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BACKGROUND: In endometrioid endometrial cancer (EEC), current clinical algorithms do not accurately predict patients with
lymph node metastasis (LNM), leading to both under- and over-treatment. We aimed to develop models that integrate protein data
with clinical information to identify patients requiring more aggressive surgery, including lymphadenectomy.

METHODS: Protein expression profiles were generated for 399 patients using reverse-phase protein array. Three generalised linear
models were built on proteins and clinical information (model 1), also with magnetic resonance imaging included (model 2), and on
proteins only (model 3), using a training set, and tested in independent sets. Gene expression data from the tumours were used for
confirmatory testing.

RESULTS: LNM was predicted with area under the curve 0.72-0.89 and cyclin D1; fibronectin and grade were identified as
important markers. High levels of fibronectin and cyclin D1 were associated with poor survival (p = 0.018), and with markers of
tumour aggressiveness. Upregulation of both FN7 and CCNDT messenger RNA was related to cancer invasion and mesenchymal
phenotype.

CONCLUSIONS: We demonstrate that data-driven prediction models, adding protein markers to clinical information, have potential

to significantly improve preoperative identification of patients with LNM in EEC.

British Journal of Cancer (2020) 122:1014-1022; https://doi.org/10.1038/s41416-020-0745-6

BACKGROUND
Endometrial cancer (EC) is the most common malignancy of the
female reproductive system and the incidence is rising, with
10,677 new cases in the United Kingdom in 2018." The
endometrioid endometrial cancer (EEC) subtype accounts for
about 80% of ECs and various subtypes collectively referred to as
non-EEC comprise the remaining 20%. The majority of EC patients
are diagnosed with early disease and the main treatment is
therefore surgical, with hysterectomy and bilateral removal of the
ovaries. Although the overall prognosis of EC patients is generally
good, with an 80% overall survival at 5 years, still 15-20% of
patients with a low-risk profile experience recurrence.? Unfortu-
nately, outcomes for EEC patients with systemic recurrence are
horrible, with a median survival hardly exceeding 12 months.2
There is little debate whether lymphadenectomy should be
performed in patients with non-endometrioid histology or deeply
infiltrating high-grade disease, both known to run a more
aggressive disease course. However, this is more controversial
within the EEC patient group where the risk of lymph node
metastasis (LNM) is much lower (8-15%).*° Although the
procedure allows for complete surgical staging and facilitates

adjuvant treatment selection, it gives a 10-20% risk of lower-
extremity lymphedema and 10-25% risk of lymphocele develop-
ment.>"'2 Furthermore, large prospective trials have shown no
survival benefit of the procedure.*'® Currently, the indication for
lymphadenectomy is based on a clinical risk assessment, including
information from tumour histology, and on putative likelihood of
LNM."™  Clinical practice of lymphadenectomy is variable
between different countries due to the lack of internationally
established criteria.'® In Norway, preoperative imaging is part of
the clinical risk evaluation, and lymph node dissection is advised
in deeply infiltrating grade 3 EEC, as well as in lymph node
sampling in grade 1 and 2 deeply infiltrating, and grade
3 superficially infiltrating EEC, as well as in all non-EEC.'” However,
only a smaller subset of these patients will have LNM confirmed.'®
As a consequence, many patients will potentially suffer unneces-
sary complications. The challenge is to better identify the subset
of EEC patients with otherwise low-risk profile who have risk of
LNMs at presentation;'® only these patients should be selected for
lymphadenectomy.

Various invasive and non-invasive methods have been sug-
gested for better prediction of LNM in EC patients, including
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preoperative imaging by different modalities (e.g. magnetic
resonance imaging (MRI) and PET/CT) (reviewed in ref. '°) sentinel
node mapping®® and molecular markers?' The ability of
preoperative imaging to detect metastases is dependent on
lymph node size?? Sentinel node mapping is an invasive
procedure, requiring high surgical expertise and may thus not
be performed in all hospitals. Also, the efficacy of the procedure is
dependent on the accuracy of the dye to correctly map to the
sentinel node.?*?** In cases where the sentinel node cannot be
identified, a full lymph node dissection is warranted.

Consistent alterations of protein levels during tumorigenesis
and the metastatic process can be utilised to predict patient
outcome. Reverse-phase protein array (RPPA) is an antibody-based
dot-blot technology that measures a large number of functional
protein levels in a high-throughput manner. Integrating protein
markers with clinically available variables (e.g., FIGO (International
Federation of Gynaecologist and Obstetrics), stage, grade, age,
menopausal status and imaging variables), has the potential to
help increase the value of such protein markers.

