
4UFGBOP�1JDFHIFMMP

$PIFSFODF�GPS�.POPJEBM�BOE
4ZNNFUSJD�.POPJEBM�(SPVQPJET
JO�)PNPUPQZ�5ZQF�5IFPSZ

����

5IFTJT�GPS�UIF�EFHSFF�PG�1IJMPTPQIJBF�%PDUPS�	1I%

6OJWFSTJUZ�PG�#FSHFO
�/PSXBZ

at the University of Bergen

&RKHUHQFH�IRU�0RQRLGDO�DQG�
6\PPHWULF�0RQRLGDO�*URXSRLGV�
LQ�+RPRWRS\�7\SH�7KHRU\

6WHIDQR�3LFHJKHOOR

7KHVLV�IRU�WKH�GHJUHH�RI�3KLORVRSKLDH�'RFWRU��3K'�

'DWH�RI�GHIHQVH������������

The material in this publication is covered by the provisions of the Copyright Act.

Print: Skipnes Kommunikasjon / University of Bergen

��&RS\ULJKW�6WHIDQR�3LFHJKHOOR

1DPH���������6WHIDQR�3LFHJKHOOR

7LWOH�� &RKHUHQFH�IRU�0RQRLGDO�DQG�6\PPHWULF�0RQRLGDO�*URXSRLGV�LQ�+RPRWRS\�7\SH�7KHRU\

<HDU���������������

Perché, qualunque cosa scriva in questi mesi di ozio

febbrile, sarà sempre soltanto una «curiosità» per il

futuro, cioè silenzio. Cadono in questi mesi molti

valori del passato e si distruggono abitudini interiori,

che – straordinaria fortuna – nulla per ora sostituisce.

[...] Passare ore a rosicchiarmi le unghie, a disperare

degli uomini, a disprezzare luce e natura, a temere per

paure infantili e pure atroci, è un ritorno ai miei

vent’anni. Quale mondo giaccia di là di questo mare

non so, ma ogni mare ha l’altra riva, e arriverò.

C. Pavese, Il mestiere di vivere (diario 1935–1950), 1952

Abstract

Homotopy Type Theory (HoTT) is a variant of Martin-Löf Type Theory (MLTT)

developed in such a way that types can be interpreted as∞-groupoids, where the

iterated construction of identity types represents the different layers of higher path

space objects. HoTT can be used as a foundation of mathematics, and the proofs

produced in its language can be verified with the aid of specific proof assistant

software. In this thesis, we provide a formulation and a formalization of coherence

theorems for monoidal and symmetric monoidal groupoids in HoTT.

In order to design 1-types FMG(X) and FSMG(X) representing the free mo-

noidal and the free symmetric monoidal groupoid on a 0-type X of generators, we

use higher inductive types (HITs), which apply the functionality of inductive def-

initions to the higher groupoid structure of types given by the identity types. Co-

herence for monoidal groupoids is established by showing a monoidal equivalence

between FMG(X) and the 0-type list(X) of lists over X. For symmetric monoidal

groupoids, we prove a symmetric monoidal equivalence between FSMG(X) and a

simpler HIT slist(X) based on lists, whose paths and 2-paths make for an auxiliary

symmetric structure on top of the monoidal structure already present on list(X).
Part of the thesis is devoted to the proof that the subuniverse BS● of finite types

is equivalent to the type slist(1), where 1 is the unit type, and hence that the former

is a free symmetric monoidal groupoid. As an intermediate step, we show a sym-

metric monoidal equivalence between slist(1) and an indexed HIT del● of deloop-

ings of symmetric groups. The proof of a symmetric monoidal equivalence between

del● and BS● rests on a few, unformalized statements. Assuming this equivalence,

we are able to prove that, in a free symmetric monoidal groupoid, all diagrams

involving symmetric monoidal expressions without repetitions commute.

This work is accompanied by a computer verification in the proof assistant Coq,

which covers most of the results we present in this thesis.

Acknowledgements

First and foremost, I would like to thank my supervisors Bjørn Ian Dundas and

Marc Bezem, who taught me, throughout the years, about mathematics, type theory,

and life. Their support and the friendly and cohesive environment they managed

to create and cultivate were decisive in all stages of the production of this thesis,

and I hope to have the chance to work with them again in the future.

Countless times did I share ideas with the people belonging to or gravitating

around the CAU project at the University of Bergen. I’m grateful in particular to

Håkon R. Gylterud, Kristian Alfsvåg, Pierre Cagne, Jonathan Prieto-Cubides, Robin

Adams and Andrew Polonsky for always listening and for their contribution on

numerous aspects of the theory presented in this thesis.

I am indebted to Peter Dybjer, Floris van Doorn, Favonia and Ulrik Buchholtz

for sharing their invaluable insight on coherence theorems, expertise on formaliza-

tion and refined knowledge about type theory.

I’m happy to have been part of the Topology Group at the University of Bergen,

and I’m grateful for the assistance received by the administrative staff at the De-

partment of Mathematics and the Department of Informatics. I would also like to

thank the administrative staff at the Centre for Advanced Study in Oslo for making

me feel welcome during my time in the city.

Many friends connected to the Department of Mathematics made my years as

a Ph.D. student in Bergen a truly enjoyable experience. I’d like to thank Jakub,

Evgueni and Parisa, who turned a small office into a great working space, and

Tommy, Andrea, Francesca, Eugenia, Erlend, Erlend, Valentin, Nazanin, Mirjam,

Anastasia and Victor for the many nice moments spent together. Despite the physi-

cal distance and the circumstances which scattered us all around Europe, my friends

Stefano, Giulia, Igina, Allegra, Veronica, Sofia, Valentina, Andrea, Simone and Silvia

were with me in this journey from our time as students in Padova – or earlier – until

now, and they deserve to be thanked for sticking around for so long.

I thank my family in Italy and my family in the Netherlands for their continued

support, and Wietse, for making the world around me
a wonderful place,

every day.

The author acknowledges the support of the Centre for Advanced Study (CAS) in Oslo, Norway, which funded

and hosted the research project “Homotopy Type Theory and Univalent Foundations” during the 2018/19

academic year.

