Show simple item record

dc.contributor.authorSkorpen, Åshildeng
dc.date.accessioned2013-05-02T08:42:02Z
dc.date.available2013-05-02T08:42:02Z
dc.date.issued2012-05-31eng
dc.date.submitted2012-05-31eng
dc.identifier.urihttps://hdl.handle.net/1956/6549
dc.description.abstractCyclone separators are widely used for separation of solids or droplets from gaseous or liquid fluids in several industries. Cyclones can be used for many purposes and each cyclone can be fitted to its area of use. In the oil and gas industry there are problems with too much sand in the produced oil. Separation of the solids are critical for other separation and processing equipment and when concerning the environment effective hydrocyclones are very important. The purpose of this thesis is to investigate particle trajectories in a hydrocyclone to achieve a better understanding of the particle flow. A Positron Emission Tomography (PET) scanner and a technique called Positron Emission Particle Tracking (PEPT) are used to detect the trajectories. The PET scanner is placed at Haukeland University Hospital and is originally used to detect cancer cells in patients. In this thesis the PET scanner is used to track particle behaviour in a hydrocyclone which is done by making the particle radioactive and injecting it into the hydrocyclone. Based on cross-triangulation of lines of response (LOR) obtained from the output of the PET camera, the particle trajectory can be followed throughout the hydrocyclone. The use of this technique makes it possible to see details in the particle trajectory, and hence discover flow abnormalities and trends connected to the operating settings. The PEPT technique has been developed over twenty years and is currently used for process technology research just a few places in the world. Some numerical simulations has been performed to supplement the experimental results, rather than to perform a detailed comparison of the experiments. The detailed particle trajectories obtained in this thesis show a flow abnormality appearing in almost all the experiments. The flow phenomenon end of vortex (EoV) is also present in some of the experiments. The numerical simulations of the experiments coincide well with the experimental results. Additionally the Burgers model of flow gives good results when fitted to the tangential velocity of the particle.en_US
dc.format.extent10045333 byteseng
dc.format.mimetypeapplication/pdfeng
dc.language.isoengeng
dc.publisherThe University of Bergenen_US
dc.subjectHydrocyclone
dc.subjectPEPT
dc.subjectPET
dc.subjectCFD
dc.subjectHydrocycloneeng
dc.subjectPEPTeng
dc.subjectPETeng
dc.subjectCFDeng
dc.titleInvestigation of Particle Trajectories and Flow Patterns in a Hydrocyclone by Positron Emission Particle Tracking (PEPT)en_US
dc.typeMaster thesis
dc.rights.holderCopyright the author. All rights reserveden_US
dc.description.localcodeMAMN-PRO
dc.description.localcodePRO399
dc.subject.nus752199eng
fs.subjectcodePRO399
bibo.issue
bibo.issue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record