In this study, our aim was to combine proteins and clinical
information to develop robust models that enables identification
of EEC patients at high risk of LNM, a patient group that would
benefit from more aggressive surgery.

METHODS

Training and test cohorts

A prospectively collected, population-based EC series with
extensive clinical annotation and follow-up data was collected at
Haukeland University Hospital, Bergen, Norway from 2001 (REK
vest, IRB 2014/1907). Informed written consent was obtained by all
included patients and the study was approved by the local ethics
committee (REK vest, IRB 2009/2315). Fresh frozen tumour tissue
from the operative specimen was available from all cases. Lymph
node dissection was performed in 79.3% of patients; only cases
where lymphadenectomy was performed were included in our
analyses. From this series, we selected two non-overlapping
cohorts as training (inclusive of the Bergen training set 2001-2013,
n = 243) and test set (inclusive of the Bergen test set 2011-2015,
n=56), all fully staged and of endometrioid subtype only.
Although these cohorts have been manually selected, there were
no statistical differences when compared to the whole population-
based series (n=1009) on the most important variables (see
Supplementary Table 1).

MDACC cohort

For validation of the low-risk model (low risk in this study is
defined as grade 1 and 2 EEC tumours), a cohort from MD
Anderson Cancer Centre (MDACC) (Houston, TX, USA; n=100
low-risk EEC patients, Supplementary Table 2) fresh frozen
tumour samples along with clinical annotation and follow-up
data was used as an external test set. Written consent was signed
by all included patients and the study was approved by the
local ethics committee (Institutional Review Board of MDACC
(Lab08-0580).

RPPA data analysis

Protein expression data was generated by the RPPA method as
previously described.”>?® Briefly, proteins were extracted from
fresh frozen tumour samples, denatured by sodium dodecyl
sulfate and the lysate was 5-fold serially diluted prior to printing
on nitrocellulose-coated slides. Proteins were then probed with
antibodies that target proteins (see Supplementary Table 3 for
antibody information) that g)articipate in major signalling path-
ways of relevance to cancer.>?*° The signal was captured using
a DakoCytomation-catalysed system and DAB colorimetric reac-
tion. Following antibody probing, RPPA slides were scanned with a
customised scanner (Huron Inc) and spot intensities were
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Model 1
Bergen Protein variables: cyclin D1
training set and fibronectin
Clinical variables: grade
Bergen Model 2 (imaging)
test set Protein variable: fibronectin
Clinical variable: MRI
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MDACC Model 3 (low risk)
test set Protein variables: cyclin D1,
fibronectin, SMAD1, B-catenin
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Fig. 1 Overview of training and test sets and corresponding
models. Lines with number of patients for each set connects the
models to the training and test set used in each model. All models
were trained using Bergen training (white colour) and tested in
either the Bergen test set (dark grey) or in the MDACC test set
(light grey).

analysed and quantified using the Array-Pro Analyser (Meyer
Instruments Inc.). Protein expression levels were calculated using
the software SuperCurve®' (available at http://bioinformatics.
mdanderson.org/Software/). Only antibodies with quality control
scores >0.8>2 were included. Heat maps with two-way unsuper-
vised hierarchical clustering analysis were drawn to visualise
protein expression patterns. Ward linkage was used as the
agglomeration rule and Pearson’s correlation coefficients were
used as the dissimilarity metric in hierarchical clustering analysis.
Of the profiled proteins, a total of 176 were common between the
Bergen training and test sets and 163 proteins overlapped
between the Bergen training and MDACC test sets; these were
used for all downstream analyses.

Model development

Three different models were developed (Fig. 1). Model 1 was built
on protein variables (n=176) and clinical variables (n=3; age,
menopausal status and histologic grade) using the Bergen EEC
cohorts as training and test sets. Model 2 comprised of an MRI
variable (tumour volume in millilitres) in addition to proteins and
clinical variables for n=81 and n=52 of the patients in the
Bergen training and test sets, respectively. Model 3 was trained on
low-risk (histologic grade 1 and 2) EEC cases from the Bergen
cohort and tested in the low-risk MDACC EEC cohort; only protein
markers (n=163) were available as variables in this model (see
Fig. 1 and results for overview of models and corresponding
training and test sets). To identify relevant protein and clinical
markers from available variables, LIMMA33>3* was used to compare
protein expression between groups, and false discovery rate (FDR)
<0.05 was considered as significant. A generalised linear model
(GLM) was chosen to fit the biomarkers and furthermore selected
by Akaike information criterion (AIC) such that only the most
informative variables remained. The fitted GLM was used as a logit
to a logistic function, which uses the numeric outcomes of the
GLM to calculate probabilities. The prediction model was then
defined by the logistic function,