in loving memory of

Clara

11.08.1925 — 30.01.2019

Contents

1 Introduction 1

1.1 Homotopy Type Theory . 1

1.2 Coherence Theorems in Category Theory 9

1.3 Goals and Structure of the Thesis . 19

2 Homotopy Type Theory 21

2.1 Types, Terms and Judgments . 21

2.2 Functions and Pairs . 23

2.3 Inductive Types . 28

2.4 Identity Types . 35

2.5 Equivalences and Paths in the Universe 48

2.6 Higher Inductive Types . 59

3 Coherence for Monoidal Groupoids 69

3.1 Motivation . 69

3.2 Classical Monoidal Categories . 74

3.3 Monoidal Groupoids . 81

3.4 Lists as Monoidal Groupoids . 89

3.5 A Free Functor to Monoidal Groupoids 94

3.6 The Proof of Coherence . 99

3.7 Discussion . 103

3.8 Figures in Proofs . 108

4 Coherence for Symmetric Monoidal Groupoids 125

4.1 Symmetric Monoidal Groupoids . 126

4.2 Symmetric Lists . 130

4.3 Coherence for Symmetric Monoidal Groupoids 140

4.4 Discussion . 145

4.5 Figures in Proofs . 148

ix

x CONTENTS

5 Finite Types and Symmetric Monoidal Structures 169

5.1 Finite Types . 171

5.2 Deloopings of Symmetric Groups . 176

5.3 An Equivalence slist(1) ≃ del● . 186

5.4 A Degreewise Equivalence del● ≃ BS● . 190

5.5 Discussion and Conclusions . 216

5.6 Figures in Proofs . 222

6 Directions for Further Research 227

6.1 Alternative Formulations of Coherence Statements 227

6.2 Other Monoidal Structures . 235

A Formalization in Coq 239

A.1 Coherence for Monoidal Groupoids . 241

A.2 Coherence for Symmetric Monoidal Groupoids 248

A.3 Finite Types and Symmetric Monoidal Structures 252

References 265

List of Figures and Tables

1.1 An array of mathematical constructions. 3

1.2 Two covering spaces of the circle. 5

1.3 Towers of identity types. 6

1.4 The suspension of the point and of the circle. 7

1.5 Product in a loop space. 10

1.6 Associativity of the concatenation of loops in a loop space. 10

1.7 The first level of coherence for associativity of the concatenation of

loops. 11

1.8 The first level of coherence for commutativity of the product in an

infinite loop space. 13

1.9 Coherence for monoidal categories at work. 14

1.10 Two homotopy equivalent braids. 15

1.11 Diagrams in free braided and free symmetric monoidal categories. . . 16

2.1 Universal property of pair types. 27

2.2 Universal property of coproduct types. 33

2.3 Interchange law for 2-paths. 38

2.4 Lifting of a path. 40

2.5 Construction of the pathover p′ ⋅d q′. 43

2.6 Definition of f ∣g(−). 43

2.7 Relationship between incr and [add]. 59

2.8 The interval as a HIT. 61

2.9 The filled triangle as a HIT. 63

2.10 The ap-recursive 2-HIT R. 67

3.1 Coherence diagrams for monoidal categories. 74

3.2 Mac Lane’s proof of coherence for monoidal categories. 77

3.3 Naturality of associativity and unitality in a monoidal structure. . . . 83

3.4 Additional coherence diagrams. 83

3.5 Coherence conditions for monoidal functors in HoTT. 84

3.6 Coherence conditions for a monoidal natural isomorphism. 85

3.7 Naturality conditions for ϕ and ψ in the definition of a free functor. . 89

xi

xii LIST OF FIGURES AND TABLES

3.8 Example of normalisation of a monoidal expression. 102

3.9 Additional coherence diagrams in a monoidal groupoid. 108

3.10 Composition of two monoidal functors. 109

3.11 Monoidal component (−)α of the inverse of a monoidal functor. 110

3.12 Monoidal component (−)λ of the inverse of a monoidal functor. 112

3.13 Coherence pentagon for list append. 113

3.14 FMG, as a functor, respects identity. 114

3.15 The 2-path for associativity in the proof of naturality of ψX,M in X. . . 115

3.16 The 2-path for associativity in the definition of χ using the elimina-

tion principle of FMG(X). 116

3.17 The 2-paths χ0 and χ2 in the definition of χ as a monoidal natural

isomorphism. 117

3.18 Construction of the 2-path Jλ(l). 118

3.19 Construction of the 2-path Jρ(l). 118

3.20 Construction of the 2-path Jα(l1, l2, l3). 119

3.21 2-paths for α′, λ′ and ρ′ in the inductive definition of η. 120

3.22 Derivation of ϵ2. 122

4.1 A non-commutative diagram in a free symmetric monoidal category. 125

4.2 Coherence diagrams for symmetric monoidal groupoids. 127

4.3 Naturality of symmetry in a symmetric monoidal structure. 129

4.4 Additional coherence diagrams in a symmetric monoidal category. . . 129

4.5 Coherence condition for symmetric monoidal functors. 129

4.6 The constructor triple in the definition of slist(X). 131

4.7 Naturality of swap. 132

4.8 The 2-path Rx,y,l1(l2). 137

4.9 The 2-path Hx,l1,l3(l2). 139

4.10 Normalization of associativity and unitality in a monoidal groupoid

is compatible with the addition of a symmetric structure. 142

4.11 The 2-path Jτ . 144

4.12 Additional coherence diagram in a symmetric monoidal groupoid. . . 148

4.13 Composition of two symmetric monoidal functors. 148

4.14 The term swap′(x, y, l1, l2, l3, h) in the inductive definition of αslist. . . . 149

4.15 The term swap′(x, y, l, h) in the inductive definition of ρslist. 149

4.16 The term swap′x,l2
(y, z, l1, h) in the inductive definition of Qx,l2 150

4.17 The 2-path swap′(x, y, l1, h, l2) in the inductive definition of τslist. . . . 151

4.18 The 2-path cons′x,y,l1
(z, l1, h) in the inductive definition of Rx,y,l1 152

LIST OF FIGURES AND TABLES xiii

4.19 Derivation of Hx,l1,l3(l2). 154

4.20 Derivation of 7slist. 155

4.21 Derivation of the coherence bigon for τslist. 158

4.22 The 2-path double′x,y,a in the inductive definition of J. 159

4.23 The 2-path triple′x,y,z,a in the inductive definition of J. 160

4.24 The 2-path swap′x,y,l1,h,l2
in the inductive definition of J2. 162

4.25 Derivation of the 2-path Jτ(l1, l2). 164

4.26 Derivation of the 2-path Vx,l1(l2). 165

4.27 The diagram corresponding to τ′ in the inductive definition of η. . . . 168

4.28 The 2-path swap′x,y,l,h in the inductive definition of ϵ. 168

5.1 Combinatorial structure of the subuniverse of finite types. 177

5.2 The indexed family del ∶N → U of HITs. 179

5.3 Requirement for the constructor tw in the definition of αdel● 186

5.4 The 2-path swap′x,y(l, h) in the definition of the homotopy j○ k ∼ idslist(1).190

5.5 The effect on paths of the relationship between i and add established

by the computation rule of fb. 194

5.6 Recursive definition of ebn+1,i(a). 204

5.7 Example of application of the function m. 205

5.8 The generator ∗ ∶ 1 in FSMG(1) corresponds to the finite type [1] in

BS●. 217

5.9 Inclusion of FMG(X) in FSMG(X). 220

5.10 The requirement relative to the constructor tw in the inductive defi-

nition of the family (f●)2. 222

5.11 Construction of (f●)α. 223

A.1 Structure of the files in the Coq formalization. 239

A.2 Description of the files in the Coq formalization. 240

Chapter 1

Introduction

In the words of Leinster [Lei04], a coherence theorem in category theory is

«roughly, a description of a structure that makes it more manageable».

The purpose of this thesis is to provide a formulation and a formalization of co-

herence theorems for monoidal and symmetric monoidal groupoids in Homotopy

Type Theory.

1.1 Homotopy Type Theory

Homotopy Type Theory [Uni13] is the name given to a variant of Martin-Löf Type

Theory (MLTT) invented and developed in recent years. A type theory is a formal

system in logic, i.e., a system of axioms and rules that can be used to derive theo-

rems. The theoretical apparatus of MLTT may be used as a foundational backbone

for mathematics: this means that it provides a language and an abstract environ-

ment by which certain mathematical objects, statements and proofs can be encoded,

communicated and, ultimately, understood by humans.

Constructivism and Proof Relevance

The type theory presented by Martin-Löf dates back to the 1970s [M-L75]. It is also

known as “intuitionistic type theory”, implying its connection to intuitionism, a

philosophical approach to mathematics which constitutes one of the many incarna-

tions of constructivism, and whose principles were laid down in the first half of the

20th century in the work of Brouwer [in e.g. Bro07; Bro08; see also the translation in

vAS15; and Tro11, for an account of the history of constructivism]. The paradigm in

which MLTT operates then sees mathematics as an activity consisting of building

mathematical constructions. From this viewpoint, all that can be produced mathe-

matically falls into the idea of a construction – whether it be the list of instructions

required to draw a geometric figure; the definition of an operation between sets; a

1

2 1. INTRODUCTION

sorting algorithm; an exact sequence of groups; a simplicial complex; a morphism

in a category defined by means of a universal property, or any other object (Fig. 1.1).

Significantly, mathematical proofs are also considered constructions. A construc-

tive approach rejects an aprioristic endorsement of those proof techniques – dubbed

“classical”, or nonconstructive – which do not exhibit an explicit construction, such

as proofs by contradiction or, in general, proofs invoking the law of excluded mid-

dle. Admitting the use of these techniques is akin to the inclusion of additional

hypotheses to the premises of a theorem: they must be declared, and their employ-

ment makes for a weaker result. This idea is closely linked to the concept of proof

relevance: a proven theorem is not just considered “true”, but its validity is estab-

lished by the specific proof that substantiates the claim it contains. In other words,

it may be true in essentially different ways; a statement claiming the existence of a

natural number divisible by 2 has, for instance, as many proofs as there are even

natural numbers. Other mathematical constructions – such as theorems that rest

on previously established results – may then depend on the exact proof of those

statements.

A Language for Constructions

MLTT is a language for mathematical constructions. The parts of speech of this

language – and of any type theory – are entities labelled types and terms. Types en-

code classes of mathematical constructions, such as sets, spaces, or mathematical

statements. In turn, terms encode instances of such constructions (elements of a

set, points in a space, proofs of a statement) and are invariably “typed”: they never

occur autonomously, but always as terms of some type. Both types and terms mani-

fest themselves in the form of expressions (words) which constitute the lexical units

in the language.

