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ABSTRACT
It is shown that very steep coastal profiles can give rise to unexpectedly large wave events at the coast. We combine insight from exact
solutions of a simplified mathematical model with photographs from observations at the Norwegian coast near the city of Haugesund. The
results suggest that even under moderate wave conditions, very large run-up can occur at the shore.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0020128., s

I. INTRODUCTION
In the present work, we are interested in the interaction of

ocean waves with steep offshore topography such as encountered in
some areas at the Norwegian coast. If surface waves propagate on
such a steep bottom slope, they experience only slight amplification
until very close to shore. However, just before they reach the beach
face, the waves receive a large boost in amplitude, which can lead
to an explosive run-up on the shore. As this large run-up may seem
wholly unexpected to the casual observer, it may create a potentially
hazardous situation.

It is well known that the Norwegian coast, especially in the
south and the west, features a multitude of fjords.1 These rocky
cliffs often continue past the waterline, and may drop to several
hundred meters depth, cutting through the continental shelf as sub-
marine valleys. This landscape was formed by glaciers during the
last ice age. Indeed, it is well known that fjords developed due to
glaciers’ capability of eroding below sea level,1,2 leaving deep sub-
merged valleys when the ice age came to a close and melting was
completed.

In some cases, these valleys are offshore of the present shore-
line, and there are some places today where coastal platforms give
way to very steep seaward slopes carved by these thick glaciers. In
fact, it is not unusual to see 200 m or 300 m drops of the sea bed over
a distance of a few hundred meters. These steeply sloping shores typ-
ically consist of bedrock, which has been smoothed by the glacial ice
and is rather immune to erosion and littoral processes. In fact, wide
stretches of the coast have not been filled with mud and other sedi-
ments, and the rocks remain exposed. As a result, this coast is gen-
erally classified as the primary coast,1 similar to the coasts in other

places around the word such as New Zealand and the northernmost
part of the East Coast of the United States.2

Further offshore, the Norwegian coast features very irregular
bathymetry, which dissipates much of the incoming wave energy
through wave focusing, shoaling, and local breaking.3–5 However,
some long waves of moderate amplitude and steepness are able to
pass the rugged offshore topography relatively unscathed and reach
the coast. If these long waves hit an area with sharply sloping coastal
profiles, even waves of relatively small amplitude can lead to large
run-up. In what follows, in Sec. II, we report observations of waves
made at a site with a sharp, nearly 1:1 drop from the water line.
In Sec. III, we detail a mathematical model capable of predicting
large run-up from a moderate-sized offshore wavefield in the case
of bathymetry featuring a steep slope such as seen at the observation
site. The results are discussed in Sec. IV.

II. OBSERVATIONS
Observations were made at a site near the Norwegian city of

Haugesund. As shown in Fig. 1, the bathymetry near the coast fea-
tures a steep drop to about 200 m right from the waterline. Indeed,
it can be seen in the schematic of a cross section of the site in Fig. 2
that the slope is very steep, about 1:1. Due to the very steep slope,
it is common for waves to exhibit surging breaking, such as defined
in Refs. 6–8. However, as waves of slightly larger amplitude quickly
shoal on the steep slope, they sometimes reach the point of plung-
ing almost as soon as they can be made out as a large wave. One
such example is shown in Fig. 3. Under the rough conditions pre-
vailing when the photos in Fig. 3 were taken, energetic waves crash
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FIG. 1. Bathymetric chart of the sea bed near the Bleivika lighthouse. The depth
contours run nearly parallel to the shore and feature a steep drop from the
shoreline to about 200 m depth. Kartverket©. Used with permission from The
Norwegian Mapping Authority.

into the rocks, creating large areas of turbulent flow. The accom-
panying foam and spray immediately alert the observer to the fact
that wave conditions are serious, and caution must be exercised.
On the other hand, the conditions in Fig. 4 were mostly calm with
little visible swell, and only a small chop due to a moderate local
wind. A few small patches of foam are visible, which appear to be
remnants of previous waves interacting with the jagged rocks, or

FIG. 2. Schematic of the sea bed near Stemmevika.

white-capping due to local wind gusts. The smaller swell waves were
just lapping the shore, and the limited foam and absence of spray do
not signal any danger. As a slightly larger swell wave approaches and
shoals, the subsequent wave run-up appears to be extreme against
the backdrop of otherwise benign wave and weather conditions. An
example of such an explosive run-up is shown in Fig. 4, and one may
argue that the flooding of the rocks may happen unexpectedly to a
non-initiated observer.