@)
6—_°
1+e@

where 6 represents the probability of the occurrence of an event, e
is the base of the natural logarithm (~2.718), and z is the logit
GLM, denoted as

z = Lo+ Byx1 + Boxa + - + Byxk- (2)

The logit GLM specifies the linear relationship between event (z)
and biomarkers (x). Bo is the intercept and B4, B, ..., Bk are the
regression coefficients of the biomarkers.

M
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Validation of models

A Binary logistic regression model was used to validate the
predictive power of the variables defined by the model; odds ratio
(OR) of LNM were evaluated.

Gene expression microarrays

Gene expression data were available for 203 EEC patients for
messenger RNA (mRNA) validation of model 1 and for exploration
of gene functions. Microarray analysis was performed as
previously described.® In significance analysis of microarrays
(SAMs), we dichotomised the mRNA levels for FNT and CCNDT;
upper quartile (upper 25%) as high and the lower three quartiles
(lower 75%) as low. Two expression profile groups were then
annotated; the high expression group was defined as both FNT
and CCND1 highly expressed (n = 26) and low/discordant expres-
sion group was defined as all other combinations (i.e. high and
low, low and high, low and low) (n=177). A fold change of 1.2
and FDR <0.1% were used as cut-off and analyses were performed
using the J-Express software (Molmine, Bergen, Norway). Mole-
cular signatures database (MSigDB, version 5.1) was used to
compute overlap of differentially expressed transcripts with Gene
Ontology gene sets (C5) and curated gene sets (C1).

Statistical analyses for survival and association to clinical data
Statistical analyses were performed using the statistical program
SPSS-25 (IBM, New York). Pearson’s x> test was used to evaluate
the associations between categorical variables. The differential
distribution of continuous variables between two categorical
variables was assessed by t test or Mann-Whitney U test for
normal and non-normal distributed data, respectively. Correlation
of continuous variables was assessed by Pearson’s correlation
coefficient. Survival differences between the groups were assessed
by Kaplan-Meier using the Mantel-Cox (log-rank) test. Univariate
survival analyses were performed for disease-specific survival
(DSS), with death due to EC defined as an event. Patient’s death
from other causes was censored at the time of death.

RESULTS

Patient characteristics

Comparing clinicopathological characteristics of the Bergen train-
ing and Bergen test sets, a higher percentage of pre-/perimeno-
pausal patients was noted in the training cohort: 14.0% compared
to 3.6% in the test set (x°, P = 0.03, Table 1). In the test set, a higher
proportion of patients had paraaortic in addition to pelvic lymph
nodes removed (y* test, P<0.001) due to change in surgical
routines in more recent years. Overall, there were no significant
differences in FIGO 2009 stage between the training and test
cohorts (x* test, P=0.73). Further, no significant differences were
identified between training and test set for age, histologic grade,
lymphadenectomy, recurrences and disease-specific deaths (x” test
or Mann-Whitney U test, P=0.21, 0.65, 0.93, 0.14, and 0.31).

The Bergen training cohort and the MDACC test cohort, used
together in model 3, differed significantly for age, FIGO stage,
histologic grade and body mass index (BMI) (continuous and
categorical) (all P<0.05, Supplementary Table 4). Although
borderline non-significant (x* test, P = 0.054), a higher percentage
of patients with metastatic lymph nodes were identified in the
MDACC cohort (i.e. 16% MDACC vs. 8.5% Bergen cohort).

Model 1 predicts LNM in EEC

To identify differentially expressed proteins between lymph node-
positive and lymph node-negative groups, we first performed a
LIMMA analysis from completely staged patients (defined as at
least pelvic lymphadenectomy performed). LIMMA analysis
revealed that 24 proteins were significantly altered between
these groups (FDR <0.05). Of most interest, fibronectin, cyclin D1
and Stathmin were upregulated and E-cadherin, B-cell lymphoma

Table 1. Clinical characteristics of the Bergen training and test cohort.