Typed expressions are commonly found in a wide range of habitats. They are

used in programming (for example, if there is need for an input to be considered

a string rather than a number), in mathematics (when we fail to interpret the ex-

pression “g ○ f ” as the composition of the functions f and g, if the target of f does

not match the source of g) and even in everyday life (giving us the ability to parse

an expression such as (+47) 555 80 000 and recognize it as a telephone number). In

the formal setting given by MLTT we might have, for instance, a type T whose

terms are specific instances of triangles, or the type N of natural numbers, but also

the cartesian product type N ×N of pairs of such numbers, and the function type

(N ×N)→N of binary operations on natural numbers.

HOMOTOPY TYPE THEORY 3

1 2 3 4

5 6 7 8

D

Q

P
A

O

A

W

HA

O

B

D

Q
P

A

O

W

H
A

O

A⊎B

3124

3124

3124

3142

3142

3142

3421

3421

3421

4321

●

Gn−1

●

Gn

●

Gn+1

●

Gn+2.

X0 X1 X2 . . . Xn . . .

lim
Ð→

X●

Y

ι0 ι1 ι2 ιn−1 ιn

∃!

(a)

(b) (c)

(d)

(e) (f)

Figure 1.1: An array of mathematical constructions: (a) the classical construction of a pen-

tagon using straightedge and compass; (b) the disjoint union of two sets; (c) iteration of the

sorting algorithm insertion sort on a list; (d) visualization of an exact sequence of groups; (e)

a simplicial complex; (f) direct limit of a direct system and its universal property.

4 1. INTRODUCTION

Similarly, we could have a type P representing the statement «the sum of the

angles of any triangle is π»; this may have, as terms, specific proofs of such a claim.

The relationship between types/terms and statements/proofs adheres to what is

known as the Curry-Howard interpretation [CFC58]: if the types P and Q represent

the propositions P and Q, then the logical conjunction “P and Q” corresponds to the

cartesian product type P ×Q, and the implication “if P then Q” matches the func-

tion type P → Q. Other types can be formed, further expanding this analogy; these

are interpreted to the logical disjunction of propositions, tautologies, contradictions,

negation, and so forth. A counterpart in MLTT is also found for statements contain-

ing universal or existential quantifiers, because the language allows the presence of

families of types, which take the role of the predicates of such propositions. These

are called dependent types, and thus MLTT is a dependent type theory.

In the language given by the type theory, types and terms are used to form sen-

tences. These are called judgments and make a variety of assertions, indicating for

example that some expression is a type, or a term of some specified type. Rules are

provided on how to derive such judgments, and in particular on how to build types

and their terms. Moreover, MLTT possesses a computational aspect concerning the

syntax of its terms, by which these can be rewritten into different (simpler) forms.

For instance, rewriting can be used to evaluate numerical expressions in N, as in

2× (3+ 4) ↝ 2× 7 ↝ 14 or 9+ 5 ↝ 14.

A judgment of the theory will then pronounce the terms 2 × (3 + 4), 9 + 5 and 14

judgmentally equal (or computationally equal) terms of the same type N.

The kind of judgmental equality illustrated above reflects the computational

behaviour of terms, but does not express a construction. Stating that 2× (3+ 4) and

9+ 5 compute to the same term is indeed a judgment of the theory, and not, in itself,

a proof that they are “equal”: this, we recall, would ask instead for the construction

of a term in some type. Since expressing mathematical equality is a desirable feature

for a language for mathematical constructions, a class of types that can be formed

is that of identity types between terms (necessarily of the same type). Identity types

are the theory’s way of internalizing the idea of “sameness”; for every two terms

x and y in the same type, there is a type x = y whose terms (possibly, none) are

proofs of identity between them. For example, for any two pairs (a, b) and (c, d) of

natural numbers, a proof of their identity is a term in (a, b) = (c, d), which can be

built using a proof of a = c and a proof of b = d. The fact that judgmental equality

and proofs of identity are kept as separate notions makes MLTT an intensional type

HOMOTOPY TYPE THEORY 5

theory, as opposed to other type theories where these two levels of equality are

merged, which are called extensional.

Features of HoTT

The nature of identity types plays a central role in the way Homotopy Type Theory

(HoTT) expands MLTT. Simple versions of MLTT maintain the position that any

two terms of an identity type are, themselves, identified: for terms x and y of a

type X, and for terms p and q of the type x = y, one postulates a term of the type

p = q. This feature is known as uniqueness of identity proofs (UIP), and it is usually

implemented as an assumption – often left implicit – called axiom K [Str93].

HoTT does not assume UIP; instead, it takes the stance that a sensible notion of

equality should reflect the intuition behind homotopy equivalences, and it accepts the

idea that, from different proofs of identity, fundamentally different constructions

might arise. For instance, two finite sets could be identified whenever they have

the same number of elements, and the proof of identity should carry the informa-

tion regarding how this identification takes place, i.e., which bijection is used. The

choice of different bijections might relate to constructions that ought not to be iden-

tified, such as the two covering spaces of the circle in Fig. 1.2. The marriage – itself

an equivalence, in fact – between the notion of equality and that of equivalence is es-

tablished by an axiom introduced by Voevodsky, called the univalence axiom [Voe14;

KL18; Uni13]. The pursuit of a (computer-verified) foundation of mathematics by

(a) (b)

Figure 1.2: Two covering spaces of the circle. Both of them have two sheets, and hence they

both are families of sets with two elements, parametrized by the circle. However, the cover-

ing space in (a) consists of two copies of the circle, while the one in (b) consists of one copy

only. This reflects the fact that there are (two) different ways to identify a two-element set

with itself.

6 1. INTRODUCTION

means of a type theory obeying this axiom is called “univalent foundations”, a desig-

nation that nowadays is often used liberally to refer to HoTT itself.

Not constrained by UIP, identity types in HoTT possess a less rigid, more so-

phisticated structure, which digs deeper into the mathematical concept of equality

and calls higher identity types into existence: the types of identifications between

identifications need not be trivial, and the ensuing tower of identity types can grow

unbounded (Fig. 1.3). This allows a homotopical interpretation of types – a feature

envisioned early in the history of HoTT as a field of research [HS98; AW09; Voe06],

which gives the name to this type theory and which we find, in some aspects, well

suited to the formalization of the results contained in this thesis. In this interpreta-

tion, terms p and q of a type x = y are seen as paths between x and y; accordingly,

terms of type p = q are homotopies between p and q, while types further up in the

tower of identity types may contain higher homotopies.

Collectively, terms in identity types satisfy∞-groupoid axioms and laws. There

is always a “unit” term in every type x = x (the trivial path), along with an inverse

operation (−)−1 ∶ (x = y) → (y = x) (producing inverse paths), and an operation

⋅ ∶ (x = y) × (y = z) → (x = z) (concatenation of paths, showing the transitivity

property of equality). Associativity and inverse laws inhabit the realm of higher ho-

motopies and are represented by terms in identity types built upon identity types,

such as (p ⋅ q) ⋅ r = p ⋅ (q ⋅ r). Coherence of these laws, in a sense explained in the next

section, is also contemplated, making types akin to higher groupoids. For this rea-

son, HoTT has been also defined a “synthetic theory of∞-groupoids” [Shu17b], in

which such objects, along with the notions of paths and homotopies, are intended

to be primitive and not bound (“analytically”) to any specific model or presenta-

tion – for example, by interpreting types as particular topological spaces, or paths

as continuous functions out of the topological unit interval [0, 1]. The claim is that

p
=

q

h

a
=

b p q

b
=

c

r

X a b c

r

a

b

c

p

q

h

Figure 1.3: Towers of identity types: a visual representation.

HOMOTOPY TYPE THEORY 7

∞-groupoids could replace sets in the foundation of mathematics.

As one would expect, constructions and statements that depend on terms of

a certain type respect identities in that type. For instance, the family of types en-

coding the open statement “the natural number x is even” is dependent on a free

variable x in the type N. If n and m are terms in N, a path in n = m will make it

possible for a proof that n is even to be translated to a proof that m is too: thus, the

notion of identity in HoTT conforms to the principle of indiscernibility of identicals.

This simple fact, combined with the univalence axiom (which merges the notions

of equality and of equivalence of types), has the profound consequence that all con-

structions in HoTT are homotopy invariant: an equivalence of two types induces an

identity between them, and hence all that can be stated about one of them holds

for the other one too. For example, the one-term type (“the point”) and the inter-

val type (with two terms and a path between them; Fig. 1.4) are equivalent types

(indeed, as spaces, the former is a deformation retract of the latter), so they are

effectively indistinguishable within the theory.

