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Abstract. We regard the Cauchy problem for a particular Whitham–Boussinesq system mod-
eling surface waves of an inviscid incompressible fluid layer. We are interested in well-posedness at a
very low level of regularity. We derive dispersive and Strichartz estimates and implement them to-
gether with a fixed point argument to solve the problem locally. Hamiltonian conservation guarantees
global well-posedness for small initial data in the one dimensional settings.
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1. Introduction. We consider the following Whitham-type system posed on
R1+1:

(1.1)

{
∂tη + ∂xv = −K2

1∂x(ηv),

∂tv +K2
1∂xη = −K2

1∂x(v2/2),

where

(1.2) K1 := K1(D) =
√

tanh(D)/D with D = −i∂x.

The operator K1 is a Fourier multiplier operator with the symbol ξ 7→
√

tanh ξ/ξ. It
is bounded and invertible in L2(R); more precisely, it is a linear isomorphism from
L2(R) to H1/2(R). Its inverse K−11 is equivalent to the Bessel potential J1/2 defined
by the symbol ξ 7→ (1 + ξ2)1/4. Functions η, v are assumed to be real valued. Note
that K2

1∂x = i tanhD and so system (1.1) has a semilinear nature.
We complement (1.1) with the initial data

(1.3) η(0) = η0 ∈ Hs(R), v(0) = v0 ∈ Hs+1/2(R),

where Hs = (1−∂2x)−s/2L2(R) is the standard notation for the Sobolev space of order
s. Such an initial value problem describes the evolution with time of surface waves of
a liquid layer. The model approximates the two dimensional water wave problem for
an inviscid incompressible potential flow. The variables η and v denote the surface
elevation and fluid velocity, respectively. For some discussion on its precise physical
meaning we refer the reader to the work by Dinvay, Dutykh, and Kalisch [10], where
the system (1.1) appeared for the first time. Formally, v equals i tanhD-derivative of
the velocity potential trace on surface associated with the irrotational velocity field.
In the long wave Boussinesq regime v coincides with the horizontal fluid velocity at
the surface.
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2354 E. DINVAY, S. SELBERG, AND A. TESFAHUN

The system (1.1) possesses a Hamiltonian structure [10]. To our knowledge, there
are at least two conserved quantities associated with this system. The first one,

(1.4) H(η, v) =
1

2

∫
R

(
η2 + vK−21 v + ηv2

)
dx,

has the meaning of total energy. The second one,

I(η, v) =

∫
R
ηK−21 vdx,

has the meaning of momentum. The system (1.1) has a Hamiltonian structure of the
form

∂t(η, v)T = J∇H(η, v)

with the skew-adjoint matrix

J =

(
0 −i tanhD

−i tanhD 0

)
,

which in particular guarantees conservation of the energy functional H. It is worth
noticing that system (1.1) can be derived at least formally in the long wave asymptotic
regime from the Zakharov–Craig–Sulem formulation of the water wave problem [19],
also known to be Hamiltonian. The Hamiltonian structure of the Zakharov–Craig–
Sulem formulation is canonical, in the sense that the corresponding skew-adjoint ma-
trix J =

(
0 1
−1 0

)
. It is interesting to notice that model (1.1) also enjoys a canonical

Hamiltonian structure, which is directly comparable with the one of the full water
wave system when using variables (η, ψ), where ψ is such that v = i tanhDψ. Nu-
merical simulations done in [10] show how insignificantly values of functional H differ
from the corresponding energy levels of the full water problem.

We also consider a system posed on R2+1 of the following Whitham–Boussinesq
type:

(1.5)

{
∂tη +∇ · v = −K2

2∇ · (ηv),

∂tv +K2
2∇η = −K2

2∇
(
|v|2/2

)
,

where v = (v1, v2) ∈ R2 is a curl free vector field, i.e., ∇× v = 0, and

K2 := K2(D) =
√

tanh |D|/|D| (D = −i∇)

with the corresponding symbol K2(ξ) =
√

tanh(|ξ|)/|ξ|. We complement (1.5) with
the initial data

(1.6) η(0) = η0 ∈ Hs
(
R2
)
, v(0) = v0 ∈

[
Hs+1/2

(
R2
)]2

.

This is a two dimensional analogue of system (1.1) describing evolution with time of
surface waves of a liquid layer in the three dimensional physical space. As above the
variables η and v denote the surface elevation and the fluid velocity, respectively. The
system enjoys the Hamiltonian structure

∂t(η,v)T = J∇H(η,v)
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with the skew-adjoint matrix

J =

 0 −K2
2∂x1

−K2
2∂x2

−K2
2∂x1

0 0
−K2

2∂x2
0 0

 ,

which in particular guarantees conservation of the energy functional

(1.7) H(η,v) =
1

2

∫
R2

(
η2 +

∣∣K−12 v
∣∣2 + η|v|2

)
dx.

Equations (1.1) were first proposed and studied numerically in [10]. Later in [9]
the first proof of local well-posedness based on an energy method and a compact-
ness argument was given. System (1.1) is an alternative to other weakly nonlinear
dispersive models describing two-wave propagation [10]. Those models are in good
agreement with experiments [7]. They also have many peculiarities of the full water
wave problem. The existing results on well-posedness theory, however, are not com-
pletely satisfactory. To our knowledge, apart from the model under consideration,
there is only one local well-posedness result so far for the regarded system in [10]
which has been proved by Pei and Wang [22]. To achieve this the authors imposed an
additional nonphysical condition η > C > 0. The initial value problem regarded in
[22] is probably ill-posed for large data if one removes the positivity assumption η > 0,
as a heuristic argument given in [18] shows. Recently, Kalisch and Pilod [17] proved
local well posedness for a surface tension regularization of the system from [22]. They
were able to exclude the positivity assumption η > 0. However, the maximal time of
existence for their regularization is bounded by the capillary parameter. One does not
need any regularization or special nonphysical conditions to claim the well posedness
for (1.1), (1.3).

In fact (1.1) can be regarded itself as a regularization of the system introduced by
Hur and Pandey [15]. The latter was also investigated numerically in [10] and com-
pared with other models of Whitham–Boussinesq type. Admitting formally tanhD ∼
D for small frequencies and substituting D instead of tanhD to the nonlinear part
of equations (1.1), one comes to the system regarded in [15]. Hur and Pandey have
proved the Benjamin–Feir instability [15] of periodic travelling waves for their sys-
tem, which makes it valuable. If one in addition formally discards the term η∂xu in
the system given in [15], then a new alternative system turns out to be locally well-
posed and features wave breaking [16]. However, the latter does not belong to the
class of Boussinesq–Whitham models since nonlinear nondispersive terms have been
neglected.

We would like to pay special attention to a system that was not considered in [10]
but was introduced by Duchêne, Israwi, and Talhouk [11]. They modified the bilayer
Green–Naghdi model improving the frequency dispersion. In fact, their system is
also linearly fully dispersive, which makes it a close relative to system (1.1). Note
that their system is Hamiltonian as well. Moreover, they have justified the Green–
Naghdi modification proving the well-posedness, consistency, and convergence to the
full water wave problem in the Boussinesq regime [11]. In addition, the consistency of
Hamiltonian structure is shown, so that energy levels of the approximate model can
be compared with the full water energy. Existence of solitary waves for their system is
also proved in [12]. Returning to the system regarded by Pei and Wang [22], we should
notice that a question of existence of solitary waves for it is closed as well [21]. Finally,
we point out that well-posedness of the modified Green–Naghdi model is satisfactory,
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in the sense that it needs neither surface tension nor any nonphysical initial condition.
All this together makes it a promising system. And indeed, as noticed in [11], their
modification gives more reliable results when it comes to large-frequency Kelvin–
Helmholtz instabilities than other models of the Green–Naghdi type.

On the contrary, system (1.1) has a couple of advantages compared with the
modified Green–Naghdi model [11]. First, it is derived, though not rigorously, from
the Zakharov–Craig–Sulem formulation, and as a result one knows the relation be-
tween variables (η, v) and those describing the full potential fluid flow [10]. As to the
modification discussed, it is presented in variables where the first one has the mean-
ing of the surface elevation and so coincides with η. Its dual variable is called the
layer-averaged horizontal velocity [11]. In the Boussinesq regime it definitely coincides
with the same object associated with the full Euler equations. However, one cannot
guarantee that it will be the case in shorter wave regimes, whereas for Whitham type
models one might anticipate a good agreement which is confirmed by experiments [7].
Here we must admit that neither the Whitham–Boussinesq system (1.1) nor the mod-
ified Green–Naghdi system are tested by Carter [7]. So it might be only a matter of
time before the modified Green–Naghdi velocity is given an exact physical meaning.
In other words, we expect that this velocity will be associated with the full water
problem notions. The second issue is that it does not seem obvious how the modified
Green–Naghdi system can be generalized to a three dimensional model, whereas for
system (1.1) it is straightforward.

Let us formulate the main results. The first one is an improvement of the local
existence claimed in [9].

Theorem 1 (local existence in one dimension). Let s > −1/10. Given any
R > 0 there exists a time T = T (R) > 0 such that for any initial data (η0, v0) ∈ Xs :=
Hs(R)×Hs+1/2(R) with norm ‖η0‖Hs +‖v0‖Hs+1/2 ≤ R, there exists a solution (η, v)
in the space Xs

T := C([0, T ];Hs(R)×Hs+1/2(R)) of the Cauchy problem (1.1), (1.3).
Moreover, the solution is unique in a subspace of Xs

T and it depends continuously on
the initial data.

Theorem 2 (local existence in two dimensions). Let s > 1/4. Given any R > 0
there exists a time T = T (R) > 0 such that for any initial data (η0,v0) ∈ Xs :=
Hs(R2)× (Hs+1/2(R2))2 with ∇×v0 = 0 and with norm ‖η0‖Hs +‖v0‖(Hs+1/2)2 ≤ R,
there exists a solution (η,v) in the space Xs

T := C([0, T ];Hs(R2) × (Hs+1/2(R2))2)
of the Cauchy problem (1.5), (1.6). Moreover, the solution is unique in a subspace of
Xs
T and it depends continuously on the initial data.

Remark 1. For s > 0 in one dimension and s > 1/2 in two dimensions the solution
is unique in the whole space Xs

T . Moreover, the flow map is real analytic for such
values of s.