Variable Training set Test set P value®
n (%) n (%)

Inclusion time 2001-2013 2011-2015

Number of patients 243 56

Age (median, range) 63 (32-89) 65 (38-88) 0.20

Figo stage 0.73

| 191 (78.6) 44 (78.6)

1l 20 (8.2) 4(7.1)

1l 28 (11.5) 8 (14.3)

v 4 (1.6) 0 (0.0)

Histologic grade® 0.65

Grades 1 and 2 (low risk) 189 (79.1) 45 (81.8)

Grade 3 (high risk) 50 (20.9) 10 (18.2)
Menopausal status 0.03

Pre/perimenopausal 34 (14.0) 2 (3.6)

Postmenopausal 209 (86.0) 54 (96.4)
Lymphadenectomy 0.93

Positive nodes 27 (11.1) 6 (10.7)

Negative nodes 216 (88.9) 50 (89.3)

Number of nodes removed 13 (0-49) 15 (1-35) 0.11
(median, range)®
Type of nodes removed <0.001

Pelvic 237 (97.5) 47 (83.9)

Pelvic and paraaortic 6 (2.5) 9 (16.1)
Recurrences 46 (19.7) 6 (11.1) 0.14
Death due to disease 34 (14.0) 5 (8.9) 0.31
Follow-up time (median, range) 64 (0-168) 45 (1-58) <0.001

FIGO International Federation of Gynaecologist and Obstetrics, SD standard
deviation, n number of patients.

P-values marked in bold indicate numbers that are significant on the 95%
confidence limit.
®Categorical  variables:
Mann-Whitney U test.
PMissing information for four patients in the Norwegian Training Cohort
and for one patient in the Norwegian Test Cohort.

“Missing information for one patient in the Norwegian Training Cohort.

Pearson’s x> test. Continous variables:

2 (Bcl-2) and oestrogen receptor (ER) were downregulated in
lymph node-positive cases (Supplementary Table 4). Significantly
different proteins were then run together with three clinical
variables in a GLM, which was further subjected to stepwise
selection by (AIC) such that only the most informative variables
remained. The model was defined by the following logistic
function:  (—0.1000) + 0.2012 x grade 4+ 0.1631 x cyclin D1+
0.0699 x fibronectin, where cyclin D1 and fibronectin are the
relative protein levels by RPPA and grade is a dichotomisation
with ‘low-risk’ (grade 1 or 2 EECs) and ‘high-risk’ (grade 3 EECs).
The model predicted patients with LNM with a area under the
curve (AUC) of 0.79 and 0.88 for the Bergen training and test set,
respectively (Fig. 2a, b). The model remained highly significant
(P<0.001) also when validated using a binary logistic regression
model, as described in Methods. Additionally, binary logistic
regression analysis of the individual variables confirmed the
importance of combining all three variables in the prediction
algorithm (Supplementary Fig. 1).

To test the robustness of the model for a clinical setting where
tests are often dichotomised, we ran the model again using a
protein cut-off for high expression (upper 25%) and low expression
(lower 75%). The resulting categorical model predicted LNM with
an AUC of 0.77, which was validated in the test set with an AUC of
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Fig. 2 Prediction model (model 1) and RNA confirmation. Receiver operating characteristic (ROC) curves for model 1 used as a continuous
model (a, ¢) and as a categorical model (b, d) in the Bergen training and test cohorts. The number of patients is shown in the lower panel (grey
scale). e Scatter plot of cyclin D1 and fibronectin RPPA protein levels vs. mRNA levels. Black round dots and square white dots illustrate
fibronectin/FNT and cyclin D1/CCND1 expression levels for each case, respectively. RNA validation for model 1 used as a continuous model (f),
and as a categorical model (g). The number of patients is shown in the lower panel.

0.83 (Fig. 2¢, d). To potentially validate our findings using mRNA
expression data (i.e. FNT and CCNDT), protein expression was
correlated to mRNA expression levels. FNT and CCNDT mRNA
significantly correlated to fibronectin and cyclin D1 protein levels,
respectively (fibronectin: Spearman’s correlation analysis, r=
0.619, P<0.001; cyclin D1: Pearson’s correlation analysis, r=
0.227, P=0.020) (Fig. 2e). mRNA expression data and histologic
grade were included in a binary logistic regression analysis. The
model predicted LNMs with an AUC of 0.83 in the continuous
model and 0.79 in the categorical model (Fig. 2f, g). Of note,
CCND1T mRNA was not significant (P=0.106) and was thus
excluded from the analysis (the model thus consisted of histologic
grade and FNT mRNA).