An effective way of exploiting the nontrivial structure of identity types is by

means of the powerful tool of higher inductive types (HITs), which allow the defini-

tion of types (freely) generated by terms, paths and higher homotopies; the interval

type, mentioned above, is an example of a type that can be expressed as a HIT. Def-

initions of this kind are commonplace in mathematics. For instance, the suspension

ΣX of a space X is obtained as the homotopy pushout of the cone ● ← X → ●, i.e.,

it consists of two points joined by a family of paths, which in some precise sense

takes into account the shape of X (see Fig. 1.4). The title “inductive” for such types

ΣS1
≃ S2

S1

Σ ● ≃ I ≃ ●

Figure 1.4: The suspension of the point and of the circle.

8 1. INTRODUCTION

is to signify that their definition contains the universal property that the construc-

tion should satisfy (in our example, what it takes to build a map out of ΣX). The

history of how HITs came to be is detailed in [Uni13]. The semantic interpretation

of HITs is subject of current research [see e.g. LS19]; in this thesis we will set aside

all issues regarding the semantics of HITs and focus on results that can be produced

internally in a type theory that supports the HITs we need.

Several expansions or variations to the core of HoTT are object of ongoing re-

search. Some of these are: Real-Cohesive HoTT [Shu17a], which is suited for dif-

ferential geometry; Cubical Type Theory [Coh+18], which possesses advantageous

computational features and investigates in particular the computational content of

the univalence axiom [BCH14]; and a Two-Level Type Theory encompassing HoTT

[Ann+19]. The latter is connected to the definition of semi-simplicial types and the

problem of handling, internally to the theory, constructions entailing an infinite

amount of coherence data, such as∞-groupoids or A∞-spaces – which we will en-

counter further on in this introduction.

Computer-Verified Proofs

Type theory is well suited for computer formalization [see e.g. NG14, Chapter 16],

which can be performed by means of proof assistants. This kind of software allows

the user to verify the correctness of the proofs one aims to construct. Usually, this

is done interactively: the user specifies a goal (i.e., finding a term in a type), which

can be then simplified or split into sub-goals by invoking previous results, by way

of the proof assistant’s own tactics. For instance, a proof of a statement which holds

for every natural number may be chosen to be carried out by induction; if so, the

proof assistant will ask for the base case, provide the inductive hypothesis and

prompt the user again for the inductive step. To a certain (so far, minimal) extent,

the construction of proofs can even be automated.

Libraries for HoTT have been developed on several proof assistants, such as

Coq [Coq; Hoq; Bau+17; UniMath], Lean [vDvRB17] and Agda [Agda]. This has

lead to the formalization of numerous notions and theorems in various fields of

mathematics, most notably in homotopy theory and homological algebra. Lists of

formalized results in HoTT appear e.g. in [Uni13, Chapter 8], [vD18] and [Buc20].

In this thesis we focus our attention to category theory, and make use of proof

assistants to formulate and formalize in HoTT certain coherence results, which we

will now proceed to describe.

COHERENCE THEOREMS IN CATEGORY THEORY 9

1.2 Coherence Theorems in Category Theory

Several notions in category theory stem from algebra. Monoidal and symmetric mo-

noidal categories are no exception: they originate as the categorification of, respec-

tively, monoids and commutative monoids. In a monoidal category C, the concept

of product in a monoid translates to a bi-endofunctor ⊗ ∶ C × C → C which, up to

isomorphism, is to respect the monoid axioms of associativity and unitality (and

symmetry, if C is symmetric monoidal).

To support a monoidal product is a feature shared by many categories. Among

the most prominent examples, we find the categories of sets (for instance, the car-

tesian product and the disjoint union); modules over a commutative ring R (direct

sum, tensor product over R); small categories (product of categories); and pointed,

locally compact topological spaces (coproduct, product, smash product). From a

higher categorical perspective, monoidal and symmetric monoidal (1-)categories

are shadows of ∞-categories with a product which is parametrized by an A∞ or

E∞ operad; these, in turn, can be seen as the categorification of spaces equipped

with a homotopy-coherently associative (and commutative) multiplication, which

are referred to as A∞- or E∞-spaces [Ada78] or monoids [e.g. Gep19].

Homotopy-Associative and Homotopy-Commutative Products

A∞-spaces were introduced by Stasheff [Sta63a; Sta63b] to describe spaces with a

homotopy-associative product, and such that its associativity is “homotopy-coher-

ent” regardless of how many terms are involved in such a product.

The prototypical example is given by the loop space ΩX of a pointed topological

space (X,∗), whose points are loops based at ∗, i.e., continuous pointed maps p ∶

S1 → X. A product ● ∶ ΩX ×ΩX → ΩX of loops, also called concatenation, can be

defined so that the loop p ● q ∶ S1 → X runs consecutively through the image of p

and that of q, each (for instance) at twice the “speed”, as shown in Fig. 1.5.

Associativity of the product is then a homotopy

h3 ∶ (ΩX)3 ×K3 → ΩX (1.1)

(depicted in Fig. 1.6), where K3 ∶= [0, 1] is the Stasheff polytope of dimension 1,

whose vertices are in correspondence to the two ways of concatenating three loops;

that is,

h3(p, q, r, 0) = (p ● q) ● r and h3(p, q, r, 1) = p ● (q ● r).

10 1. INTRODUCTION

S1

∗

p

∗

q

∗

p ● q

Figure 1.5: Concatenation p ● q of loops p and q based at ∗. Using the given colouring of S1 as

a reference, the colouring of the loops suggests how the continuous function p ● q is defined,

in terms of p and q: the first half of the circle is mapped to the image of p, while the second

half is mapped to the image of q.

S1

∗

p

∗

q

∗

r

∗

(p ● q) ● r

∗

p ● (q ● r)

∗ ∗ ∗

0 1
K3

Figure 1.6: Depiction of the homotopy h3 in (1.1), from the loop (p● q)● r to the loop p●(q● r),

witnessing associativity of the concatenation of loops. Again, the colouring is used as a visual

aid to mark the difference between the two distinct concatenations of loops.

COHERENCE THEOREMS IN CATEGORY THEORY 11

Analogously, the five ways of concatenating four loops correspond to the ver-

tices of the Stasheff 2-polytope K4, which has the shape of a filled pentagon, and

whose K3 sides correspond to homotopies h3; this provides a “homotopy”

h4 ∶ (ΩX)4 ×K4 → ΩX, (1.2)

parametrized by K4, witnessing the first level of coherence of associativity (Fig. 1.7).

In general, an n-polytope Kn+2 is defined for every n, and the ensuing homotopies

describe all higher levels of coherence for associativity of the concatenation of any

finite number of loops. A∞-spaces, operads, categories and algebras are discussed

in [May72; Ada78; MSS02; Lur17, and many other sources]; some applications are

presented in [GJ90].

In order to obviate the inconvenience of carrying homotopies at every level,

some ad hoc solutions were introduced; the resulting spaces then feature a product

that is associative “on the nose”, and hence automatically coherent. An example is

given by the Moore loop space Ω̃X [see AH56; CM95], of which ΩX is a deforma-

tion retract. Moore loops in X based at a point ∗ are pairs (t, p), where t ∈ [0,∞)

K4

∗

((p ● q) ● r) ● s

∗

(p ● q) ● (r ● s)

∗

p ● (q ● (r ● s))

∗

(p ● (q ● r)) ● s

∗

p ● ((q ● r) ● s)

S1

∗

p

∗ q

∗

r

∗s

Figure 1.7: Depiction of the homotopy h4 in (1.2), parametrized by the Stasheff polytope K4,

witnessing the first level of coherence for associativity of the concatenation of loops.

12 1. INTRODUCTION

and p is a continuous function [0,∞) → X such that p(0) = ∗ = p(x) for every x ≥ t.

One can define a concatenation of Moore loops

(t, p) ● (s, q) ∶= (t + s, p ⋅ q),
where p ⋅ q(x) agrees with p(x) on arguments x ≤ t and with q(x − t) otherwise; this

is evidently associative without having to invoke the mediation of a homotopy.

