Vis enkel innførsel

dc.contributor.authorFurevik, Toreeng
dc.contributor.authorBentsen, Matseng
dc.contributor.authorDrange, Helgeeng
dc.contributor.authorJohannessen, Johnny A.eng
dc.contributor.authorKorablev, Alexandereng
dc.date.accessioned2005-04-19T06:45:14Z
dc.date.available2005-04-19T06:45:14Z
dc.date.issued2002-11-02eng
dc.PublishedJournal of Geophysical Research 109(C12): 8009en
dc.identifier.issn0148-0227en_US
dc.identifier.urihttps://hdl.handle.net/1956/642
dc.description.abstractIn this paper, the temporal and spatial variability of the sea surface salinity (SSS) in the Nordic Seas is investigated. The data include a Russian hydrographical database for the Nordic Seas and daily to weekly observations of salinity at Ocean Weather Station Mike (OWSM) (located at 66°N, 2°E in the Norwegian Sea). In addition, output from a medium-resolution version of the Miami Isopycnic Coordinate Ocean Model (MICOM), forced with daily National Center for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis data, is used to complement the analysis of the temporal and spatial fields constructed from the observational data sets. The Nordic Seas show a strong seasonal variability in the vertical density stratification and the mixed layer (ML) depth, with a weak stratification and a several hundred meters deep ML during winter and a well-defined shallow ML confined to the upper few tens of meters during summer. The seasonal variability strongly influences the strength of the high-frequency variability and to what extent subsurface anomalies are isolated from the surface. High-frequency variability has been investigated in terms of standard deviation of daily SSS, calculated for the different months of the year. From observations at OWSM, typical winter values range from 0.03 to 0.04 psu and summer values range from 0.06 to 0.07 psu. Results from the model simulation show that highest variability is found in frontal areas and in areas with strong stratification and lowest variability in the less stratified areas in the central Norwegian Sea and south of Iceland. Investigation of the interannual variability over the last 50 years shows a marked freshening of the Atlantic Water in the Norwegian and Greenland Seas. Moreover, the strength of the southern sector of the Polar front, as defined by the 34.8–35.0 psu isohalines along the western boundary of the inflowing Atlantic Water, undergoes significant interannual variability with gradient stretching reaching up to 300 km. In comparison, the variability in the strength of the eastern front and northern sector of the Polar front, seemingly controlled by the shelf break off Norway and the ridge between the Norwegian and the Greenland Seas, typically undergoes stretching only between 60 and 80 km. The investigation also demonstrates that the low-frequency variability in the upper ocean density field in the Greenland Sea, a key factor for the deep water convection, is governed by the variability in the sea surface field. Since the early 1960s, there has been a negative trend in the salinity, probably contributing to the observed decrease in the deep water production in that period.en_US
dc.format.extent3465454 byteseng
dc.format.mimetypeapplication/pdfeng
dc.language.isoengeng
dc.publisherAmerican Geophysical Unionen_US
dc.subjectOceanographyeng
dc.titleTemporal and spatial variability of the sea surface salinity in the Nordic Seasen_US
dc.typePeer reviewed
dc.typeJournal article
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2002 by the American Geophysical Unionen_US
dc.identifier.doihttps://doi.org/10.1029/2001jc001118
dc.source.journalJournal of Geophysical Research
dc.source.40107
dc.source.14C12


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel