modern ciphers. In this paper we study new properties of the Agreeing Algorithm, which was earlier designed to solve such equations. Then we show that mathematical description of the Algorithm is translated straight into the language of electric wires and switches. Applications to the DES and the Triple DES are discussed. The new approach, at least theoretically, allows a faster key-rejecting in brute-force than with COPACOBANA.
Publisher
SpringerJournal
Designs, Codes and CryptographyCopyright
The Author(s) 2010Copyright The Author(s) 2010. This article is published with open access at Springerlink.com