The idea behind E∞-spaces (-algebras, etc.) is analogous, but deals with symme-

try rather than associativity [Ada78]. Again, the loop space construction serves as

quintessential example, this time in its iterated version: the product in second loop

spaces ● ∶ Ω2X ×Ω
2X → Ω

2X is homotopy-commutative, i.e., there is a homotopy

c2 ∶ (Ω2X)2 × [0, 1]→ Ω
2X, (1.3)

such that c2(ϕ, ψ, 0) = ϕ ● ψ and c2(ϕ, ψ, 1) = ψ ● ϕ. This can be obtained via a clas-

sical proof known as the “Eckmann-Hilton argument” (originally from [EH62]): in-

deed, one can show that second loop spaces possess another product ◇ ∶ Ω
2X ×

Ω
2X → Ω

2X, satisfying the interchange law

(ϕ1 ● ϕ2) ◇ (ψ1 ●ψ2) ∼ (ϕ1 ◇ψ1) ● (ϕ2 ◇ψ2). (1.4)

Homotopy-commutativity of ● is straightforward from (1.4), which moreover im-

plies that the two operations coincide; this is usually explained in terms of “vertical”

and “horizontal” compositions, and often proved pictorially – via string diagrams,

or by using analogous evocative devices.

Even ignoring the positioning of the parentheses (i.e. assuming that associativ-

ity holds strictly, as for Moore loops), the six ways of multiplying three elements

of Ω
2X in an arbitrary order arrange as the vertices of a hexagonal 2-polytope Z3

(Fig. 1.8), whose edges correspond to instances of the homotopy c2. Disappoint-

ingly, there is no homotopy parametrized by Z3 witnessing this sort of coherence

for the homotopy-commutativity of the multiplication in a second loop space; there

is, however, for the multiplication in a third loop space Ω
3X:

c3 ∶ (Ω3X)3 ×Z3 → Ω
3X. (1.5)

In general, higher loop spaces will imply higher levels of coherence. Rather than

considering successive iterations of the loop space construction, one is usually in-

terested in those spaces which are (weakly) equivalent to loop spaces of a certain

order and can, accordingly, be delooped a corresponding number of times. If a space

can be delooped as often as desired, we call a choice of such a structure an infi-

nite loop space; as it possesses coherence at all levels, it is an E∞-space. Ω-spectra

COHERENCE THEOREMS IN CATEGORY THEORY 13

are the tool of choice to study infinite loop spaces: for example, the Eilenberg-Mac

Lane space K(G, n) of an abelian group G is defined such that its n-th homotopy

group πn(K(G, n)) is G, while all other homotopy groups are trivial [Whi78, Chap-

ter V]. One can show that K(G, n) is equivalent to ΩK(G, n + 1), which, in turn, is

equivalent to Ω
2K(G, n + 2) – and so forth; thus, Eilenberg-Mac Lane spaces form

an Ω-spectrum and, as such, they can be delooped ad libitum.

Z3

ϕ ●ψ ● χ

ψ ● ϕ ● χ

ψ ● χ ● ϕ

χ ●ψ ● ϕ

χ ● ϕ ●ψ

ϕ ● χ ●ψ

Figure 1.8: Depiction of the polytope Z3 parametrizing the homotopy c3 in (1.5), which rep-

resents the first level of coherence for the commutativity of the multiplication in an n-fold

loop space Ω
nX for n ≥ 3 (in which associativity holds strictly). The sides of the hexagon are

obtained as instances of the homotopy c2 in (1.3).

Monoidal Categories and the Coherence Problem

Monoidal, braided monoidal and symmetric monoidal categories address the need

for a categorical translation of these structures. In a monoidal category, associativity

of the monoidal product ⊗ consists of a natural isomorphism αA,B,C ∶ (A⊗ B)⊗C ≅

A⊗ (B⊗C), which is required to be coherent, in the following sense: whenever the

five ways of taking the product of four objects arrange in a diagram akin to the one

displayed in Fig. 1.7, whose morphisms are obtained as instances of associativity

morphisms α, such a diagram commutes. As mentioned, the product in a monoidal

category is also unital, i.e., there are natural isomorphisms λA ∶ A ⊗ E ≅ A and

ρB ∶ E⊗ B ≅ B where E is a chosen unit object; other relevant “coherence diagrams”,

which we will detail later in this thesis, are also required to commute.

In categories, too, we can ask for associativity (and unitality) of a monoidal

product to hold strictly. A monoidal category in which the natural isomorphisms

α, λ and ρ are identities is called a strict monoidal category. While the categorifica-

tion process usually implies a relaxation of an algebraic structure up to (a coherent

14 1. INTRODUCTION

choice of) homotopy, strict monoidal categories capture the notion of a monoid be-

fore such a relaxation, since every monoid can already be seen as a discrete strict

monoidal category, whose monoidal product is defined by the multiplication in the

monoid.

Strict monoidal categories have an easier description than non-strict (“weak”)

ones: indeed, the coherence diagrams, such as the one evoked by Fig. 1.7, do not

play a role in the definition of these categories, since strictness alone enforces their

commutativity. Supporting Leinster’s suggestive quote at the beginning of this

chapter, a theorem of coherence for monoidal categories states, essentially, that the

two notions coincide: any monoidal category is equivalent to a strict one, via an

equivalence that preserves their monoidal structures. A tangible consequence of

this theorem – and indeed, an equivalent statement – is that, in a monoidal cate-

gory, all diagrams built out of instances of arrows α, λ and ρ have a decomposition

in a patchwork of coherence diagrams for associativity and unitality, and hence

they commute. An example is provided in Fig. 1.9.

The notion of a monoidal category can be enhanced to the one of a braided

monoidal category by supplying it with a natural isomorphism τA,B ∶ A ⊗ B ≅

B⊗ A, dubbed “braiding”, satisfying certain relations modelled after the definition

((A⊗ (B⊗C))⊗D)⊗ E (A⊗ ((B⊗C)⊗D))⊗ E

(((A⊗ B)⊗C)⊗D)⊗ E

((A⊗ B)⊗ (C⊗D))⊗ E

(A⊗ (B⊗ (C⊗D)))⊗ E

((A⊗ B)⊗C)⊗ (D⊗ E)

(A⊗ B)⊗ ((C⊗D)⊗ E)

A⊗ ((B⊗ (C⊗D))⊗ E)

(A⊗ B)⊗ (C⊗ (D⊗ E)) A⊗ (B⊗ ((C⊗D)⊗ E))

A⊗ (B⊗ (C⊗ (D⊗ E)))

α⊗ id

(α⊗ id)⊗ id (id⊗ α)⊗ id

α⊗ id α⊗ id
α α

α

α id⊗ α

(id⊗ id)⊗ α α

α id⊗ (id⊗ α)

Figure 1.9: Coherence for monoidal categories at work. The outer diagram, built out of in-

stances of the associativity arrows α, can be decomposed in a patchwork of three five-sided

coherence diagrams and a four-sided naturality diagram, all of which commute.

COHERENCE THEOREMS IN CATEGORY THEORY 15

of braid groups. The elements of the braid group on n strands describe braids, topo-

logical objects constructed by twisting n finite-length strings around each other in

a 3-dimensional space, without letting them intersect one another or pulling them

in the direction opposite to the one into which the braid grows (more precise defi-

nitions can be found e.g. in [ML98; KT08]). Multiplication of elements of the group

corresponds to joining the respective braids strandwise, while the inverse of a braid

is given by letting the braid flow in the opposite direction; a homotopy equivalence

between two topological braids reflects an identification between the two elements

embodying them in the group (see Fig. 1.10).

If the natural isomorphism τ is its own inverse, then the braiding in the category

is governed by symmetric groups rather than braid groups, and the monoidal cate-

gory is said to be symmetric. Essentially, τ and α determine an arrow from any finite

product of elements – and any choice of associating them – to the product of any per-

mutation of the same elements. Similarly to those for monoidal categories without

a braiding, theorems of coherence for braided monoidal and symmetric monoidal

categories have been stated and proved [see e.g. ML98], with the crucial distinction

σ1

σ2

σ1

σ2

σ1

σ2

σ1 σ2 σ−1
2

Figure 1.10: Top row: two elementary braids σ1 and σ2, corresponding to the generators of

the braid group on 3 strands; the inverse σ−1
2 is also depicted. Bottom row: the two braids

corresponding to the compositions σ1; σ2; σ1 (left) and σ2; σ1; σ2 (right) are homotopy equiva-

lent; the scheme in the middle shows how to continuously deform the former into the latter,

by pulling the central strand from one side to the other. This homotopy equivalence corre-

sponds to the identification of two elements in the braid group, which in this case is also the

generating relation in the presentation of the group.

