Show simple item record

dc.contributor.authorSolberg, Mirjameng
dc.date.accessioned2012-04-24T07:29:19Z
dc.date.available2012-04-24T07:29:19Z
dc.date.issued2011-06-01eng
dc.date.submitted2011-06-01eng
dc.identifier.urihttp://hdl.handle.net/1956/5766
dc.description.abstractWe construct the category of B-spaces, which is a braided monoidal diagram category. This category is Quillen equivalent to the category of simplicial sets. The induced equivalence of homotopy categories maps a commutative B-spaces monoid to a space that is weakly equivalent to a double loop space, if it is connected. If X is a connected space, we find a commutative B-space monoid, such that the homotopy colimit of it is weakly equivalent to doubleloops(doublesuspension(X)). Similarly we find a commutative B-space monoid that represents the nerve of a braided strict monoidal category.en
dc.format.extent775713 byteseng
dc.format.mimetypeapplication/pdfeng
dc.language.isoengeng
dc.publisherThe University of Bergeneng
dc.titleInjective braids, braided operads and double loop spaceseng
dc.typeMaster thesiseng
dc.type.degreeMasternob
dc.type.courseMAT399eng
dc.subject.nsiVDP::Mathematics and natural science: 400::Mathematics: 410eng
dc.subject.nsiVDP::Mathematics and natural science: 400::Mathematics: 410::Topology/geometry: 415eng
dc.subject.archivecodeMastergradeng
dc.subject.nus753199eng
dc.type.programMAMN-MATeng


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record