A. Observations on January 16th, 2020
Observations were made from a location near the lighthouse

Bleivika indicated by a star on the map in Fig. 1. We used an
Olymp Mark III E camera to shoot 4 K video clips. Individual
frames from those clips are shown in the figures below. Wave con-
ditions were monitored using operational wave forecasts from two
sources. First, the NOAA site9 gave an estimate of the significant
waveheight and the peak period for the general area using an oper-
ational version of Wavewatch III. On this day, the significant wave-
height was in the range 2 m–2.5 m, and the peak wave period was
about 10 s.

Under local conditions, a forecast provided by the Bar-
entsWatch Center10 was consulted. Near the coast, the waves had
already encountered several shoals, and the waveheight and wave
periods were somewhat smaller. The wind speed was above 9 m/s,
therefore, there was a significant wind sea component in addition
to swell. Most waves were surging breakers, but some waves were
steep enough to break before reaching the shore. Figure 3 shows a
wave developing along the steep sloping bottom. It can be seen that
the waveheight develops quickly, and in this case, the wave is large
enough for the wave to plunge before it hits the rocky shore. This
situation would not pose a danger to the casual observer since wave
conditions were not calm.

B. Observations on January 29th, 2020
In this case, the wave forecasts from NOAA and Barentswatch

Center estimated the local significant waveheight to be just above
1 m, with a maximum waveheight of about 2 m. Visually, conditions
were rather calm, as also borne out from a study shown in Fig. 4.
However, there was swell from a distant storm, and the peak wave
period was about 13 s (i.e., wavelength of ∼260 m based on linear
wave theory). The authors were at the site for about 90 min, and the
visually measured wave period was on the average about 9 s–13 s,
though some waves were as short as 6 s, and some waves were longer
than 13 s.

The rock, which can be seen in Fig. 4 stayed dry for the most
part, though in the 90 min we were present, it was flooded 3 times.
In fact, as far as we can tell, what typically seemed to happen was
that a group of waves arrived, which had slightly higher than nor-
mal waveheight, and the rock was flooded not by the first, but by
the second and/or third wave in the group. After such an incident,
the conditions went back to normal. Indeed, it is well known that
swell will organize into wave groups (see Refs. 11–13 and references
therein), so the situation above would have to be expected. As men-
tioned above, in the 90-min observational period, there were three
waves that flooded the rock, two of these in one wave group, and
one in another wave group.
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FIG. 3. This figure shows four snapshots of wave conditions at 59.48○ N, 13.44○ E on January 16th, 2020. Upper left: t = 105 s, upper right: t = 115 s, lower left: t = 120 s,
lower right: t = 124 s.

Figure 4 shows a wave crest at t = 15 s (relative time in the
video), an approximately flat surface at t = 18 s, and the wave trough
at t = 21 s. This was a relatively unspectacular wave with a small
waveheight hitting the rock. The next wave (not shown) already has

a larger amplitude, but stops short of the rock. Finally, 25 s later, at
t = 46 s the third wave crest hits the rock, flooding the top of the rock
almost entirely. Using tide tabulations, and a local elevation map, the
run-up can be estimated to be about 3.8 m.

FIG. 4. This figure shows four snapshots of wave conditions at 59.48○ N, 13.44○ E on January 29th, 2020. Upper left: wave trough at t = 15 s, upper right: mean water level
at t = 18 s, lower left: wave crest at t = 21 s, lower right: wave crest at t = 46 s.
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FIG. 5. Offshore wavefield and run-up on a 1:1 slope for two different offshore wave conditions. In the left panel, we have offshore amplitude 0.459 m and run-up 2.548 m. In
the right panel, we have offshore amplitude 0.918 m and run-up 5.097 m.

III. MATHEMATICAL MODEL
In the following, it will be shown that a comparatively simple

mathematical model can be used to understand how relatively small
waves can lead to significant and unexpected run-up if encountering
a steep slope. For this purpose, we will use the shallow-water system

ht + (uh)x = 0, (1)

ut + uux + g(h + b)x = 0, (2)

where h(x, t) is the total depth of the fluid, u(x, t) is the aver-
age horizontal velocity, g is the gravitational acceleration, and
b(x) is the bottom profile. In the present case, we define the
bathymetry by b(x) = θx. The surface elevation is then given by
η(x, t) = h(x, t) + θx.

This system is able to describe long waves in shallow water, and
it is possible to find exact solutions in the presence of non-constant
bathymetry, which enable us to make predictions of the develop-
ment of the waterline. Exact solutions of 2 × 2 systems of conserva-
tion laws are classically obtained using a hodograph transformation,
where dependent and independent variables are interchanged.14 In
the presence of bathymetry, it is somewhat more difficult to find
the requisite change of variables than in the case of constant coeffi-
cients. Nevertheless, an appropriate hodograph transformation was
found by Carrier and Greenspan,15 and there have been a number
of works seeking to extend and generalize that idea (see Refs. 16–21
and references therein).