Model 2 adds potential value to the prediction

In a number of countries including Norway, MRI is part of the
clinical work-up of patients with (suspicion of) EC. In model 2, MRI
was thus added to the clinical variables to test if it can improve
the performance of the model and mimic the clinical situation in
those companies. Preoperative MRI was performed routinely for all
patients included after 2011 to assess tumour size, invasion depth
and suspicion of metastasis. In the Bergen training cohort, LIMMA
analysis now identified five proteins as significantly differentially
expressed (all FDR <0.05) between cases with and without LNM.
Again, following LIMMA analysis, the significantly different
proteins were run in a GLM that selects only the most informative
proteins; in this case, only one protein remained. A prediction
model was ultimately defined by the following logistic function:
0.0249 + 0.0060 x MRIvol + 0.0866 X fibronectin, where MRIvol is
tumour volume in millilitres and fibronectin is the relative protein
level measured by RPPA. LNM was predicted with an AUC of 0.83
in both training and test sets (Fig. 3a, b). These findings were
confirmed by binary logistic regression modelling (P < 0.001).
Although fibronectin appears to be a stronger predictor in
individual modelling, both variables contributed to the results
(Supplementary Fig. 2).

Model 3 predicts LNM in low-risk EEC patients
Model 3 is a protein-only model developed in the lowest-risk EEC
patients; those with histologic grades 1 and 2, thus presumed the

lowest risk of LNM. However, a small subset of these patients (up to
8%) will have metastatic nodes at presentation and should be
identified. To explore how accurate our model could predict LNM in
this lowest-risk group, we used the Bergen training cohort as the
training set (n = 189 low-risk cases). LIMMA analysis identified eight
proteins as significantly differentially expressed between the groups
with positive and negative lymph node status (all FDR <0.05). A
prediction model was defined by the following logistic function:
0.0997 + 0.1741 x cyclin D1 -0.2083 x SMAD1 + 0.0466 X fibronec-
tin - 0.0374 X B-catenin, where all variables are relative protein
levels measured by RPPA. The model predicted patients at risk of
nodal metastasis with an AUC of 0.89 in the Bergen training set
(Fig. 3c). Despite significant differences in training and test
set characteristics, the prediction was validated in the MDACC test
set with an AUC of 0.72 (Fig. 3d).

Fibronectin and cyclin D1 RPPA protein levels correlate with
aggressive characteristics

As fibronectin and cyclin D1 were identified as key proteins for the
prediction models, we examined the individual proteins in relation
to important clinicopathological factors (Table 2). A high level (see
model 1 for definition of high and low level) of fibronectin was, in
addition to a positive association with metastatic lymph nodes (P
<0.0001), associated with high FIGO stage (P=0.001), high
histologic grade (P=0.001) and preoperative risk classification
(P=0.03). High levels of cyclin D1, correlated significantly to LNM
(P<0.001), as expected, and additionally with FIGO stage (P<
0.001), deep myometrial infiltration (P=0.002) and menopausal
status (P = 0.04).

As both aggressive characteristics and LNM increase risk of poor
survival, differences in survival between high and low expression
groups were explored for fibronectin and cyclin D1. Combined
high expression of both fibronectin and cyclin D1 (both upper 25%
quartiles) was associated with poor prognosis compared to
patients with a discordant or low expression (P=0.018) (Fig. 4a).
We also explored survival differences for each protein alone;
interestingly, high cyclin D1 expression was associated with poorer
survival (P =0.008) and separated the groups even better than the
proteins combined (Fig. 4b). Fibronectin expression levels did not
show a significant association with survival (P =0.252) (Fig. 4c).
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Fig. 3 Alternative lymph node metastasis prediction models using MRl and protein data (model 2) or protein data only (model 3).
Receiver operating characteristic (ROC) curves for model 2, using MRI and protein data in the Bergen training (a) and the Bergen test cohort
(b), and model 3, using significantly altered proteins only in a subpopulation of presumed low-risk patients in the Norwegian training cohort
(c) and the MDACC test cohort (d). The number of patients is shown in the lower panel (grey scale).