16 1. INTRODUCTION

that the classes of commuting diagrams are restricted to those whose arrows are

controlled on both sides by the same braiding or permutation. In Fig. 1.11 we show

some examples of commuting and noncommuting diagrams in free braided and

free symmetric monoidal categories.

f ∶ (A⊗ A)⊗ (B⊗ B) (A⊗ A)⊗ (B⊗ B) (B⊗ B)⊗ (A⊗ A)1⊗ τ τ

g1 ∶ (A⊗ A)⊗ (B⊗ B) (B⊗ B)⊗ (A⊗ A) (B⊗ B)⊗ (A⊗ A)τ τ⊗ 1

g2 ∶ ‘ ‘ ‘ ‘ ‘ ‘
τ−1 τ⊗ 1

g3 ∶ ‘ ‘ ‘ ‘ ‘ ‘
τ 1⊗ τ

A A B B

f

A A B B

g1

A A B B

g2

A A B B

g3

(A⊗ A)⊗ (B⊗ B) (B⊗ B)⊗ (A⊗ A)
f

gi

Figure 1.11: Examples of diagrams in free braided and free symmetric monoidal categories,

whose commutativity can be established using appropriate coherence theorems. To each of

the arrows f , g1, g2 and g3 are associated a braid and a permutation (here expressed by

the arrangements of the ends of each braid’s strands). For i = 1, the relevant permutations

coincide and the braids are homotopy equivalent, so the diagram commutes both in free

symmetric and in free braided monoidal categories; for i = 2, the permutations coincide, but

the braids are not homotopy equivalent, so the diagram commutes in free symmetric, but

not in free braided, monoidal categories; for i = 3, the permutations do not coincide, so the

diagram does neither commute in free symmetric nor in free braided monoidal categories.

An interesting class of (symmetric) monoidal categories consists of those which

are closed. A closed monoidal category C is equipped with an internal hom functor,

i.e., a bifunctor [−,−] ∶ Cop × C → C such that, for every object A ∈ C, there is an

adjunction

(−⊗ A) ⊣ [A,−] ∶ C → C, (1.6)

natural in A. An example is provided by the category of modules over a commuta-

COHERENCE THEOREMS IN CATEGORY THEORY 17

tive ring R, considering the tensor product over R: the internal hom is defined by

observing that the set of R-module morphisms possesses itself an R-module struc-

ture. In the 1960s, the study of these specific algebraic structures, together with

Stasheff’s new A∞-spaces, is reported in [ML76] to have raised a question about

canonicity of maps, which we proceed to illustrate, and which ultimately instigated

the formulation of coherence theorems for monoidal categories.

The tensor product of R-modules is associative: given R-modules M1, M2 and

M3, there is an isomorphism α ∶ (M1 ⊗R M2) ⊗R M3 ≅ M1 ⊗R (M2 ⊗R M3), com-

pletely determined by declaring

α((a1 ⊗ a2)⊗ a3) ∶= a1 ⊗ (a2 ⊗ a3).

However, other choices for such an isomorphism are possible. For example, one

could adopt an isomorphism α′, determined by declaring

α′((a1 ⊗ a2)⊗ a3) ∶= −a1 ⊗ (a2 ⊗ a3).

What makes α the “canonical” choice for the associativity isomorphism is the fact

that it extends to a general associative law for any finite number of arguments [Jac51],

while α′ does not: iteratively applying α′ to products of triples of objects in order to

obtain an isomorphism

((M1 ⊗R M2)⊗R M3)⊗R M4 ≅ M1 ⊗R (M2 ⊗R (M3 ⊗R M4))

produces inconsistent results, which depend on the choice of the intermediate steps

(expressed exactly by the edges of the Stasheff polytope K4, as depicted in Fig. 1.7).

This inconsistency vanishes when using α instead.

The aptly named coherence problem,1 then, concerns determining the minimal

necessary “coherence conditions” to be placed on associativity, unitality R⊗R M ≅

M ≅ M⊗R R and symmetry M1 ⊗R M2 ≅ M2 ⊗R M1 for these isomorphisms to be

uniquely determined, in such a way that they extend coherently to isomorphisms

between products of any finite number of modules: isomorphisms that we thus

consider canonical. This problem, of course, generalizes to any other monoidal cat-

egory (see again Fig. 1.9, exhibiting the coherent behaviour of the associativity

isomorphism when extended to a product of five objects). The presence of an in-

ternal hom, when considering a closed monoidal category C, opens to a further

1The English adjective coherent (like the verb to cohere) originates from the Latin con- (cum: “with”)

+ hærĕo (-es, hæsi, hæsum, -ĕre: “to remain unchanged”, “to persist”), and it refers to entities having the

property of holding together unvaryingly in their different parts.

18 1. INTRODUCTION

issue, namely, the ability to find a criterion for establishing the existence of a canon-

ical morphism between two given objects: such are, for example, the internal eval-

uation morphism evA,B ∈ C([A, B] ⊗ A, B), which is left-adjunct to the identity

id ∈ C([A, B], [A, B]) under the adjunction in (1.6), and the internal composition

morphism in C([B, C]⊗ [A, B], [A, C]), which, under the same adjunction, is right-

adjunct to the morphism in C(([B, C]⊗ [A, B])⊗ A, C) given by the composition

evB,C ○ (id⊗ evA,B) ○ α[B,C], [A,B], A. In contrast, there are no canonical morphisms in

C([A, B]⊗ B, A), nor in C([A, C]⊗ [A, B], [B, C]).
A sufficient list of coherence conditions was then identified, leading to the co-

herence theorems originally presented by Mac Lane [ML63] and by Epstein [Eps66];

one of these conditions was indeed the commutativity of the already described class

of five-sided diagrams, now informally known as “Mac Lane’s pentagon”. Albeit

sufficient, the list was later discovered not to be minimal, and it was refined by

Kelly [Kel64].

Proofs of Coherence

Nowadays, the coherence theorem for monoidal categories is perhaps best recog-

nized in the formulation appearing in [ML98, Chapter VII]. Mac Lane’s proof, which

we briefly summarize in Chapter 3, has an intrinsic combinatorial nature: at its core

is an argument by induction, appealing to the complexity of the monoidal expres-

sions appearing in a diagram, which is given by the configuration of the parenthe-

ses in a product of several objects. The touchstone for the inductive argument is

represented by the monoidal expressions which exhibit minimal complexity, i.e.,

those in which the arrangement of the parentheses prefers one side and with no

superfluous instance of the unit object – for example, A ⊗ (B ⊗ (C ⊗ D)). These

expressions are commonly called normal forms and, indeed, we can consider Mac

Lane’s argument as belonging to a class of proofs “by normalisation”, as it unrav-

els the anatomy of the morphisms in a monoidal category by dissecting them into

compositions of morphisms leading down to predetermined (normal) expressions.

In the same class we can find, for example, Acclavio’s result in [Acc17]: there, coher-

ence for monoidal and symmetric monoidal categories is reached using a technique

of formal rewriting for string diagrams (introduced in [Laf03]), which are used to

represent certain morphisms in such categories.

A different kind of proof was presented by Joyal and Street in [JS86; JS93] and

revisited by Leinster in [Lei04]. This proof uses an argument in the style of the

Yoneda lemma: any monoidal category C is shown equivalent to the category of

GOALS AND STRUCTURE OF THE THESIS 19

endofunctors of C commuting with right translations (−⊗ B); this category is strict

monoidal, since the product is given by composition of functors (which is strictly

associative and unital). The sought equivalence is achieved via the left translation

functor, sending an object A ∈ C to the functor (A⊗−) ∶ C → C.

Type-theoretical proofs of coherence, verified by proof assistants, also exist. No-

tably, Beylin and Dybjer in [BD96; Bey97] make use of a combination of the two

proof techniques described above, by using an approach based on normalisation

by evaluation [see e.g. DF02; AAD07]: monoidal expressions are “interpreted” into

functions which produce normal forms when evaluated at some term. The strictifi-

cation happens, again, precisely because the monoidal product is interpreted into

the composition of functions, which is associative and unital on the nose. Since

composition of function is not symmetric, it is not immediate how to generalize

this technique to prove coherence for symmetric monoidal groupoids; however, the

work of Beylin and Dybjer will still serve as a base for this dissertation and will be

further discussed in Section 3.7. It is worth mentioning that other formalized proofs

have been produced building on the same work [e.g. ABD96].

1.3 Goals and Structure of the Thesis

This monograph is structured as follows.

Chapter 2 includes the concepts and notions in HoTT that are later used in the

rest of the thesis.