Theorem 1 does not rely on the noncavitation hypothesis 1+η > 0, since smallness
of waves is implied in the model. It can be seen as a drawback compared with the
model from [11]. However, as mentioned above, it is difficult to say for now which
one of these two competing models is a better approximation to the Euler equations.
Instead of the noncavitation, there is another condition that we have to impose to
prove the following global result. The meaning of this new condition is that the total
energy should be positive and not too big. We point out that this condition is imposed
at the energy level of regularity and is independent on the regularity s of the initial
data.
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Theorem 3 (global existence in one dimension). Assume that s > 0 and con-
sider the local solution from Theorem 1. There exists δ > 0 such that if

‖η0‖L2(R) + ‖v0‖H1/2(R) 6 δ,

then the solution extends to a global-in-time solution

(η, v) ∈ C
(
R;Hs(R)×Hs+1/2(R)

)
.

In the sections below, we first diagonalize systems (1.1) and (1.5) and reformulate
the local theorems in the new variables. Then we demonstrate how the local result can
be obtained in less general settings applying an elegant classical PDE technique based
on the standard Sobolev embedding. This also demonstrates the necessity of disper-
sive estimates for going down to the energy level of regularity s = 0 in one dimension.
Note that the domain of the Hamiltonian functional (1.4) is L2(R)×H1/2(R). After
that we obtain estimates of Strichartz type studying asymptotic behavior of a partic-
ular oscillatory integral (see Lemma 9 and its proof below). This is an improvement
compared with dispersive estimates obtained in [3]. In fact we have L∞-norm decay
dominated by L1-norm locally in frequency, which gives us localized Strichartz esti-
mates. Whereas the decay in [3] is dominated by weighted Sobolev spaces, though
frequency independent. With the new estimates in hand we can apply the fixed point
argument in a ball of the Bourgain space associated with the water wave dispersion.
This gives us the local existence theorems, Theorems 1 and 2.

The last step is to prove the global well-posedness theorem, 3. For s = 0 it comes
straightforwardly from the energy (1.4) conservation via the continuity argument and
the local result. For s > 0 we prove the persistence of regularity. Surprisingly, it is
not enough just to have the dispersive Strichartz estimates to claim the persistence.
Thankfully, our velocity variable v is bounded in H1/2-norm and so we are able to
use the following limiting case of the Sobolev embedding theorem.

Lemma 1 (Brezis–Gallouet inequality). Suppose f ∈ Hs(Rd) with s > d/2.
Then

(1.8) ‖f‖L∞ 6 Cs,d

(
1 + ‖f‖Hd/2

√
log(2 + ‖f‖Hs)

)
.

Inequality (1.8) was first put forward and proved for a domain in Rd with d = 2
in the work by Brezis and Gallouet [5]. It was extended to the other Sobolev spaces
in [6]. An implementation of this inequality for deriving a global a priori estimate can
be found, for example, in the work by Ponce [23] on the global well-posedness of the
Benjamin–Ono equation. We apply a similar trick here, and so that we repeat the
formulation of Lemma 1 as it is given in [23]. This provides us with the persistence
of regularity that in turn concludes the proof of Theorem 3.

Let us finally give some explanations for the choice of strategy, focusing on the
one dimensional case. The local well-posedness for s > 0 follows from the standard
technique related to semilinear equations. It requires only Duhamel’s formula and
suitable product estimates for the right-hand side (RHS) of (1.1) in the Sobolev-
based space Xs = Hs×Hs+1/2. The global bound in X0 follows from the Hamiltonian
conservation, sinceH(η, v) ≈ ‖(η, v)‖2X0 provided ‖(η, v)‖X0 is small. Hence the global
well-posedness in Xs with s > 0 follows from the local result and an a priori bound
obtained from the persistence of regularity and the Brezis–Gallouet inequality.

The main focus of the work is on lowering the regularity threshold for the local
well-posedness through the use of dispersive estimates. One anticipates that even
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the weak dispersive properties of system (1.1) can lower the threshold at least to
the limit case s = 0. This together with the global bound automatically gives us
the global well-posedness in X0. However, the weakness of dispersion means that
the time-decaying L1 → L∞-boundedness of the semigroup, associated with the lin-
earized system, does not hold. As a result the standard strategy based on Strichartz
estimates is unavailable. So instead, we obtain the decay estimate on each compo-
nent of the dyadic Littlewood–Paley decomposition with a sharp dependence on the
dyadic number. From this local decay we deduce bilinear estimates in the Bourgain
space associated with the water wave dispersion relation. The local well-posedness is
deduced from Duhamel’s formula with the help of these bilinear estimates.

The main peculiarity of the two dimensional case is that with this technique we
are able to prove the local well-posedness in Xs = Hs × Hs+1/2 × Hs+1/2 only for
s > 1/4. It still leaves a gap from the energy space X0, too big to claim global
existence. Moreover, even in one dimension it is not clear so far if the problem is
globally well-posed for some s ∈ (−1/10, 0).

Another interesting thing one can notice is that in the two dimensional case
we were able to get the maximal gain of d/8 derivatives with respect to the naive
estimate based only on the unitary property of the semigroup. This is optimal in
view of the known smoothing of exp(it|D|1/2) that is essentially the semigroup under
consideration. We refer to [1, 2] for more details. It is interesting to notice that in the
one dimensional case we obtained the gain of 1/10 derivatives that turns out to be
the same for the full water wave problem [1]. The question remains open if one can
improve the result and lower the threshold from s > −1/10 to the optimal s > −1/8
in one dimension.

2. Diagonalization of (1.1) and (1.5) and reformulations of the local
existence theorems. We diagonalize (1.1) as follows. Defining the new variables

u+1 =
K1η + v

2K1
, u−1 =

K1η − v
2K1

we have

(2.1) η = u+1 + u−1 , v = K1(u+1 − u
−
1 ).

Then we can write the equation for u±1 as follows:

2K1∂tu
±
1 = K1ηt ± vt

= −K1∂xv −K3
1∂x(ηv)∓K2

1∂xη ∓K2
1∂x(v2/2)

= ∓iDK1(K1η ± v)− iDK2
1 [K1(ηv)± v2/2].

Thus,

(2.2) i∂tu
±
1 = ±DK1u

±
1 +

DK1

2
[K1(ηv)± v2/2].

The nonlinear terms can also be written in terms of u±1 as

(2.3) ηv = (u+1 + u−1 )K1(u+1 − u
−
1 ), v2 = [K1(u+1 − u

−
1 )]2.

Now let
m1(D) = DK1(D).
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From (2.2)–(2.3) we see that the system (1.1) transforms to

(2.4)

{
(i∂t −m1(D))u+1 = B+

1 (u+1 , u
−
1 ),

(i∂t +m1(D))u−1 = B−1 (u+1 , u
−
1 ),

where

(2.5) 4B±1 (u+1 , u
−
1 ) = DK1

[
2K1

{
(u+1 + u−1 )K1(u+1 − u

−
1 )
}
± [K1(u+1 − u

−
1 )]2

]
.

The initial data (1.3) transforms to

(2.6) u±1 (0) = f±1 :=
K1η0 ± v0

2K1
∈ Hs(R),

where we used the fact that K1(ξ) ∼ 〈ξ〉−1/2, and hence

‖K−11 v0‖Hs(R) ∼ ‖〈D〉1/2v0‖Hs(R) = ‖v0‖Hs+1/2(R).

Here and below we use the notation 〈ξ〉 =
√

1 + ξ2, so 〈D〉 = J is the Bessel potential
of order −1.

To diagonalize (1.5) we define

u±2 =
K2|D|η ∓ i∇ · v

2K2|D|
.

Hence

(2.7) η = u+2 + u−2 v = −i|D|−1K2∇(u+2 − u
−
2 ),

where we used the fact that v is curl free, which in turn implies∇∇·v = ∆v = −|D|2v.
Then the equations for u±2 are written as follows:

2K2|D|∂tu±2 = K2|D|ηt ∓ i∇ · vt
= ∓iK2|D|(K2|D|η ∓ i∇ · v) + i|D|2K2

2 [K2|D|−1(i∇) · (ηv)± (|v|2)/2].

Thus,

(2.8) i∂tu
±
2 = ±|D|K2u

±
2 −

|D|K2

2
[iK2R · (ηv)∓ |v|2/2)],

where R = (R1, R2) with Rj = ∂j/|D| being the Riesz transforms. Now setting

m2(D) := |D|K2(D)

and combining (2.7)–(2.8) we see that the system (2.9) transforms to

(2.9)

{
(i∂t −m2(D))u+2 = B+

2 (u+2 , u
−
2 ),

(i∂t +m2(D))u−2 = B−2 (u+2 , u
−
2 ),

where
(2.10)

4B±2 (u+2 , u
−
2 ) = −|D|K2

[
2K2R

{
(u+2 + u−2 )K2R(u+2 − u

−
2 )
}
∓
∣∣∣K2R(u+2 − u

−
2 )
∣∣∣2] .
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The initial data (1.6) transforms to

(2.11) u±2 (0) = f±2 :=
K2|D|η0 ∓ i∇ · v0

2K2|D|
∈ Hs(R),

where we used the fact that K2(ξ) ∼ 〈ξ〉−1/2.
Now let us reformulate Theorems 1 and 2 in terms of the new variables as follows.

Theorem 4. Let s > −1/10. Given any R > 0 there exists a time T = T (R) > 0
such that for any initial data (f+1 , f

−
1 ) ∈ Hs(R) × Hs(R) with norm ‖f+1 ‖Hs(R) +

‖f−1 ‖Hs(R) ≤ R, the Cauchy problem (2.4)–(2.6) has a solution

(u+1 , u
−
1 ) ∈ C ([0, T ];Hs(R)×Hs(R)) .

Moreover, the solution is unique in a subset of this space and depends continuously
on the data.

Theorem 5. Let s > 1/4. Given any R > 0 there exists a time T = T (R) > 0
such that for any initial data (f+2 , f

−
2 ) ∈ Hs(R2)×Hs(R2) with norm ‖f+2 ‖Hs(R2) +

‖f−2 ‖Hs(R2) ≤ R, the Cauchy problem (2.9)–(2.11) has a solution

(u+2 , u
−
2 ) ∈ C

(
[0, T ];Hs(R2)×Hs(R2)

)
.