Fibronectin- and cyclin D1-related genes are linked to an invasive
tumour phenotype

We further explored the combined role of FNT and CCND1 in EEC
in a microarray mRNA expression dataset. A SAM was performed
between high and low mRNA expression groups (see Method
section for a definition of the expression groups) and identified
361 transcripts to be significantly differently expressed (FDR
<0.001 and fold change >1.2 was used as cut-off) and, of these,
199 transcripts were detected as significantly upregulated in
tumours of high FNT and CCNDT expression (see Supplementary
Table 5 for the list of top 40 differentially expressed genes).
Submitting our gene list to the MSigDB identified gene sets
characteristic of an invasive phenotype in tumours of high FN1/
CCND1 expression (Supplementary Table 6), including upregula-
tion of gene sets related to extracellular matrix, cell movement,
cancer-specific invasion and mesenchymal phenotype. In contrast,
gene sets associated with low or discordant FN1/CCND1 expression
profile were related to a less aggressive phenotype, that is, cilia
morphology and non-invasive characteristics.

DISCUSSION

It is challenging to preoperatively accurately identify the subset of
EEC patients with metastatic lymph nodes and thus advanced
disease, who, at the time of hysterectomy, would benefit from a
lymphadenectomy procedure and subsequently adjuvant treat-
ment. Due to the substantial risk of procedure-related complica-
tions, lymphadenectomy is not performed in some patients who
ideally should have had the procedure performed and also vice
versa. The latter thus introduces an unnecessary risk of lower-
extremity lymphedema and lymphocele development. More

knowledge is specifically needed in the endometrioid subtype
as this is the most common in EC and the a priori risk of LNM is
relatively low in this disease subset (8-15%).*> Our aim was
therefore to develop an integrative model using readily available
clinical and protein variables that together provide a better
identification of EEC patients with LNM.

Ultimately three models were developed, varying the available
input variables and patient selection. The main model (model 1),
including fibronectin and cyclin D1 combined with preoperatively
available tumour grade, is to our knowledge the first protein-driven
model to predict LNM in EEC. MRI has long been established as a
valuable preoperative imaging tool in EC and was added in model
2. Its capability to contribute to preoperative prediction of LNM has
been demonstrated by us and others.>**” When tumour size on MR
was added to the variables (model 2), only one protein remained in
the model with AUC values similar to the original model, suggesting
that MRI significantly improved the prediction accuracy of the
model. Due to the lower number of patients with MRI available,
model 2 should be validated in larger cohorts to increase statistical
power. Integrative approaches, incorporating routinely used clinical
tools such as imaging in prediction models, can facilitate their
translation to and applicability in clinical practice. In future studies,
adding a combination of quantitative imaging features, easily
extracted from MR images, might further increase the model
performance and has shown promise for prediction of prognosis
and LNM in several cancers. 34

The robustness of our approach was further reflected in model
3 (low-risk model), which only includes patients who according to
most guidelines are no longer advised lymphadenectomy (grade 1
and 2 EEC), overlooking the small unidentified subset that has
metastatic nodes at diagnosis. Thus, especially here, patients could
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Table 2. Fibronectin and cyclin D1 expression in relation to clinicopathological factors in the Bergen training set.
Variable Fibronectin (RPPA) P value Cyclin D1 (RPPA) P value
High n (%) Low n (%) High n (%) Low n (%)

Number of patients 64 (26.3) 179 (73.7) 64 (26.3) 179 (73.7)

Age, median 0.86 0.87
<66 years 38 (26.8) 104 (73.2) 35 (24.6) 107 (75.4)
>66 years 26 (25.7) 75 (74.3) 24 (23.8) 77 (76.2)

Figo stage 0.001 <0.001
| 40 (20.9) 151 (79.1) 37 (19.4) 154 (80.6)

I 7 (35.0) 13 (65.0) 3 (15.0) 17 (85.0)
1] 16 (57.1) 12 (42.9) 16 (57.1) 12 (42.9)
v 1 (25.0) 3 (75.0) 3 (75.0) 1 (25.0)

Menopausal status 0.20 0.04
Pre/perimenopausal 12 (35.3) 22 (64.7) 13 (38.2) 21 (61.8)
Postmenopausal 52 (24.9) 157 (76.1) 46 (22.0) 163 (78.0)

Histologic grade® 0.001 0.33
Grades 1 and 2 41 (21.7) 148 (78.3) 44 (23.3) 145 (76.7)

Grade 3 22 (44.0) 28 (56.0) 15 (30.0) 35 (70.0)