In Chapter 3 we present a proof of coherence for monoidal groupoids, revisiting

Beylin and Dybjer’s formalization [BD96; Bey97] by employing distinctive features

of HoTT. We exploit the higher groupoid structure of types to define, for a 0-type

(set) X, the free monoidal groupoid FMG(X) generated by X as a HIT; the type is

designed so that its elimination principle contains the proof of freeness. Coherence

for monoidal groupoids is then achieved by showing that FMG(X) is, itself, a set:

this is reached via a proof of normalisation of the terms in FMG(X) into the type

list(X) of lists over X. We also offer a comparison of our work to other known

proofs of coherence, of which we give a brief account.

In Chapter 4 we extend the same result to obtain a formalized technique of nor-

malisation for symmetric monoidal expressions into unordered lists. In this case,

both the type FSMG(X) of free symmetric monoidal expressions and the type slist(X)
of unordered lists are defined as HITs, and neither of them is a set.

In Chapter 5 we further investigate symmetric monoidal structures, examining

the connection between free symmetric monoidal groupoids and finite types. We

20 1. INTRODUCTION

propose a strategy to prove that the subuniverse BS● of finite types, which rep-

resents the classifying space of symmetric groups, is a free symmetric monoidal

groupoid. In order to do so, we try to construct a chain of symmetric monoidal

equivalences

slist(1) ≃ del● ≃ BS●,
where 1 is the unit type, and del● is the type of deloopings of symmetric groups,

defined as a family of HITs indexed by the natural numbers. While the leftmost

symmetric monoidal equivalence is fully formalized, the proof of equivalence be-

tween del● and BS● relies on a few unformalized statements. Assuming the latter,

we are able to easily isolate, in a free symmetric monoidal groupoids, the class of

diagrams involving symmetric monoidal expressions without repetitions, and to

prove that all those diagrams commute.

In Chapter 6 we discuss possible research trajectories and alternative formula-

tions of the statements of coherence for monoidal and symmetric monoidal group-

oids.

While the main results presented in this text are the formalization of mathemat-

ical objects such as monoidal and symmetric monoidal structures and the produc-

tion of computer-verified proofs of coherence, the implicit objectives of this thesis,

both practical and theoretical, are manifold. Firstly, we aim to discover how to ex-

ploit the peculiarities of HoTT in order to produce proofs that are short, elegant

and adaptable to different frameworks. At the same time, in the opposite direction,

we will investigate some of the constraints given by the expressivity of the theory,

which will render certain notions harder or very impractical to formalize. In addi-

tion, and not less importantly, we want to assess the feasibility of proof verification

in HoTT – using the proof assistant Coq – on the subject of category theory. All of

this will force us to consider several choices for stating and proving coherence; by

weighing those against each other, we will highlight the features of our approach

with respect to other known proofs, both formalized and not.

A large part of the work we present has been verified using the HoTT library for

the proof assistant Coq [Hoq]. The latest version of the formalization prior to the

submission of this thesis is to be considered supplementary material, part of which

is presented and discussed in Appendix A.

Chapter 2

Homotopy Type Theory

In this chapter we will highlight selected ideas and definitions in HoTT, while fixing

the notation for terms and types that we will employ throughout this thesis. The

main reference is [Uni13], a textbook laying the basis for Homotopy Type Theory

and Univalent Foundations, which gave rise to the expression “book HoTT” to refer

to the type theory described therein.

2.1 Types, Terms and Judgments

A type is a primitive concept of HoTT and of any type theory, like a set is a prim-

itive concept of set theory. As for sets in the Zermelo-Fraenkel axiomatization of

set theory [Fra73; see also Lei14], types are then not subject to a definition of the

kind “a type is...”; rather, each of them comes with a collection of rules which spec-

ify how to work with them. Another primitive concept is that of term, which is a

typed syntactic expression (string of text); every term has, necessarily, a type. We

will frequently use capital letters to denote types and lower-case letters to denote

terms. That a term x is of type X is denoted by the string

x ∶ X

which, itself, belongs to a class of expressions that goes under the name of judg-

ments of the type theory.

Some of the rules of type theory are called introduction rules; they indicate

how to produce a term of a given type, by declaring judgments which stipulate that

some term expressions are of a certain type. Syntactic expressions can be matched

against those provided by the introduction rules, both to verify that they are well-

typed and to define functions recursively by case analysis. We also have elimination

rules, which specify how to use a term in some type to derive others; the dual-

ity introduction/elimination is expressed by means of computation rules (see Re-

mark 2.11).

21

22 2. HOMOTOPY TYPE THEORY

As mentioned in the introduction of this thesis, the kind of mathematics allowed

in HoTT is inherently constructive: a proof of a statement of the form “there exists

an object x satisfying a property P” needs to be presented as a term of a certain type

(a “Σ-type”, presented in Section 2.2), which will have to make explicit the instance

x. Proving a result, then, corresponds to giving a term in the type representing

its statement; in this sense, the line between a definition and a theorem becomes

blurred. Hence, throughout this thesis, theorems and lemmata are to be considered

special cases of definitions.

An important class of types in HoTT (and MLTT) is the class of function types

(Section 2.2), the terms of which are functions from a domain to a target type. A

function can be applied to terms of its domain, producing a term of the target type.

In many cases, the definition of a function will make it compute when applied to

certain terms; for example, a function double defined on the type of natural num-

bers (Section 2.3) can be defined so that it computes to the term 6 when applied

to the term 3. Computation of terms rests on concepts of reduction, substitution and

conversion of expressions; without the need of making this description more explicit

in the context of this thesis, we will just denote two term expressions x and y of the

same type with the string (judgment)

x ≡ y (e.g. double(3) ≡ 6)

if they compute to the same term. The relation ≡, called judgmental equality, is an

equivalence relation; two judgmentally equal terms are interchangeable in every

expression that contains them. We will also use the notation

x ∶≡ y (e.g. t ∶≡ double(3))
to define terms by assigning the computational content of y to x. We will liberally

combine this notation, e.g. “t ∶≡ double(3) ≡ 6 ∶N” means that the term t is defined

as double(3), which is judgmentally equal to 6, and all of them have type N.

Every type is a term of some universe (Section 2.5), which is, itself, a type. Every

universe type is a term of another universe, higher up in a hierarchy of universes.

As we will never be concerned with the specific universe a type belongs to, we will

denote all universes uniformly as U .

HoTT is a dependent type theory: as such, it allows definitions of families of

types indexed over the terms of a type. Given a type X ∶ U , a family Y ∶ X → U

has, as members, types Y(x) for every x ∶ X. If Y(x) ≡ Z for every x and for some

type Z, with x not occurring in Z, the family is said to be constant; every type can

FUNCTIONS AND PAIRS 23

be then considered as a constant family of types over any other type. This expands

the concept of functions between types to that of dependent functions; both will be

described in the next section.

A guiding principle when working in HoTT is to interpret types as spaces, terms

as points, functions as continuous functions, families as fibrations and dependent

functions as sections (Remark 2.56). As hinted in the introduction, certain types,

named identity types, can be then interpreted as path spaces (Section 2.4).

We will begin by describing some of the types available to us in HoTT.

2.2 Functions and Pairs

Π-Types

Definition 2.1 (Function types). Given a type A and a family B ∶ A → U , there is a

type, called (dependent) function type or Π-type, denoted by

Π (x ∶ A) . B(x).
Its terms are called (dependent) functions from A to the family B. An expression of

the form

(x ↦ b(x)) (2.2)

is a term of Π (x ∶ A) . B(x) whenever b(x) is a term of type B(x) for every x ∶ A.

A function term f ∶ Π (x ∶ A) . B(x) can be applied to a term a ∶ A; the application is

denoted by f (a) ∶ B(a). The following computation rules hold:

(x ↦ b(x))(a) ≡ b(a) (2.3)

(x ↦ f (x)) ≡ f . (2.4)

If B is a constant family (i.e., just a type), the same type is denoted by A → B and its

terms are called (non-dependent) functions from A to B.

Remark 2.5 (Notation). The introduction rule (2.2) is known as lambda-abstraction,

and indeed function terms (a ↦ b(a)) are universally denoted by λa.b(a). In this

thesis, we will use the lowercase Greek letter λ to denote the left-unitality arrow

in a monoidal category, so we choose a different notation for function terms to

avoid confusion. The judgmental equalities in the computation rules (2.3)–(2.4) are

known, respectively, as beta-reduction (when applied from left to right) and eta-

conversion.