Moreover, the solution is unique in a subset of this space and depends continuously
on the data.

The system (2.4)–(2.6) can be written in the form of integral equations as

(2.12) u±1 (t) = e∓itm1(D)f±1 ∓ i
∫ t

0

e∓i(t−s)m1(D)B±1 (u+1 , u
−
1 )(s) ds.

Similarly, the system (2.9)–(2.11) can be written in the form of integral equations as

(2.13) u±2 (t) = e∓itm2(D)f±2 ∓ i
∫ t

0

e∓i(t−s)m2(D)B±2 (u+2 , u
−
2 )(s) ds.

Applying the contraction argument to (2.12) together with the Sobolev embedding
one can prove Theorem 4 for s > 0 and Theorem 5 for s > 1/2, as shown in the next
section. However, to prove Theorem 4 for s > −1/10 and Theorem 5 for s > 1/4 we
need to derive dispersive estimates on the semigroups Smd(±t) := e∓itmd(D), where

m1(ξ) = ξK1(ξ) = ξ

√
tanh ξ

ξ
(ξ ∈ R),

m2(ξ) = |ξ|K2(ξ) = |ξ|

√
tanh |ξ|
|ξ|

(ξ ∈ R2).

3. Nondispersive estimates.

3.1. Local well-posedness for s > 0 in one dimension. In this section we
prove the local well-posedness in Hs×Hs+1/2 with s > 0 for system (1.1) applying a
fixed-point argument. It is only a particular case of Theorem 1 (or of the equivalent
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WELL-POSEDNESS OF WHITHAM–BOUSSINESQ TYPE SYSTEM 2361

theorem, 4). In this sense, the section has mainly an illustrative character. However,
the proof is elegant and does not need any use of dispersive techniques. The idea is
close to the one used in [4], for instance. This allows us to think about system (1.1)
as a fully dispersive bidirectional relative to the Benjamin–Bona–Mahony equation.

Regard the Whitham operator K =
√

tanhD/D and introduce the space Xs =
Hs ×Hs+1/2 equipped with the norm

(3.1) ‖(f, g)‖2Xs = ‖f‖2Hs + ‖K−1g‖2Hs ,

which is obviously equivalent to the standard one. Denote by Xs
T the space of continu-

ous functions defined on [0, T ] with values in Xs, equipped with the supremum-norm.
Define matrices

K =
1√
2

(
1 1
K −K

)
, K−1 =

1√
2

(
1 K−1

1 −K−1
)
.

Clearly, that K is isometric from Hs ×Hs to Xs for any s ∈ R, i. e. ‖K(f, g)T ‖Xs =
‖(f, g)‖Hs×Hs . Regard the unitary group

S(t) = K
(
e−itm 0

0 eitm

)
K−1,

where m = m(D) =
√
D tanhD sgnD. Note that for any s, t ∈ R, u ∈ Xs holds

‖S(t)u‖Xs = ‖u‖Xs and consequently ‖S(t)u‖XsT = ‖u‖XsT for any T > 0. These

follow from the isometricity of operators K, K−1 and that symbols of eigenvalues of
S(t) have absolute value equal to one. For any fixed u0 = (η0, v0)T ∈ Xs function
S(t)u0 solves the linear initial-value problem associated with (1.1). Regard a mapping
A : Xs

T → Xs
T defined by

(3.2) A(η, v) = A(η, v;u0)(t) = S(t)u0 +

∫ t

0

S(t− t′)(−i tanhD)

(
ηv
v2/2

)
(t′)dt′.

Then the Cauchy problem for system (1.1) with the initial data u0 may be rewritten
equivalently as an equation in Xs

T of the form

(3.3) u = A(u;u0),

where u = (η, v)T ∈ Xs
T . Below the latter integral equation is solved locally in time

by making use of Picard iterations.

Lemma 2 (particularly the case of Theorem 1). Let s > 0, u0 = (η0, v0)T ∈ Xs,
and T = (7Cs‖u0‖Xs)−1 with some constant Cs > 0 depending only on s. Then there
exists a unique solution u = (η, v)T ∈ Xs

T of Problem (3.3).
Moreover, for any R > 0 there exists T = T (R) > 0 such that the flow map

associated with (3.3) is a real analytic mapping of the open ball BR(0) ⊂ Xs to Xs
T .

Proof. The idea is to show that the restriction of A on some closed ball BM cen-
tered at S(t)u0 is a contraction mapping. The key ingredient is the product estimate
‖ηv‖Hs . ‖η‖Hs ‖v‖Hs+1/2 that can be found, for example, in [14]. Obviously, there
exists a positive constant Cs such that

‖(ηv, v2/2)‖Xs 6 Cs‖(η, v)‖2Xs
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and

‖(η1v1−η2v2, v21/2−v22/2)‖Xs 6 Cs‖(η1−η2, v1−v2)‖Xs(‖(η1, v1)‖Xs +‖(η2, v2)‖Xs).

Thus for any T,M > 0 and u, u1, u2 ∈ BM ⊂ Xs
T it holds that

‖A(u)− S(t)u0‖XsT 6
∫ T

0

‖(ηv, v2/2)‖Xs 6 CsT‖u‖2XsT ,

‖A(u1)−A(u2)‖XsT 6 CsT‖u1 − u2‖XsT (‖u1‖XsT + ‖u2‖XsT ),

and so taking M = 2‖u0‖Xs and T as in the lemma formulation we conclude that A
is a contraction in the closed ball BM . The first statement of the lemma follows from
the contraction mapping principle.

We turn our attention to smoothness of the flow map. Let R > 0, T = (7CsR)−1,
and B = BR(0) be an open ball in Xs. Define Λ : B ×Xs

T → Xs
T as

Λ(u0, u) = u−A(u;u0)

that is obviously a smooth map. Its Fréchet derivative with respect to the second
variable is defined by

duΛ(u0, u)h = h+ i

∫ t

0

S(t− t′) tanhD

(
v η
0 v

)
h(t′)dt′,

where u = (η, v)T and h ∈ Xs
T . If u1 ∈ Xs

T is the solution of Problem (3.3) cor-
responding the initial data u0 ∈ B, then Λ(u0, u1) = 0. Moreover, it satisfies the
estimate

‖u1(t)‖Xs 6 ‖u0‖Xs + Cs

∫ t

0

‖u1(t′)‖2Xsdt′

and so ∫ t

0

‖u1(t′)‖2Xsdt′ 6
t‖u0‖2Xs

1− Cst‖u0‖Xs

for any t. The latter is used to estimate operator I − duΛ(u0, u1) as

‖h− duΛ(u0, u1)h‖ 6 Cs sup
t∈[0,T ]

∫ t

0

‖u1(t′)‖Xs‖h(t′)‖Xsdt′

6 Cs sup
t∈[0,T ]

(
t

∫ t

0

‖u1(t′)‖2Xsdt′
)1/2

‖h‖XsT

6
CsT‖u0‖Xs√

1− CsT‖u0‖Xs
‖h‖XsT 6

1√
42
‖h‖XsT ,

which is true for any h ∈ Xs
T . As a result operator duΛ(u0, u1) is invertible and so

the second assertion of the lemma follows from the implicit function theorem.

The next and most difficult step is to extend the statement of the lemma to the
case s 6 0 as well. Even extension to the limiting case s = 0 is not trivial. On the
one hand, it seems possible to do it without the dispersive estimates, applying the
energy method, for example. Indeed, we have the Hamiltonian conservation that can
provide us with a necessary a priori bound (see Lemma 4 below). However, at such
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a level of regularity with s = 0 the regularization of system (1.1) can be a serious
issue. In other words, one cannot guarantee that the a priori estimate will still be
valid for the regularized problem. Moreover, we can hardly hope for more than a weak
solution after implementing the compactness argument. So we turn our attention to
the harmonic analysis methods, since we can eventually achieve a more general result
with the dispersive estimates obtained below in the next sections.

3.2. Local well-posedness for s > 1/2 in two dimensions. The proof is
essentially the same. Now the change of variables has the form

K =
1√
2

 1 1
−iKR1 iKR1

−iKR2 iKR2

 ,

where K =
√

tanh |D|/|D|. Then K is an isometric operator from Hs × Hs to the
subspace Xs of Hs×(Hs+1/2)2 with the curl free second coordinate and endowed with
the norm ‖K−1(η,v)T ‖Hs×Hs . This K defines a continuous group S(t) as above. For
any fixed u0 = (η0,v0)T ∈ Xs function S(t)u0 solves the linear initial-value problem
associated with (1.5) in Xs

T = C([0, T ];Xs). Considering the map A : Xs
T → Xs

T

defined by

(3.4) A(η,v;u0)(t) = S(t)u0 −
∫ t

0

S(t− t′)
(
K2∇ · (ηv)
K2∇

(
|v|2/2

)) (t′)dt′

we reduce the Cauchy problem for system (1.5) with the initial data u0 to (3.3) in
Xs
T again, with the only difference that now u = (η,v)T ∈ Xs

T is a three component
vector.

Lemma 3 (particularly the case of Theorem 2). Let s > 1/2, u0 ∈ Xs, and
T = (7Cs‖u0‖Xs)−1 with some constant Cs > 0 depending only on s. Then there
exists a unique solution u ∈ Xs

T of problem (3.3).
Moreover, for any R > 0 there exists T = T (R) > 0 such that the flow map

associated with (3.3) is a real analytic mapping of the open ball BR(0) ⊂ Xs to Xs
T .

As above the key ingredient is the same product estimate that in the case d = 2
is valid only provided s > 1/2, and so we omit the proof.

3.3. A priori estimates for s > 0 in one dimension. First, we prove the
following global bound in the energy space X0.

Lemma 4. There exists a constant ε0 > 0 such that for any ε ∈ (0, ε0], if a pair
u(t) = (η(t), v(t)) ∈ L2(R) × H1/2(R) having initial condition ‖u0‖L2×H1/2 6 ε/2
solves system (1.1), then its norm remains bounded ‖u(t)‖L2×H1/2 6 ε for any time
t.

Proof. We use a continuity argument. Without loss of generality we prove the
statement with the X0-norm defined in (3.1), which is equivalent to the L2 ×H1/2-
norm. For u = (η, v), define

‖u‖2 :=
1

2
‖u‖2X0 =

1

2
‖η‖2L2 +

1

2
‖K−1v‖2L2 .