In the present situation, it is important that the system be solved
in dimensional coordinates in order to understand the influence of
the steep bottom slope. For the convenience of the reader, the con-
struction of the exact solutions is explained in the Appendix. As
demonstrated in the Appendix, the independent variables λ and σ
are introduced through a hodograph transformation. These vari-
ables do not have a clear physical meaning. However, using the sep-
aration of variables, an exact solution can be specified with the help
of a “potential” ϕ defined in terms of the velocity u by the relation
u = 1

σ ϕσ . In terms of the potential, the solution has the form

ϕ(σ, λ) =
A
k
J0(kσ) cos(kλ). (3)

Here, J0 is the zeroth-order Bessel function of the first kind, and A
and k are arbitrary constants. Using the potential ϕ, an expression

for x(σ, λ) is found in the form

x =
1

2gθ
(

1
2
ϕλ − u

2
−
σ2

8
), (4)

and t(σ, λ) can be expressed as

t =
1

2gθ
(λ − 2u). (5)

The surface elevation η = h + θx is given by

η =
1

2g
(

1
2
ϕλ − u

2
). (6)

Note that in contrast to the solution provided in Ref. 15, the slope θ
appears explicitly in the final solution.

This solution can now be used to investigate the run-up for var-
ious wave conditions. In Fig. 5, an exact solution is plotted with a
steep slope of θ = 1. In the left panel, we choose A = 100 m2

s2 and
k = 0.04 s

m (we emphasize that even though A and k feature units,
there is no clear physical meaning assigned to these constants) in
the solution to obtain an offshore amplitude 0.459 m, and run-up
2.548 m. The steepness is defined as 2πa/L, where L is the wavelength
and a is the amplitude. In the right panel, we chose A = 200 m2

s2

and k = 0.04 s
m to plot an offshore amplitude of 0.918 m with a

steepness of 0.0059 and a run-up of 5.097 m. In Table I, the run-
up for four different offshore amplitudes for waves with a period
T = 8 s is recorded. The values of A used in the table are 50 m2

s2 ,
100 m2

s2 , and 200 m2

s2 , 300 m2

s2 . The 8 s period is found by choosing

TABLE I. Run-up for four different offshore amplitudes for waves with period T = 8 s
and varying steepness. The amplification factor between the offshore amplitude and
the run-up is 5.5.

Amplitude (offsh.) (m) Steepness (offsh.) Period (s) Run-up (m)

0.229 0.0015 8 1.274
0.459 0.0029 8 2.548
0.918 0.0059 8 5.097
1.377 0.0088 8 7.645
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k = 0.04 s
m . The amplification factor between the offshore amplitude

and run-up is 5.5.

IV. DISCUSSION
In this work, the run-up of waves on a steep slope has been

studied through field observations at the Norwegian coast and
a mathematical model. The observations presented here point to
the possibility that extreme wave run-up may occur during other-
wise benign conditions. The effect of the large run-up is further
enhanced by the more moderate slope of the coast above the water-
line (see Fig. 2), leading to a large area of flooding, such as shown
in Fig. 4.

The mathematical model used here also shows that unusually
large run-up can be realized on a steep slope by small offshore
amplitudes. Indeed, it is evident from Table I that a moderate rise
in the offshore amplitude from 0.459 m to 0.918 m may lead to a
difference of more than 2.5 m in the run-up height. A still mod-
erate wave amplitude of 1.377 m can lead to a run-up height of
7.648 m.

In summary, both observations and the shallow-water theory
show that large run-up may occur under otherwise inconspicuous
conditions. The two approaches do not give a perfect quantitative
match because of the inherent quantitative uncertainty in the obser-
vations, and because some of the shorter waves observed are only
shallow-water waves once they enter the coastal slope. Nevertheless,
both observation and mathematical theory clearly show large ampli-
fication of the waves as they approach the shore, and it is clear that
an observer focusing on offshore conditions may be taken by sur-
prise as moderate waves experience such strong amplification and
subsequent explosive run-up on the shore.

In the present work, we have focused on a very steep 1:1 slope
where the bathymetry has a decisive effect on the wave evolution and
the resulting run-up. It appears that in many previous studies on
extreme wave events in shallow water, a gently sloping bottom was
assumed. This is the case, in particular, in studies on the so-called
sneaker waves, which are generally taken to be large run-up events
on gentle beaches.22–24 On the other hand, there are some studies
on unusually large waves, or freak waves in shallow water, but not
near the shore. For example, in Refs. 18 and 23, the authors describe
freak wave occurrences in the nearshore zone, and in Refs. 25 and 26,
the authors look at wave interaction phenomena as a possible route
to freak wave development. In Ref. 27, laboratory experiments and
numerical simulations are used to explain the occurrence of freak
waves. In the situation considered in these works, even though the
waves are in shallow water, the bathymetry does not exert a major
effect on the fashion in which large wave events develop.