Preoperative risk classification® 0.03 0.28
Low 54 (24.3) 168 (75.7) 51 (23.0) 171 (77.0)

High 7 (50.0) 7 (50.0) 5 (35.7) 9 (64.3)

Recurrence® 0.20 0.06
No 44 (23.4) 144 (76.6) 37 (19.7) 151 (80.3)

Yes 15 (32.6) 31 (67.4) 15 (32.6) 31 (67.4)

Lymphadenectomy <0.001 <0.001
Negative nodes 48 (22.2) 168 (77.8) 42 (19.4) 174 (80.6)

Positive nodes 16 (59.3) 11 (40.7) 17 (63.0) 10 (37.0)

Myometrial infiltration 0.50 0.002
<50% 33 (24.6) 101 (75.4) 22 (16.4) 112 (83.6)
>50% 31 (28.4) 78 (71.6) 37 (33.9) 72 (66.1)

FIGO International Federation of Gynaecologist and Obstretics, n number of patients.

P-values marked in bold indicate numbers that are significant on the 95% confidence limit.

?Data missing for four patients.

PData missing for seven patients.

“Data missing for nine patients.

a 10 Low/discordant, n = 220 (27) b 10 Low CCND1, n =229 (31) c 10 Low FN1, n=229 (35)
IS 5 .- 3
=2 2 2 "
g 08 g 087 g 087 High FN1, n =76 (16)
> > . _ > ig| ,n=
§ 06 High combined, n = 23 (7) § 06 4 High GCND, n =76 (20) § 06 1
3 3 3
304 3 0.4 3 0.4+
0.2 8 0.2 $ 0.2
0 g | pP=0018 0 004 p=0008 0 904 p=0252
0 12 24 36 48 60 0 12 24 36 48 60 0 12 24 36 48 60
Length of follow-up (months) Length of follow-up (months) Length of follow-up (months)

Fig. 4 Disease-specific survival in patients with high vs. low fibronectin and cyclin D1 levels. Disease-specific survival (DSS) according to
fibronectin and cyclin D1 high combined (i.e. 25% upper quartile of both proteins) vs. low/discordant expression (i.e. all other combinations:
75% lower quartile of at least one protein) (a). DSS was also calculated for the individual variables: fibronectin (b) and cyclin D1 (c) high (upper
25% quartile) and low (lower 75% quartile) expression. The number of events is given within parentheses.

benefit from risk models to ensure that those grade 1 and 2
patients, who do have high risk of nodal metastasis, are offered
lymph node dissection. Even in this lowest-risk cohort, the
performance of the model is encouraging with an AUC of 0.82
(training) and 0.72 (test set), suggesting that use of the model may

be instrumental to better identify high-risk patients in this subset.
The significant intrinsic differences between the MDACC cohort
and the Bergen cohort are a likely explanation for the lower AUC
in the test set. Unfortunately, the available preoperative clinical
variables were not identical between the sets in model 3 and thus
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only protein data could be tested here. It will be interesting to test
in subsequent studies whether this model can be further
optimised by integration of clinical variables. The challenge may
lie in the fact that lymph node dissection, as mentioned, often is
omitted in this patient population and that thus further retro-
spective datasets to confirm the findings may be sparse. Finally, it
should be noted that the lowest-risk cohorts only included
patients with confirmed lymph node status who all underwent
lymphadenectomy. Thus, a subpopulation of very low-risk EEC
patients has not been included in our analysis, potentially
introducing a selection bias in our dataset.

For a model to be robust and more easily transferable to the
clinic, ideally a low number of variables is needed. Our main
model and its two variations demonstrate that a high predict-
ability can be combined with a low number of variables (proteins
and clinical variables). Additionally, it showed good performance
on dichotomisation, again facilitating clinical applicability.

For clinical implementation of the model, it would be interesting
to validate our findings using immunohistochemistry (IHC). We
tested two antibodies for this purpose: anti-fibronectin (FBN11,
MA5-11981, Thermo Fisher Scientific) and anti-cyclin D1 (SP4, MA5-
16356, Thermo Fisher Scientific). Unfortunately, neither of these
correlated well enough to RPPA protein levels to be included in the
model (data not shown). A significant challenge was that the
antibodies from the RPPA platform were unavailable for IHC.
Further testing of IHC-supported antibodies is thus needed to
validate whether RPPA protein levels can be replaced by IHC
staining of patient tissue in our LNM prediction model. It is however
interesting to note that mRNA levels of FN7 and CCND1
corresponded well with RPPA levels, suggesting that quantitative
PCR might be an alternative method for testing. Further, other
approaches such as Nanostring with bar-coded antibodies may also
allow translation to the clinic as we have done with other targets.**