Then there exists C > 0 such that

‖u‖2(1− C‖u‖) 6 H(u) 6 ‖u‖2(1 + C‖u‖),
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where u = u(t) is a solution of (1.1) defined on some interval. Take ε0 = (2C)−1, any
0 < ε 6 ε0, and a solution with u0 = u(0) having ‖u0‖ 6 ε/2. By continuity ‖u‖ 6 ε
on some [0, Tε] and so

‖u‖ 6
√

2H(u) =
√

2H(u0) 6

√
1 + Cε/2

2
ε < ε,

which means that the continuous function ‖u(t)‖ cannot touch the level ε with time.

Proving the next lemma, we will employ a sharper variant of the bilinear estimates
used at the beginning of the proof of Lemma 2. Recall the notation ‖(η, v)‖Xs defined
by (3.1).

Lemma 5 (persistence of regularity). Suppose s > 0 and a pair η(t) ∈ Hs,
v(t) ∈ Hs+1/2 solves problem (1.1), (1.3). Then if s < 1/2, the following holds true,

‖(η, v)(t)‖Xs 6 ‖(η0, v0)‖Xs + Cs

∫ t

0

(‖v‖H1/2 + ‖v‖L∞) ‖(η, v)‖Xs ,

and if s > 1/2, then

‖(η, v)(t)‖Xs 6 ‖(η0, v0)‖Xs + Cs

∫ t

0

‖v‖Hs+1/4‖(η, v)‖Xs ,

where constant Cs depends only on s.

Proof. Estimating A(t) given by (3.2) in Xs-norm defined by (3.1), one deduces
from (3.3) the following inequality:

‖(η, v)(t)‖Xs 6 ‖(η0, v0)‖Xs +

∫ t

0

∥∥∥∥( tanhD(ηv)
tanhD(v2/2)

)
(t′)

∥∥∥∥
Xs

dt′.

It is left to calculate the integrand. Provided s ∈ (0, 1/2) by the Leibniz rule [20] we
have

(3.5) ‖Js tanhD(ηv)‖L2 . ‖Jsη‖Lp1 ‖v‖Lq1 + ‖η‖Lp2‖Jsv‖Lq2 ,

where setting p1 = 2, q1 = ∞, p2 = 2/(1 − 2s), q2 = 1/s and using the Sobolev
embedding we obtain

‖Js tanhD(ηv)‖L2 . ‖η‖Hs (‖v‖L∞ + ‖v‖H1/2) .

Similarly, but now for any s ∈ (0,∞) we have
(3.6)∥∥JsK−1 tanhDv2

∥∥
L2 .

∥∥∥Js+1/2v2
∥∥∥
L2

. ‖v‖L∞
∥∥∥Js+1/2v

∥∥∥
L2

. ‖v‖L∞
∥∥K−1v∥∥

Hs
.

This implies the first inequality in the statement valid for s ∈ (0, 1/2).
Regarding the case s = 1/2 and setting p2 = q2 = 4 with the same p1 = 2, q1 =∞

in the Leibniz inequality (3.5), after implementation the Sobolev embedding, obtain

‖Js tanhD(ηv)‖L2 . ‖η‖Hs‖v‖Hs+1/4 .

This inequality is obvious for s > 1/2 since Hs is an algebra under the pointwise
product, and so is true for any s > 1/2. Taking into account (3.6) we deduce the
second inequality of the lemma.
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WELL-POSEDNESS OF WHITHAM–BOUSSINESQ TYPE SYSTEM 2365

In order to use the persistence of regularity lemma, 5, one needs two Gronwall
inequalities. One of them is considered to be standard. For completeness, we give
here a proof of the other Gronwall type inequality, which is less standard and will be
used below.

Lemma 6 (Gronwall inequality). Let y(t) > 1 be a continuous function defined
on some interval [0, T ] with y(0) = y0. Suppose that for any t ∈ [0, T ] it holds that

y(t) 6 y0 + C

∫ t

0

y log y.

Then
y(t) 6 exp

(
eCt log y0

)
.

Proof. One can easily calculate

d

dt
log log

(
y0 + C

∫ t

0

y log y

)
=

Cy log y(
y0 + C

∫ t
0
y log y

)
log
(
y0 + C

∫ t
0
y log y

) 6 C,

where we have used the dominance of y(t) by the integral expression. The fundamental
theorem of calculus provides us with the claim.

The persistence of regularity based on the energy estimate lemma, 5, transforms
to the following a priori estimates.

Lemma 7. Suppose s > 0 and a pair u(t) = (η(t), v(t)) ∈ Xs solves system (1.1)
on some time interval with u(0) = u0 small enough with respect to X0-norm in the
sense of Lemma 4. Then if s < 1/2, the following holds true,

‖u(t)‖Xs 6 exp
(
CeCt

)
,

and if s > 1/2, then

‖u(t)‖Xs 6 ‖u0‖Xs exp

(
C

∫ t

0

‖v‖Hs+1/4

)
,

where constant C depends only on s, ‖u(0)‖X0 , and ‖u(0)‖Xs .
Proof. Suppose s ∈ (0, 1/2) and u(t) = (η(t), v(t)) ∈ Xs solves system (1.1) on

some time interval. Let its initial data u0 be small with respect to X0-norm in the
sense of Lemma 4. Then u(t) stays bounded in X0, and so ‖v(t)‖H1/2 is bounded by
the same constant independent on the time interval. Hence from the Brezis–Gallouet
limiting embedding (1.8) one deduces

‖v(t)‖L∞ . 1 + log (2 + ‖v(t)‖Hs+1/2)

and applying Lemma 5 obtains

‖u‖Xs 6 ‖u0‖Xs + C

∫ t

0

(1 + log (2 + ‖u‖Xs)) ‖u‖Xs .

Introducing y(t) = 2+‖u(t)‖Xs we arrive at the assumption of the Gronwall inequality,
Lemma 6. As a result we have the estimate

2 + ‖u‖Xs 6 exp
(
e2Ct log (2 + ‖u0‖Xs)

)
,

which is the first claim.
In the case s > 1/2 we make use of the second inequality in Lemma 5 and a more

standard Gronwall inequality [25].
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4. Dispersive estimate for Smd(±t)f . First we establish a lower bound for
the first and second derivatives of the function m(r) = r

√
tanh(r)/r. These estimates

will be used later to derive dispersive estimates for the free waves Smd(±t)f using a
stationary phase method.

Throughout the next three sections we use the following notation: The Greek
letter λ denotes a dyadic number, i.e., this variable ranges over numbers of the form
2k for k ∈ Z. In estimates we use A . B as shorthand for A ≤ CB and A � B
for A ≤ C−1B, where C � 1 is a positive constant which is independent of dyadic
numbers such as λ and time T , whereas A ∼ B means B . A . B.

Lemma 8. Set m(r) = rK(r), where K(r) =
√

tanh(r)/r. Then for r > 0,

0 < m′(r) ∼ 〈r〉−1/2,(4.1)

0 < −m′′(r) ∼ r〈r〉−5/2.(4.2)

Proof. First note that

K ′(r) =
rsech2(r)− tanh(r)

2r2K(r)
,

K ′′(r) = − tanh(r)sech2(r)

rK(r)
−
(
rsech2(r)− tanh(r)

)
r3K(r)

−
(
rsech2(r)− tanh(r)

)2
4r4K3(r)

,

which imply

m′(r) = K(r) + rK ′(r) =
K(r)

2
+

sech2(r)

2K(r)
> 0,

m′′(r) = 2K ′(r) + rK ′′(r)

= − tanh(r)sech2(r)

K(r)
−
(
rsech2(r)− tanh(r)

)2
4r3K3(r)

= − 1

4r

[
4r2Ksech2(r) +K−3(r)

(
K2(r)− sech2(r)

)2]
.

Now let us estimate m′(r). One can assume without loss of generality that r > 0.
Since

K(r) =
√

tanh(r)/r ∼ 〈r〉−1/2 and sech(r) ∼ e−r

we have

(4.3) m′(r) ∼ 〈r〉−1/2 + 〈r〉1/2e−2r ∼ 〈r〉−1/2.

Next we estimate m′′(r). We can write

K2(r)− sech2(r) = E(r)sech2(r),

where

E(r) =
e2r − e−2r − 4r

4r
.

Now if 0 < r < 1/2 we have

E(r) =
1

2r

∞∑
n=0

(2r)2n+3

(2n+ 3)!
= 4Cr2,
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WELL-POSEDNESS OF WHITHAM–BOUSSINESQ TYPE SYSTEM 2367

where C := C(r) =
∑∞
n=0

(2r)2n

(2n+3)! <∞. If r ≥ 1/2, we have

E(r) =
e2r

4r
[1− e−4r − 4re−2r] ∼ e2r

r
.

Therefore,

(4.4) E(r) ∼

{
r2 if 0 < r < 1/2,

r−1e2r if r ≥ 1/2.

Then using (4.3) and (4.4) we obtain

|m′′(r)| = 1

4|r|
[
4r2K(r)sech2(r) +K−3(r)E2(r)sech4(r)

]
∼ |r|−1

[
r2〈r〉− 1

2 e−2r + 〈r〉 32E2(r)e−4r
]

∼ |r|〈r〉−5/2.

Next we use the estimates on the derivatives of m(r) in Lemma 8 and stationary
phase method to derive a frequency localized dispersive estimate for the free waves
Sm(±t)f . To this end, we consider an even function χ ∈ C∞0 ((−2, 2)) such that
χ(s) = 1 if |s| ≤ 1. Let

β(s) = χ (s)− χ (2s) , βλ(s) := β (s/λ) ,

where λ ∈ 2Z is dyadic. Thus, suppβλ ⊂ {s ∈ R : λ/2 6 |s| 6 2λ}. Now define the
frequency projection Pλ by

P̂λf(ξ) =

{
χ(|ξ|)f̂(ξ) if λ = 1,

βλ(|ξ|)f̂(ξ) if λ > 1.

We write fλ := Pλf . Then f =
∑
λ≥1 fλ.

The following is the key dispersive estimate that will be crucial in the proof of
Theorems 4 and 5.

Lemma 9 (localized dispersive estimate). Let λ > 1 and d ∈ {1, 2}. Then we
have the estimate

‖Smd(±t)fλ‖L∞x (Rd) . λ3d/4|t|−d/2‖f‖L1
x(Rd).