In contrast, a strong influence of the bathymetry on the wave
conditions was found in Ref. 28, where resonant behavior due to
irregular underwater topography was considered, and also in Refs.
29 and 30. However, the slopes considered in these works were
still much gentler than the steep 1:1 bathymetry considered in the
present work. On the other hand, the run-up on a vertical wall, such
as a sea cliff were studied in Refs. 31 and 32.

There is a large literature on rogue or freak waves (see
Refs. 33–39 and the references therein). It is not clear whether the
present phenomenon should be classified as a freak wave event since
at least in theory it can be predicted if measurements of the offshore

wavefield are available. Indeed, it would be interesting to conduct
field measurements at this or a similar site, such as reported in the
in-depth study.40 However, under the conditions in this case such as
the extreme slope, the slippery rocks, and small tidal range, it appears
challenging to obtain reliable measurements.
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APPENDIX: EXACT SOLUTIONS
FOR THE SHALLOW-WATER EQUATIONS

The shallow-water equations (1) and (2) are to be solved on
a domain such as indicated in Fig. 6. As suggested in Ref. 41, a
gas dynamics analogy may be used to find the eigenvalues and
the Riemann invariants for the shallow-water system. Using (1) to
rewrite (2) as

(hu)t + (hu2 + p(h))
x
= −ghθ, (A1)

where p(h) = 1
2 gh

2, a similarity to the gas-dynamic equations for a
barotropic gas can be seen if we consider P(h) as the “pressure” and
h as the “density.” For more details, the reader may refer to Ref. 14.
Indeed, with this analogy, the eigenvalues are λ1,2 = u ± c and the
Riemann invariants can be found to be

α = u + ∫
c(h)
h

dh + gθt, (A2)

β = u − ∫
c(h)
h

dh + gθt, (A3)

where c is defined by c2
=

dp
dh . The last term on the right-hand side

is due to the bathymetry. The system can then be written in terms of
the characteristic variables α = u+2

√
gh+gθt and β = u−2

√
gh+gθt

as

{
∂

∂t
+ (u +

√
gh)

∂

∂x
}(u + 2

√
gh + gθt) = 0, (A4)

FIG. 6. Definition sketch for the mathematical model, including the slope b(x) and
the water depth h(x, t) = η(x, t) − b(x).
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{
∂

∂t
+ (u −

√
gh)

∂

∂x
}(u − 2

√
gh + gθt) = 0. (A5)

The hodograph transform can be effected by the implicit differ-
entiation of the equations (A4) and (A5) and using the dependent
variables x = x(α, β) and t = t(α, β), instead of α = α(x, t) and
β = β(x, t). Assuming a non-zero Jacobian ∂(x,t)

∂(α,β) , the equations (A4)
and (A5) become

xβ − λ1tβ = 0, (A6)

xα − λ2tα = 0. (A7)

In order to obtain a linear set of equation, we define new inde-
pendent variables λ = α + β and σ = α − β. The systems then
appear as

xλ − utλ +
√
gh tσ = 0, (A8)

xσ − utσ +
√
gh tλ = 0. (A9)

Assuming that xσλ = xλσ and tσλ = tλσ , the two equations reduce to

uσ tλ − uλtσ − (
√
gh)

σ
tσ + (

√
gh)

λ
tλ =
√
gh (tσσ − tλλ). (A10)

Using the expressions for the new independent variables yields

λ
2
= u + gθt, (A11)

σ
4
=
√
gh. (A12)

By using (A11) and (A12), expressions for uσ , uλ, (
√
gh)

σ
, and

(
√
gh)

λ
can be found and (A10) turns into the linear wave equation

σ(tλλ − tσσ) − 3tσ = 0. (A13)

Using the expression (A11) for λ together with an appropriate
potential function u = 1

σ ϕσ , the Eq. (A13) can be rewritten as

(σϕσ)σ − σϕλλ = 0. (A14)

Using the separation of variables, we are able to find an exact solu-
tion, which is bounded as σ → 0. This solution can be written
as

ϕ(σ, λ) =
A
k
J0(kσ) cos(kλ), (A15)

where J0 are the Bessel function of the first kind of order zero, and A
and k are constants.

With this solution in hand, an expression for x(σ, λ) is found in
the form

x =
1

2gθ
(

1
2
ϕλ − u

2
−
σ2

8
), (A16)

and t(σ, λ) can be expressed as t = 1
2gθ (λ − 2u). The surface elevation

η = h + θx is then given by η = 1
2g (

1
2ϕλ − u

2
).
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