The strong association of fibronectin and cyclin D1 with
characteristics of tumour aggressiveness such as higher FIGO
stage and grade and poorer DSS suggests their clinical relevance.
This is supported by literature showing fibronectin to be a well-
established marker of the epithelial-mesenchymal transition
(EMT).** Also, functional studies have linked fibronectin to EMT
and cell migratory behaviour.***® Upregulated fibronectin acti-
vates a set of signalling pathways, such as EGFR and
HER2 signalling, which in turn are a feedback to stimulate
fibronectin expression.*>*”*® Although fibronectin has previously
been linked to LNM in breast and oral cancer, this is the first time
the protein has been associated with metastasis in EC.

Cyclin D1 is a pleiotropic protein that is best known as a cell
cycle protein, but it has also been shown to facilitate cell mobility
and cytoskeletal remodelling,***° and associated with increased
metastasis.*® The significance of increased expression of cyclin D1
is consistent with findings by Du et al.>' who developed an RPPA
protein-based prediction model to help distinguish early- from
late-stage EEC patients. Contrasting our own model, their model
was not specific to the prediction of LNM, which may explain the
differences in proteins and pathways represented, such as HER3,
SHC and JNK. However, the increased expression of the Wnt-
pathway protein Dvi3 is in line with our findings as DvI3 induces
cyclin D1 expression, thus activating the same pathway. Con-
sistently, Wnt activation has been shown as a driver of lung cancer
metastasis,”>>> and has also been associated with metastasis in
EC.>* In addition to cyclin D1 and fibronectin, our LIMMA analysis
identified an upregulation of Stathmin and a downregulation of E-
cadherin, Bcl-2 and ER. Similar alterations in expression patterns of
the individual proteins have previously been demonstrated and
extensively linked to LNM by us and others.'®>*™>” These findings
support that LIMMA correctly identifies proteins associated with
nodal metastasis and indicate that multiple proteins are involved;
our model only selects the most contributing proteins. However,

functional studies are needed to build up a picture of protein
networks that drives metastasis. It is also important to note that
LIMMA analysis is performed on a panel of cancer-related proteins
selected for RPPA. Thus, it is likely that additional proteins would
be identified with a more global approach.

Yang et al.>® developed another RPPA model aimed to improve
prognostication in EC by incorporating protein and clinical data
into a model for low stage (FIGO stage 1 and 2) and high stage
(FIGO stage 3 and 4), with overall survival as main outcome
variable. They showed that in early-stage disease, their model
outperformed individual clinical variables, including stage and
grade. Again, the focus in their study, discriminating patients by
prognosis, differed from our aim to identify LNM. Judging from
the complexity of the models (ref.>® 14-18 proteins and 2 clinical
variables vs. 1-4 proteins and 0-1 clinical variable in this study) it
may be hypothesised that the process of LNM is less variable, and
dependent on less pathways compared to ‘prognosis’ in general.
However, similar to Yang et al.,”® we feel integrative models are of
potential clinical utility to identify patients with assumed early-
stage EEC, who may benefit from more aggressive surgery and
who otherwise might not have been identified. Interestingly, their
training cohort overlapped to a large extent with our training
cohort, thus proving that the different selection of proteins is
indeed related to the question posed and not cohort related.

Finally, the strong association of fibronectin and cyclin D1 with
LNM was supported by our gene expression analyses, giving
further biologic insight. Further functional studies should deter-
mine to what degree these proteins are drivers of metastasis,
which was not within the scope of this study.

Taken together, these findings suggest that the proteins in our
models are associated with LNM, especially when co-expressed in
EC. Algorithms reliably predicting lymph node involvement are
highly valuable, supplementing the current risk stratification: to
detect patients with the highest risk of nodal disease, including the
lowest-risk patients. An interesting thought may be that if we can
accurately identify the patients with LNM preoperatively and the
procedure itself, shown by two large RCTs,*'® does not convey
prognostic benefit for the patient, the procedure can be omitted
altogether and effective adjuvant treatment can be offered to these
patients. We have not come so far yet, but through optimisation of
models this may become in reach and be beneficial in this often
pre-existing (multijmorbid and obese population.
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