Interpolating this with the trivial bound (by Plancherel)

‖Smd(±t)fλ‖L2
x(Rd) ≤ ‖f‖L2

x(Rd),

we obtain the following.

Corollary 1. Assuming λ > 1, d ∈ {1, 2}, and 2 ≤ r ≤ ∞, we have

‖Smd(±t)fλ‖Lrx(Rd) .
(
λ3d/4|t|−d/2

)1−2/r
‖f‖Lr′x (Rd).

The remainder of this section is devoted to the proof of Lemma 9. It suffices to
prove the estimate for positive times:

(4.5) ‖Smd(t)fλ‖L∞x (Rd) . λ3d/4t−d/2‖f‖L1
x(Rd) (t > 0).
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2368 E. DINVAY, S. SELBERG, AND A. TESFAHUN

One can write

[Smd(t)fλ] (x) = F−1x
[
eitmd(ξ)βλ(|ξ|)f̂

]
(x) = (Iλ,t ∗ f)(x),

where

Iλ,t(x) = F−1x
[
eitmd(ξ)βλ(|ξ|)

]
(x)

=

∫
Rd
eix·ξ+itmd(ξ)βλ(|ξ|) dξ = λd

∫
Rd
eiλx·ξ+itmd(λξ)β(|ξ|) dξ.

(4.6)

Then by Young’s inequality

(4.7) ‖Smd(t)fλ‖L∞x (Rd) ≤ ‖Iλ,t‖L∞x (Rd)‖f‖L1
x(Rd),

so (4.5) reduces to proving

(4.8) ‖Iλ,t‖L∞x (Rd) . λ3d/4t−d/2.

But clearly,

‖Iλ,t‖L∞x (Rd) . λd,

so in view of (4.8) it is enough to consider the case where

(4.9) λ3d/4t−d/2 � λd ⇔ t� λ−1/2.

The proof of (4.8) in this case is given in the following two subsections, first for space
dimension d = 1 and then for d = 2.

4.1. Proof of (4.8) when d = 1. In one dimension we have

Iλ,t(x) = λ

∫
R
eitφλ(ξ)β(|ξ|) dξ,

where

φλ(ξ) := λξx/t+m1(λξ) = λξx/t+ λξK1(λξ).

Note that m1(ξ) = m(ξ), where m is as in Lemma 8. Now since the function φλ is
odd we can write

Iλ,t(x) = 2λ

∫ ∞
0

cos(tφλ(ξ))β(ξ) dξ = 2λ

∫ 2

1/2

cos(tφλ(ξ))β(ξ) dξ.

Since

φ′λ(ξ) = λ [x/t+m′(λξ)] ,(4.10)

φ′′λ(ξ) = λ2m′′(λξ),(4.11)

we see from Lemma 8 that

(4.12) 0 < −φ′′λ(ξ) = −λ2m′′(λξ) ∼ λ3〈λ〉−5/2 ∼ λ1/2

for ξ ∈ [1/2, 2]. Here we used also the assumption λ ≥ 1.
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WELL-POSEDNESS OF WHITHAM–BOUSSINESQ TYPE SYSTEM 2369

4.1.1. Nonstationary contribution. This is the case when either (i) x ≥ 0 or
(ii) x < 0 and −x/t � λ−1/2 or −x/t � λ−1/2. Then since m′(λξ)) is positive and
comparable to 〈λξ〉−1/2 (Lemma 8), we see from (4.10) that

(4.13) |φ′λ(ξ)| & λ1/2

for ξ ∈ [1/2, 2]. Integration by parts yields

Iλ,t(x) = 2λt−1
∫ 2

1/2

d

dξ
[sin(tφλ(ξ))] [φ′λ(ξ)]

−1
β(ξ) dξ

= −2λt−1
∫ 2

1/2

sin (tφλ(ξ)) [φ′λ(ξ)]−2 [β′(ξ)φ′λ(ξ)− β(ξ)φ′′λ(ξ)] dξ,

(4.14)

and hence (4.12) and (4.13) allow us to estimate

|Iλ,t(x)| ≤ 2λt−1
∫ 2

1/2

|φ′λ(ξ)|−2 [|β′(ξ)||φ′λ(ξ)|+ |β(ξ)||φ′′λ(ξ)|] dξ

. λt−1
[
λ−1/2 + λ−1 · λ1/2

]
∼ λ1/2t−1

� λ3/4t−1/2,

(4.15)

where the last step follows by the assumption (4.9). This concludes the proof of the
desired estimate (4.8) with d = 1 in the nonstationary case.

4.1.2. Stationary contribution: x < 0 and −x/t ∼ λ−1/2. In this case,
we see from (4.10) that φ′λ(ξ) may vanish, but this can happen for at most one point
ξ ∈ [1/2, 2], since ξ 7→ φ′λ(ξ) is strictly decreasing for ξ > 0. (Indeed, φ′′λ(ξ) is negative,
by Lemma 8.) We consider first the case where there exists such a point in [1/2, 2].

So suppose first that φ′λ(ξ0) = 0 for some ξ0 ∈ [1/2, 2]. Define

δ = t−1/2λ−1/4.

Note that δ � 1 by (4.9). Assuming for the moment that 1/2 ≤ ξ0−δ and ξ0 +δ ≤ 2,
we decompose the integral as

(4.16) Iλ,t(x) = 2λ

(∫ ξ0−δ

1/2

+

∫ ξ0+δ

ξ0−δ
+

∫ 2

ξ0+δ

)
cos(tφλ(ξ))β(ξ) dξ.

To estimate the first integral, we use integration by parts to get∣∣∣∣∣
∫ ξ0−δ

1/2

cos(tφλ(ξ))β(ξ) dξ

∣∣∣∣∣ ≤ t−1
∣∣∣∣∣
[
sin(tφλ(ξ))

β(ξ)

φ′λ(ξ)

]ξ=ξ0−δ
ξ=1/2

∣∣∣∣∣
+ t−1

∣∣∣∣∣
∫ ξ0−δ

1/2

sin(tφλ(ξ))

(
β′(ξ)

φ′λ(ξ)
− β(ξ)φ′′λ(ξ)

[φ′λ(ξ)]2

)
dξ

∣∣∣∣∣ .
Since φ′λ is positive and decreasing in the interval [1/2, ξ0−δ], and since φ′′λ is negative,
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we can continue the estimate by

. t−1

(
1

φ′λ(ξ0 − δ)
+

∫ ξ0−δ

1/2

−φ′′λ(ξ)

[φ′λ(ξ)]2
dξ

)

= t−1

(
1

φ′λ(ξ0 − δ)
+

∫ ξ0−δ

1/2

d

dξ

(
1

φ′λ(ξ)

)
dξ

)

≤ 2t−1
1

φ′λ(ξ0 − δ)
.

But by the mean value theorem and (4.12),

|φ′λ(ξ)| = |φ′λ(ξ)− φ′λ(ξ0)| ∼ λ1/2|ξ − ξ0| for ξ ∈ [1/2, 2],

so we we conclude that∣∣∣∣∣
∫ ξ0−δ

1/2

cos(tφλ(ξ))β(ξ) dξ

∣∣∣∣∣ . t−1λ−1/2δ−1 = t−1/2λ−1/4,

by the definition of δ above. The third integral in (4.16) can be estimated in a
similar way and satisfies the same estimate, while the second integral (4.16) is trivially
estimated as ∫ ξ0+δ

ξ0−δ
cos(tφλ(ξ))β(ξ) dξ . δ = t−1/2λ−1/4.

Summing up the three contributions, we conclude that the desired estimate holds,

|Iλ,t(x)| . λ3/4t−1/2,

in the stationary case under the assumptions that φ′λ(ξ0) = 0 for some ξ0 ∈ [1/2, 2]
and that 1/2 ≤ ξ0−δ and ξ0+δ ≤ 2. If 1/2 > ξ0−δ or ξ0+δ > 2, the above argument

is easily modified. For example, if ξ0 + δ > 2, we split the integral as
∫ ξ0−δ
1/2

+
∫ 2

ξ0−δ
instead; the first integral is then treated as above and the second is trivially O(δ).

It remains to prove the estimate when the function φ′λ has no zero in [1/2, 2], so
it is either positive or negative everywhere in that interval. Since the arguments for
these two cases are similar, we just treat the case where φ′λ < 0 in [1/2, 2]. Then we
split the integral as

Iλ,t(x) = 2λ

(∫ 1/2+δ

1/2

+

∫ 2−δ

1/2+δ

+

∫ 2

2−δ

)
cos(tφλ(ξ))β(ξ) dξ.

The first and third integrals are trivially dominated in absolute value by δ, while for
the second integral we use integration by parts, estimating∣∣∣∣∣

∫ 2−δ

1/2+δ

cos(tφλ(ξ))β(ξ) dξ

∣∣∣∣∣ . t−1

(
1

−φ′λ(1/2 + δ)
+

∫ 2−δ

1/2+δ

−φ′′λ(ξ)

[φ′λ(ξ)]2
dξ

)

= t−1

(
1

−φ′λ(1/2 + δ)
+

∫ 2−δ

1/2+δ

d

dξ

(
1

φ′λ(ξ)

)
dξ

)

≤ 2t−1
1

−φ′λ(1/2 + δ)
.

D
ow

nl
oa

de
d 

03
/1

8/
21

 to
 1

29
.1

77
.6

1.
14

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Here we used the fact that φ′λ is negative and decreasing in the interval [1/2, 2] and
that φ′′λ is negative. Using the mean value theorem and the estimate (4.12) on the
second derivative, we find moreover that

−φ′λ(1/2 + δ) ≥ φ′λ(1/2)− φ′λ(1/2 + δ) ∼ λ1/2δ,

so we conclude that∣∣∣∣∣
∫ 2−δ

1/2+δ

cos(tφλ(ξ))β(ξ) dξ

∣∣∣∣∣ . t−1λ−1/2δ−1 = t−1/2λ−1/4,

as desired.

4.2. Proof of (4.8) when d = 2. In two dimensions we have

Iλ,t(x) = λ2
∫
R2

eiλx·ξ+itm2(λξ)β(ξ) dξ,

which is the inverse Fourier transform of the radial function λ2eitm2(λξ)β(ξ), and hence
Iλ,t(x) is also radial. So we may set x = (|x|, 0). Then in polar coordinates we have

Iλ,t(x) = λ2
∫ ∞
0

∫ 2π

0

eiλr|x| cos θeitm2(λr)rβ(r) dθdr.

We can write ∫ 2π

0

eiλr|x| cos θ dθ =

∫ π

0

(
eiλr|x| cos θ + e−iλr|x| cos θ

)
dθ

= 2

∫ 1

−1
eiλr|x|s

(
1− s2

)−1/2
ds

= 2πJ0(λr|x|),

where Jk(r) is the Bessel function:

Jk(r) =
(r/2)k

Γ(k + 1/2)
√
π

∫ 1

−1
eirs

(
1− s2

)k−1/2
ds for k > −1/2.

Thus,

(4.17) Iλ,t(x) = 2πλ2
∫ 2

1/2

eitm(λr)J0(λr|x|)β̃(r) dr,

where β̃(r) = rβ(r) and m(r) = m2(r).
We shall use the following properties of Jk(r) for k > −1/2 and r > 0 (see [13,

Appendix B] and [24]):

Jk(r) ≤ Crk,(4.18)

Jk(r) ≤ Cr−1/2,(4.19)

∂r
[
r−kJk(r)

]
= −r−kJk+1(r).(4.20)

Moreover, we can write

(4.21) J0(s) = eish(s) + e−ish̄(s)

for some function h satisfying the estimate

(4.22) |∂jrh(r)| ≤ Cj〈r〉−1/2−j for all j ≥ 0.

We treat the cases |x| . λ−1 and |x| � λ−1 separately.
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4.2.1. Case 1: |x| . λ−1. By (4.18) and (4.20) we have for all r ∈ (1/2, 2) the
estimate

(4.23)
∣∣∂jrJ0(λr|x|)

∣∣ . 1 for j = 0, 1.

We integrate by parts (4.17) to obtain

Iλ,t(x) = −2πiλt−1
∫ 2

1/2

d

dr

{
eitm(λr)

}
[m′(λr)]−1J0(λr|x|)β̃(r) dr

= 2πiλt−1
∫ 2

1/2

eitm(λr)[m′(λr)]−1∂r

[
J0(λr|x|)β̃(r)

]
dr

− 2πiλt−1
∫ 2

1/2

eitm(λr)[m′(λr)]−2λm′′(λr)J0(λr|x|)β̃(r) dr.

Then applying Lemma 8 and (4.23) we obtain

(4.24) |Iλ,t(x)| . λt−1
(
λ1/2 + λ2 · λ−3/2

)
. λ3/2t−1.

4.2.2. Case 2: |x| � λ−1. Using (4.21) in (4.17) we write

Iλ,t(x) = 2πλ2

{∫ 2

1/2

eitφ
+
λ (r)h(λr|x|)β̃(r) dr +

∫ 2

1/2

e−itφ
−
λ (r)h̄(λr|x|)β̃(r) dr

}
,

where

φ±λ (r) = λr|x|/t±m(λr).

Set Fλ(|x|, r) = h(λr|x|)β̃(r). In view of (4.22) we have

(4.25) |Fλ(|x|, r)|+ |∂rFλ(|x|, r)| . (λ|x|)−1/2

for all r ∈ (1/2, 2), where we also used the fact λ|x| � 1.
Now we write

Iλ,t(x) = I+λ,t(x) + I−λ,t(x),

where

I+λ,t(x) = 2πλ2
∫ 2

1/2

eitφ
+
λ (r)Fλ(|x|, r) dr,

I−λ,t(x) = 2πλ2
∫ 2

1/2

e−itφ
−
λ (r)F̄λ(|x|, r) dr.

Observe that

∂rφ
±
λ (r) = λ [|x|/t±m′(λr)] , ∂2rφ

±
λ (r) = ±λ2m′′(λr),

and hence by Lemma 8,

(4.26) |∂rφ+λ (r)| & λ1/2, |∂2rφ±λ (r)| ∼ λ1/2

for all r ∈ (1/2, 2), where we also used the fact that m′ is positive.
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Estimate for I+λ,t(x). It is easy to estimate I+λ,t(x) since ∂rφ
+
λ (r) is never zero.

Indeed, using integration by parts we have

I+λ,t(x) = −2πit−1λ2
∫ 2

1/2

∂r

[
eitφ

+
λ (r)

] [
∂rφ

+
λ (r)

]−1
Fλ(|x|, r) dr

= 2πit−1λ2
∫ 2

1/2

eitφ
+
λ (r)

{
∂rFλ(|x|, r)
∂rφ

+
λ (r)

−
∂2rφ

+
λ (r)Fλ(|x|, r)[
∂rφ

+
λ (r)

]2
}
dr.

Then using (4.25) and (4.26) we have

(4.27) |I+λ,t(x)| . t−1λ2 · λ−1/2 · (λ|x|)−1/2 . λ3/2t−1.

Estimate for I−λ,t(x). We treat the nonstationary and stationary cases sepa-

rately. In the nonstationary case, where |x|/t� λ−1/2 or |x|/t� λ−1/2, we have

|∂rφ−λ (r)| & λ1/2,

and hence I−λ,t(x) can be estimated in exactly the same way as I+λ,t(x) above. It
satisfies

(4.28) |I−λ,t(x)| . λ3/2t−1.

It remains to consider the stationary case, where |x|/t ∼ λ−1/2. Note that ∂rφ
−
λ (r)

is strictly increasing for r > 0, since ∂2rφ
−
λ (r) = −λ2m′′(λr) is strictly positive, by

Lemma 8. Thus there is at most one point r0 ∈ [1/2, 2] at which ∂rφ
−
λ vanishes.

Setting as before
δ = t−1/2λ−1/4,

we limit our attention to the case where there is such a point r0 in [1/2 + δ, 2 −
δ]; the remaining cases are treated by straightforward modifications of the following
argument, much as in the one dimensional case in subsection 4.1.2.

We decompose

(4.29) I−λ,t(x) = 2πλ2

(∫ r0−δ

1/2

+

∫ r0+δ

r0−δ
+

∫ 2

r0+δ

)
e−itφ

−
λ (r)F̄λ(|x|, r) dr.

Integrating by parts we write the first integral as∫ r0−δ

1/2

e−itφ
−
λ (r)F̄λ(|x|, r) dr

= it−1
[
e−itφ

−
λ (r) F̄λ(|x|, r)

∂rφ
−
λ (r)

]r0−δ
r=1/2︸ ︷︷ ︸

=:A

− it−1
∫ r0−δ

1/2

e−itφ
−
λ (r)∂r

(
F̄λ(|x|, r)
∂rφ
−
λ (r)

)
dr︸ ︷︷ ︸

=:B

.

Using (4.25) and noting that for r ∈ [1/2, r0 − δ], ∂rφ−λ (r) is negative and increasing,
while ∂2rφ

−
λ (r) is positive, we find

|A| . t−1(λ|x|)−1/2 1

|∂rφ−λ (r0 − δ)|
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and

|B| . t−1(λ|x|)−1/2
[∫ r0−δ

1/2

1

|∂rφ−λ (r)|
dr +

∫ r0−δ

1/2

∂2rφ
−
λ (r)

[∂rφ
−
λ (r)]2

dr

]

= t−1(λ|x|)−1/2
[∫ r0−δ

1/2

1

|∂rφ−λ (r)|
dr +

∫ r0−δ

1/2

∂r

(
1

−∂rφ−λ (r)

)
dr

]

. t−1(λ|x|)−1/2 1

|∂rφ−λ (r0 − δ)|
.

But using (4.26) and the mean value theorem, we see that

|∂rφ−λ (r0 − δ)| = |∂rφ−λ (r0 − δ)− ∂rφ−λ (r0)| ∼ λ1/2δ = λ1/4t−1/2.

Using also the assumption |x|/t ∼ λ−1/2, we conclude that∣∣∣∣∣
∫ r0−δ

1/2

eitφ
−
λ (r)F̄λ(|x|, r) dr

∣∣∣∣∣ ≤ |A|+ |B|
. t−1(λ|x|)−1/2λ−1/4t1/2

∼ t−1(λ1/2t)−1/2λ−1/4t1/2

= t−1λ−1/2.

The third integral in (4.29) can also be estimated in a similar way and satisfies the
same estimate, while the second integral can be simply estimated as∣∣∣∣∣

∫ r0+δ

r0−δ
eitφ

−
λ (r)F̄λ(|x|, r) dr

∣∣∣∣∣ . (λ|x|)−1/2δ . t−1λ−1/2.

Therefore, combining the above computations with (4.29) we have

(4.30)
∣∣∣I−λ,t(x)

∣∣∣ . λ3/2t−1,

concluding the stationary case.
In summary, from (4.27), (4.28), and (4.30) we obtain

|Iλ,t(x)| ≤
∑
±
|I±λ,t(x)| . λ3/2t−1,

which is the desired estimate (4.8) with d = 2.

5. Function spaces, linear and bilinear estimates.

5.1. Function spaces. The mixed space-time Lebesgue space LqtL
r
x on Rd+1 is

defined with the norm

‖u‖LqtLrx = ‖‖u(t, ·)‖Lrx‖Lqt =

(∫
R

(∫
Rd
|u(t, x)|r dx

) q
r

dt

) 1
q

for 1 ≤ q, r < ∞ with an obvious modification when q = ∞ or r = ∞. We write
LqTL

r
x when the time variable is restricted to the interval [0, T ].
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Define the Bourgain space Xs,b
± on Rd+1 by the norm

‖u‖Xs,b± =
∥∥〈ξ〉s〈τ ±md(ξ)〉bũ(ξ, τ)

∥∥
L2
τ,ξ

,

where ũ denotes the space-time Fourier transform given by

ũ(τ, ξ) =

∫
Rd+1

e−i(tτ+x·ξ)u(t, x) dtdx.

The restriction to the time slab (0, T )×Rd of the Bourgain space, denoted by Xs,b
± (T ),

is a Banach space when equipped with the norm

‖u‖Xs,b± (T ) = inf
{
‖v‖Xs,b± : v = u on (0, T )× Rd

}
.

5.2. Linear estimates. Let us recall some of the properties of these spaces. We
have

(5.1) sup
0≤t≤T

‖u(t)‖Hs ≤ C ‖u‖Xs,b± (T ) for b > 1/2.

For −1/2 < b′ ≤ b < 1/2 and 0 < T < 1 we have

‖u‖
Xs,b

′
± (T )

≤ CT b−b
′
‖u‖Xs,b± (T ) ,(5.2)

where C is independent on T . The proof for (5.1) and (5.2) can, for instance, be
found in [25]. We recall also that for 2 ≤ q ≤ ∞ and b > 1/2,

(5.3) ‖u‖LqtL2
x
≤ C ‖u‖X0,b

±
,

as can be seen by writing the LHS as ‖e±itmd(D)u‖LqTL2
x
, applying Plancherel in x,

then using Minkowski’s integral inequality to switch the order of the norms to L2
ξL

q
t ,

and finally applying Sobolev embedding in t.
It is well known (see, e.g., [8]) that for any s ∈ R and b > 1/2 one has

‖Smd(±t)f‖Xs,b± (T ) ≤ C‖f‖Hs ,(5.4) ∥∥∥∥∫ t

0

Smd(±(t− t′))F (t′) dt′
∥∥∥∥
Xs,b± (T )

≤ C‖F‖Xs,b−1
± (T ),(5.5)

where the constant C > 0 depends only on b.
We need the following Bernstein inequality, which is valid for 1 ≤ p ≤ r ≤ ∞

(see, for instance, [25, Appendix A]):

(5.6) ‖Pλf‖Lr(Rd) ≤ Cλ
d
p−

d
r ‖Pλf‖Lp(Rd) .

Another useful tool is the Hardy–Littlewood–Sobolev inequality (see [25, Appen-
dix A]), which asserts that

(5.7)
∥∥| · |−α ∗ f∥∥

La(R) ≤ C ‖f‖Lb(R)

whenever 1 < b < a <∞ and 0 < α < 1 obey the scaling condition

1

b
=

1

a
+ 1− α.
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Lemma 10 (localized Strichartz estimates). Let λ > 1 and d ∈ {1, 2}. Assume
that 2 < q <∞ and 2 ≤ r ≤ ∞ satisfy

2

q
=
d

2

(
1− 2

r

)
.

Then we have the estimate

(5.8) ‖Smd(±t)fλ‖LqtLrx(Rd+1) . λ(3d/8)(1−2/r) ‖fλ‖L2
x(Rd)

.

Moreover, if b > 1/2, we have

(5.9) ‖uλ‖LqtLrx(Rd+1) . λ(3d/8)(1−2/r) ‖uλ‖X0,b
±
.

Proof. By the standard TT ∗-argument, (5.8) is equivalent to the estimate

(5.10) ‖Kλ ? F‖LqtLrx(Rd+1) . λ(3d/4)(1−2/r) ‖F‖
Lq
′
t L

r′
x (Rd+1)

,

where 1/q + 1/q′ = 1 and 1/r + 1/r′ = 1, and where

(5.11) Kλ(x, t) =

∫
Rd
eix·ξ±itmd(ξ)β̃λ(ξ) dξ

with β̃λ = β2
λ. Here ? denotes the space-time convolution. Then by Corollary 1 (with

β replaced by β2, which does not affect the validity of the corollary) we have the
estimate

‖Kλ(·, t) ∗ f‖Lrx(Rd) .
(
λ3d/4|t|−d/2

)1−2/r
‖f‖Lr′x (Rd).

Combining this with the Hardy–Littlewood–Sobolev inequality in the t variable, with
(a, b) = (q, q′) and α = (d/2)(1− 2/r), we estimate

‖Kλ ? F‖LqtLrx =

∥∥∥∥∫
R

∫
Rd
Kλ(x− y, t− s)F (y, s) dy ds

∥∥∥∥
LqtL

r
x

≤

∥∥∥∥∥
∫
R

∥∥∥∥∫
Rd
Kλ(x− y, t− s)F (y, s) dy

∥∥∥∥
Lrx

ds

∥∥∥∥∥
Lqt

.

∥∥∥∥∫
R

(
λ3d/4|t− s|−d/2

)1−2/r
‖F (·, s)‖Lr′x ds

∥∥∥∥
Lqt

. λ(3d/4)(1−2/r)
∥∥∥‖F‖Lr′x ∥∥∥Lq′t ,

proving (5.10) and hence (5.8). By a standard argument, the latter implies (5.9) (see,
for example, the proof of [25, Lemma 2.9]).

5.3. Bilinear estimates. Set K = K(D) = Kd(D) for d = 1, 2 and note that
the Fourier symbol equals in both dimensions

K(ξ) =

√
tanh |ξ|
|ξ|

∼ 〈ξ〉−1/2,

and hence
(5.12)

‖Kfλ‖L2
x
. λ−

1
2 ‖fλ‖L2

x
, ‖|D|K2fλ‖L2

x
. ‖fλ‖L2

x
, ‖|D|Kfλ‖L2

x
. λ

1
2 ‖fλ‖L2

x
.

We first note the following consequence of the localized Strichartz estimates in
Lemma 10.
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Lemma 11. Let b > 1/2 and dyadic λ1, λ2 ≥ 1. For d = 1, 2 and 1 < p 6 2 <
r 6∞ satisfying

1

2
+

1

r
=

1

p

we have the estimate

‖uλ1
vλ2
‖L2

tL
p
x
. min(λ1, λ2)(3d/8)(1−2/r) ‖uλ1

‖X0,b
±
‖vλ2
‖X0,b
±

provided p < 2 in the case d = 2.
For d = 2 and 2 < r <∞, we have for all T > 0,

‖uλ1
vλ2
‖L2

TL
2
x
. T 1/r min(λ1, λ2)3/4+1/(2r) ‖uλ1

‖X0,b
±
‖vλ2
‖X0,b
±
.

In both estimates, the signs in the X± norms can be chosen independently of each
other.

Proof. By symmetry we may assume 1 ≤ λ1 ≤ λ2. Consider first the case d = 1.
By Hölder’s inequality and (5.3),

‖uλ1
vλ2
‖L2

tL
p
x
≤ ‖uλ1

‖LqtLrx ‖vλ2
‖Lq1t L2

x
. ‖uλ1

‖LqtLrx ‖vλ2
‖X0,b
±
,

where q is taken as in Lemma 10 and 1/q + 1/q1 = 1/2. So it only remains to check
that

‖uλ1
‖LqtLrx . λ

3/8(1−2/r)
1 ‖uλ1

‖X0,b
±
,

but this holds by Lemma 10 if λ1 > 1, while if λ1 = 1 we can use the Bernstein
inequality (5.6) followed by (5.3) to obtain

‖uλ1
‖LqtLrx . ‖uλ1

‖LqtL2
x
. ‖uλ1

‖X0,b
±
.

Similarly, one obtains the first estimate for p < d = 2.
Now consider the case p = d = 2. We apply Hölder’s inequality and (5.3) to write

‖uλ1
vλ2
‖L2

TL
2
x
≤ ‖uλ1

‖L2
TL
∞
x
‖vλ2
‖L∞T L2

x
. ‖uλ1

‖L2
TL
∞
x
‖vλ2
‖X0,b
±
.

To estimate ‖uλ1‖L2
TL
∞
x

we want to use Lemma 10, so we let 2 < r < ∞ and define

q by 2/q = 1 − 2/r. Thus 1/2 = 1/q + 1/r, so applying Hölder in t, the Bernstein
inequality in x, and finally Lemma 10, we get

‖uλ1
‖L2

TL
∞
x
≤ T 1/rλ

2/r
1 ‖uλ1

‖LqTLrx . T 1/rλ
2/r
1 λ

(3/4)(1−2/r)
1 ‖uλ1

‖X0,b
±
,

proving the claimed estimate in the case λ1 > 1. If λ1 = 1, we can apply the Bernstein
inequality and (5.3), instead of Lemma 10, and again we get the desired estimate.

We now present the key bilinear space-time estimates needed for the proof of local
well-posedness.

Lemma 12. Let 1/2 < b < 1 and 0 < T < 1. Assume that sd > −1/10 if d = 1
and sd > 1/4 if d = 2. Then we have the estimates∥∥|D|K2 (u ·Kv)

∥∥
X
sd,b−1

± (T )
. T 1−b ‖u‖

X
sd,b

±
‖v‖

X
sd,b

±
,(5.13)

‖|D|K (Ku ·Kv)‖
X
sd,b−1

± (T )
. T 1−b ‖u‖

X
sd,b

±
‖v‖

X
sd,b

±
,(5.14)

where the signs in all the X± norms can be chosen independently on each other.
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Proof of (5.13). In view of (5.2) the estimate (5.13) reduces to proving∥∥|D|K2 (u ·Kv)
∥∥
L2
TH

sd
x

. ‖u‖
X
sd,b

±
‖v‖

X
sd,b

±
,

which by duality can be reduced to
(5.15)∣∣∣∣∣

∫ T

0

∫
Rd
|D|K2〈D〉sd

(
〈D〉−sdu · 〈D〉−sdKv

)
w dxdt

∣∣∣∣∣ . ‖u‖X0,b
±
‖v‖X0,b

±
‖w‖L2

t,x
.

Decomposing u =
∑
λ1≥1 uλ1

and v =
∑
λ2≥1 vλ2

we have
(5.16)

LHS (5.15) .
∑

λ,λ1,λ2≥1

∣∣∣∣∣
∫ T

0

∫
Rd
|D|K2〈D〉sdPλ

(
〈D〉−sduλ1

· 〈D〉−sdKvλ2

)
wλ dxdt

∣∣∣∣∣ .
Setting

aλ1 := ‖uλ1‖X0,b
±
, bλ2 := ‖vλ2‖X0,b

±
, cλ := ‖wλ‖L2

t,x

we have

‖u‖X0,b
±
∼ ‖(aλ1)‖l2λ1 , ‖v‖X0,b

±
∼ ‖(bλ2)‖l2λ2 , ‖w‖L2

t,x
∼ ‖(cλ)‖l2λ ,

and hence the estimate (5.15) reduces to proving

(5.17) RHS (5.16) . ‖(aλ1
)‖l2λ1‖(bλ2

)‖l2λ2 ‖(cλ)‖l2λ .

To this end, we note that by Lemma 11 we have, for ε > 0 arbitrarily small and
1 < p 6 2 with 1/r = 1/p− 1/2,

(5.18) ‖Pλ (uλ1
vλ2

)‖L2
TL

p
x
. min(λ1, λ2)3d/8(1−2/r)+ε ‖uλ1

‖X0,b
±
‖vλ2
‖X0,b
±
.

We remark that in dimension d = 1, the lemma would actually allow us to take ε = 0,
but the proof below works for sufficiently small, positive ε > 0 in both dimensions.
Note apart from estimate (5.18) that all the nontrivial terms of RHS (5.16) can
be separated into the three groups I1, I2, I3 with λ . λ1 ∼ λ2, λ1 � λ2 ∼ λ and
λ2 � λ1 ∼ λ, respectively. It is a straightforward consequence of taking λ-projection
of the product of λ1, λ2-projections. For each of these groups we can make a particular
choice of p applying estimate (5.18).

Thus using Cauchy–Schwarz, the Bernstein inequality (5.6), (5.12), and (5.18) we
obtain

RHS (5.16) .
∑

λ,λ1,λ2≥1

∥∥|D|K2〈D〉sdPλ
(
〈D〉−sduλ1

· 〈D〉−sdKvλ2

)∥∥
L2
T,x

‖wλ‖L2
T,x

.
∑

λ,λ1,λ2≥1
Pλ(...)6=0

λsd+d/p−d/2 min(λ1, λ2)3d/8(1−2/r)+ελ−sd1 λ
−1/2−sd
2 aλ1

bλ2
cλ

. I1(d) + I2(d) + I3(d),

(5.19)
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where

I1(d) =
∑

λ,λ1,λ2≥1
λ.λ1∼λ2

λsd+d/p−d/2λ
3d/8(1−2/r)+ε−1/2−2sd
2 aλ1

bλ2
cλ,

I2(d) =
∑

λ,λ,λ2≥1
λ1�λ2∼λ

(
λ1
λ2

)1/2

λ
3d/8+ε−1/2−sd
1 aλ1bλ2cλ,

I3(d) =
∑

λ,λ1,λ≥1
λ2�λ1∼λ

λ
3d/8+ε−1/2−sd
2 aλ1

bλ2
cλ.

We first estimate I1(1). Notice

λs1+1/p−1/2λ
3/8(1−2/r)+ε−1/2−2s1
2 . λ1/p−1+3/8(1−2/r)+ε−s1

provided 3/8(1− 2/r) + ε− 1/2− 2s1 < 0 or equivalently if s1 > −(1 + 6/r)/16 + ε/2.
Consequently, we can apply the Cauchy–Schwarz inequality first in λ1 ∼ λ2 and then
in λ to estimate I1(1) as

I1(1) .

∑
λ≥1

λ(2/r−1)/8+ε−s1cλ

 ‖(aλ1)‖l2λ1‖(bλ2)‖l2λ2 . ‖(aλ1)‖l2λ1‖(bλ2)‖l2λ2 ‖(cλ)‖l2λ

provided s1 > (2/r − 1)/8 + ε and s1 > −(1 + 6/r)/16 + ε/2. The lowest possible
bound s1 > −1/10 is obtained by taking r = 10, since ε > 0 is arbitrary small (and
can be actually set to zero according to Lemma 11). This corresponds to p = 5/3. To
estimate the other sums it is enough to stick to p = 2 everywhere below.

Next we estimate I1(2) with p = 2. Since s2 > 1/4 by assumption, we have

λs2λ
ε+1/4−2s2
2 . (λ/λ2)s2 . Then we apply the Cauchy–Schwarz inequality first in λ

and then in λ1 ∼ λ2 to obtain the desired estimate:

I1(2) .
∑
λ1∼λ2

∑
λ.λ2

(λ/λ2)s2cλ

 aλ1
bλ2

. ‖(aλ1
)‖l2λ1 ‖(bλ2

)‖l2λ2‖(cλ)‖l2λ .

Next we estimate I3(d). Since sd > 3d/8− 1/2, we have ε+ 3d/8− 1/2− sd < 0
for ε > 0 small enough. Applying the Cauchy–Schwarz inequality first in λ1 ∼ λ and
then in λ2, we get

I3(d) .

∑
λ2≥1

λ
3d/8+ε−1/2−sd
2 bλ2

 ‖(aλ1
)‖l2λ1‖(cλ)‖l2λ . ‖(aλ1

)‖l2λ1‖(bλ2
)‖l2λ2 ‖(cλ)‖l2λ .

Finally, we note that in I2(d), we can discard the small factor (λ1/λ2)1/2 and
reduce to the same estimate as for I3(d). This completes the proof of (5.13).

Proof of (5.14). We follow the same argument as in the proof of (5.13). By
duality and dyadic decomposition, (5.14) reduces to proving

S . ‖(aλ1)‖l2λ1‖(bλ2)‖l2λ2 ‖(cλ)‖l2λ ,
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where

S =
∑

λ,λ1,λ2≥1

∣∣∣∣∣
∫ T

0

∫
Rd
|D|K〈D〉sdPλ

(
〈D〉−sdKuλ1 · 〈D〉−sdKvλ2

)
wλ dxdt

∣∣∣∣∣ .
By Cauchy–Schwarz, (5.12), and (5.18) we obtain

S .
∑

λ,λ1,λ2≥1
Pλ(...)6=0

λ
1
2+sd min(λ1, λ2)3d/8+ε(λ1λ2)−1/2−sdaλ1

bλ2
cλ

=
∑

λ,λ1,λ2≥1
Pλ(...)6=0

(
λ

λ1

)1/2

λsd min(λ1, λ2)3d/8+ελ−sd1 λ
−1/2−sd
2 aλ1bλ2cλ,

and comparing with the corresponding sum (5.19) from the proof of (5.13), we see
that the only difference is that we now have an extra factor (λ/λ1)1/2. This factor is
bounded except for the case λ1 � λ2 ∼ λ, so it is enough to consider I2(d) with this
factor inserted:

I ′2(d) =
∑

λ,λ,λ2≥1
λ1�λ2∼λ

(
λ

λ1

)1/2(
λ1
λ2

)1/2

λ
3d/8+ε−1/2−sd
1 aλ1bλ2cλ

.
∑

λ,λ,λ2≥1
λ1�λ2∼λ

λ
3d/8+ε−1/2−sd
1 aλ1

bλ2
cλ.

But the RHS was already estimated in the proof of (5.13) (the estimate for I3(d)).
This completes the proof of (5.14).

6. Proof of Theorems 4, 5, and 3.

6.1. Proof of Theorems 4 and 5. We solve the integral equations (2.12) and
(2.13) by contraction mapping techniques as follows. Define the mapping

(u+d , u
−
d ) 7→ (Φ+(u+d , u

−
d ),Φ−(u+d , u

−
d ))

by

Φ±(u+d , u
−
d )(t) := Smd(±t)f±d − i

∫ t

0

Smd(±(t− s))B±d (u+d , u
−
d )(s) ds.

Let

Rd = ‖f+d ‖Hsd + ‖f−d ‖Hsd .

We look for a solution in the set

D(Rd) =
{

(u+d , u
−
d ) ∈ Xsd,b

+ (T )×Xsd,b
− (T ) : ‖u+d ‖Xsd,b+ (T )

+ ‖u−d ‖Xsd,b− (T )
≤ 4CRd

}
,

where b ∈ (1/2, 1) and C is as in (5.4), (5.5). Now for (u+d , u
−
d ) ∈ D(Rd) we have by
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(5.4), (5.5), and Lemma 12,

‖Φ+(u+d , u
−
d )‖

X
sd,b

+ (T )
+ ‖Φ−(u+d , u

−
d )‖

X
sd,b

− (T )
≤ 2CRd + C ′T 1−bR2

d ≤ 4CRd,

where the last inequality certainly holds provided that

T =

(
1

16CC ′(1 +Rd)

) 1
1−b

.

Moreover, for (u+d , u
−
d ) and (v+d , v

−
d ) in D(Rd) with the same data, one can show

similarly the difference estimate∑
±
‖Φ±(u+d , u

−
d )− Φ±(v+d , v

−
d )‖

X
sd,b

± (T )

≤ C ′T 1−b

(∑
±
‖u±d − v

±
d ‖Xsd,b± (T )

)(∑
±

(
‖u±d ‖Xsd,b± (T )

+ ‖v±d ‖Xsd,b± (T )

))

≤ 8CC ′RdT
1−b

(∑
±
‖u±d − v

±
d ‖Xsd,b± (T )

)
.

With T chosen as above, the constant 8CC ′RdT
1−b is strictly less than one, and

hence (Φ+,Φ−) is a contraction on D(Rd) and therefore it has a unique fixed point
(u+d , u

−
d ) ∈ D(Rd) solving the integral equation on Rd × [0, T ]. Uniqueness in the

whole space Xsd,b
+ (T ) ×Xsd,b

− (T ) and continuous dependence on the initial data can
be shown in a similar way, by the difference estimates. This concludes the proof of
Theorems 4 and 5.

Then we use the transformation (2.1) to obtain the solution

(η, v) ∈ C
(

[0, T ];Hs1(R)×Hs1+1/2(R)
)

of the original system (1.1)–(1.3). Similarly, we use the transformation (2.7) to obtain
the solution

(η,v) ∈ C
(

[0, T ];Hs2
(
R2
)
×
(
Hs2+1/2

(
R2
))2)

of the original system (1.5)–(1.6). Thus we obtain also Theorems 1 and 2.

6.2. Proof of Theorem 3. Here we assume d = 1. For s = 0 one can easily
extend the local result globally making use of Lemma 4. With the global bound of the
lemma we can reapply the local result, Theorem 1, as many times as we want, thus
proving Theorem 3 with δ = ε0/2 for s = 0. The proof for positive s is done iteratively.
In other words, assuming the result for some s′ ≥ 0 we prove for s ∈ (s′, s′ + 1/4].
The argument is essentially the persistence of regularity based on the a priori estimate
lemma, 7, where we use the notation ‖(η, v)‖Xs defined by (3.1). Indeed, the first
estimate in Lemma 7 allows us to reapply the local result and extend the solution
to any time interval if 0 < s < 1/2. In the case s > 1/2 extension is carried out
iteratively making use of the second inequality in Lemma 7.
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