24 2. HOMOTOPY TYPE THEORY

Function type expressions associate to the right: the notation A → B → C indi-

cates the type A → (B → C). If f is a function in such a type, we will often shorten

a term f (a)(b) ∶ C as f (a, b) for a ∶ A and b ∶ B; this will also hold for dependent

functions f ∶ Π (a ∶ A) . Π (b ∶ B(a)) . C(a, b). In such a situation, we may sometimes

omit some arguments of the function for brevity (e.g. writing f (b) instead of f (a, b))
or make use of subscripts (as in fa(b)).

Definition 2.6. Given a type X, the identity function idX ∶ X → X is defined as

idX ∶≡ (x ↦ x).
The function idX will be denoted by id when the type X is clear from the context.

Given types X, Y and Z and functions f ∶ X → Y and g ∶ Y → Z, the composition g ○ f

is defined as

g ○ f ∶≡ (x ↦ g(f (x))).

Remark 2.7. Consistently with an understanding of types and functions as objects

and arrows of a category, the definitions of identity and composition make it so that

composition of functions is judgmentally associative and respects unit laws. Indeed,

given functions f ∶ W → X, g ∶ X → Y and h ∶ Y → Z, we have the judgmental

equality:

(h ○ g) ○ f ≡ h ○ (g ○ f);
given a function f ∶ X → Y, we have:

f ○ idX ≡ f ≡ idY ○ f .

The judgmental equalities are here obtained via beta-reduction and eta-conversion;

for example, the right unit law is achieved by means of the following chain of judg-

mental equalities:

f ○ idX ≡ (x ↦ f (idX(x))) by Definition 2.6

≡ (x ↦ f ((y ↦ y)(x))) by Definition 2.6

≡ (x ↦ f (x)) by (2.3)

≡ f by (2.4).

Σ-Types

Definition 2.8 (Σ-types). Given a type A and a family B ∶ A → U , there is a type,

called (dependent) pair type or Σ-type, denoted by

Σ (x ∶ A) . B(x).

FUNCTIONS AND PAIRS 25

Its introduction rule states that an expression of the form ⟨x, b(x)⟩ is a term of

Σ (x ∶ A) . B(x) whenever x ∶ A and b(x) ∶ B(x); such term expressions are called

(dependent) pairs. Given a family C ∶ (Σ (x ∶ A) . B(x))→ U and a dependent function

f ∶ Π (a ∶ A) . Π (b ∶ B(a)) . C⟨a, b⟩, there is a function

indΣ ∶ Π (p ∶ Σ (x ∶ A) . B(x)) . C(p) (2.9)

satisfying the computation rule

indΣ⟨a, b⟩ ≡ f ⟨a, b⟩. (2.10)

If B is a constant family, the same type is denoted by A × B and is called a product

type.

From Definition 2.8, we see that, a priori, a term of a Σ-type is not necessarily a

pair, in the sense that a term variable of a Σ-type cannot be made to judgmentally

reduce to a pair. However, once we define a notion of term identity, we will see

that every term in a Σ-type can be, in some precise sense, identified with a pair

(Lemma 2.47).

Remark 2.11. The term indΣ in (2.9) is the elimination principle or rule of the Σ-type,

while the judgmental equality in (2.10) is its computation rule. Together, elimina-

tion rules and their computation rules can be seen as universal properties of types.

Elimination rules are also called induction principles in their more general form, or

sometimes recursion principles if the source or target family of the universal property

is constant (in the definition above, the family C). The universal property of Σ-types

then states that, in order to define a map out of a Σ-type, it is enough to define its

behaviour on pairs. In general, we will say that we eliminate into the target type or

family of the elimination principle of a certain type (e.g., the family C in (2.9)).

Remark 2.12. When instantiated to a product type A × B and to a constant family C,

the elimination principle for product types states that a function A × B → C can be

produced once given a function A → B → C. This is also known as uncurrying, where

currying is the reverse operation; these two function types are indeed equivalent (in

the sense of Section 2.5). There is a clear analogy with Hom functors in different

contexts (e.g. closed monoidal categories), for which there is a bijection

Hom(X ×Y, Z)↔Hom(X, ZY),
natural in X and Z. This justifies the use of notation described in Remark 2.5 (f (a, b)
vs. f (a)(b)); the different notations ⟨a, b⟩ and (a, b) for terms in a product type and

lists of arguments of a function should clarify the context.

26 2. HOMOTOPY TYPE THEORY

Remark 2.13. It is worth to remark that, when we present a term under the assump-

tion that some data is given, we are actually specifying a dependent function (de-

pending, precisely, on the given data). In its complete form, the elimination princi-

ple for Σ-types in (2.9) postulates the existence of a term

indΣ ∶Π (A ∶ U) . Π (B ∶ A → U) . Π (C ∶ (Σ (x ∶ A) . B(x))→ U) .

(Π (a ∶ A) . Π (b ∶ B(a)) . C⟨a, b⟩)→ Π (p ∶ Σ (x ∶ A) . B(x)) . C(p) (2.14)

satisfying

indΣ(A, B, C, f)⟨a, b⟩ ≡ f ⟨a, b⟩
for every A, B, C, f , a and b of appropriate types.

Remark 2.15 (Notation). We emphasize that the expression “a” in Σ (a ∶ A) . B(a) is

a bound variable, so it bears no significance in the definition of the type; the same

type can be written as Σ (x ∶ A) . B(x).
Tuples will denote iterated pairs: for appropriate A, B and C, a term ⟨a, ⟨b, c⟩⟩ ∶

Σ (a ∶ A) . Σ (b ∶ B(a)) . C(a, b)will be written as ⟨a, b, c⟩.
The operator × has precedence over →, so the type A → B × C is to be read as

A → (B ×C), while A × B → C denotes (A × B)→ C.

The elimination principle for Σ-types allows us to define projections, which will

also serve as our first example of a definition by induction.

Definition 2.16. Given a type A and a family B ∶ A → U , the functions

pr1 ∶ (Σ (a ∶ A) . B(a))→ A and

pr2 ∶ Π (x ∶ Σ (a ∶ A) . B(a)) . B(pr1(x))

(respectively, first and second projection) are defined by induction, so that pr1⟨a, b⟩ ∶≡
a and pr2⟨a, b⟩ ∶≡ b for every a ∶ A and b ∶ B(a). We will use the same notation when

B is a constant family.

The expression “by induction” above is to be read as the definition of the terms:

pr1 ∶≡ indΣ(A, B, (z ↦ A), (a ↦ (b ↦ a))),
pr2 ∶≡ indΣ(A, B, (z ↦ B(pr1(z))), (a ↦ (b ↦ b))),

where all the arguments of indΣ are explicit (as in (2.14)). Most definitions in this

thesis will follow the same pattern.

FUNCTIONS AND PAIRS 27

A × B

A

B

C

f

g

h

pr1

pr2

Figure 2.1: Universal property of pair types.

Remark 2.17. Given types A, B and C and functions f ∶ C → A and g ∶ C → B, we

can construct a map h ∶≡ (c ↦ ⟨ f (c), g(c)⟩) ∶ C → A × B such that pr1 ○ h ≡ f and

pr2 ○ h ≡ g (Fig. 2.1).

The following notion of functoriality holds for Σ-types.

Definition 2.18. Let A, A′ be types and B ∶ A → U , B′ ∶ A′ → U be families. Given

functions f ∶ A → A′ and g ∶ Π (x ∶ A) . B(x)→ B′(f (x)), the function

⟨ f , g⟩ ∶ Σ (x ∶ A) . B(x)→ Σ (y ∶ A′) . B′(y)
is defined by induction, so that ⟨ f , g⟩⟨a, b⟩ ∶≡ ⟨ f (a), ga(b)⟩. If B and B′ are constant

and g ∶ B → B′, we denote by f × g the function between product types:

f × g ∶≡ ⟨ f , (a ↦ g)⟩ ∶ A × B → A′ × B′.

We can interpret Σ- and Π-types as, respectively, the left adjoint and the right

adjoint to a constant functor, in the following sense. Given a type A, there are func-

tions:

• ΣA ∶ (A → U)→ U , defined as ΣA ∶≡ (B ↦ Σ (a ∶ A) . B(a));
• ΠA ∶ (A → U)→ U , defined as ΠA ∶≡ (B ↦ Π (a ∶ A) . B(a));
• ConstA

∶ U → (A → U), defined as ConstA
∶≡ (X ↦ (a ↦ X)).

Viewing the universe U as a category of types and functions (setting aside the

issues that this interpretation might give),1 the type A → U corresponds to the

coslice category A ↓U , whose morphisms (A ↓U)(B, B′) are dependent functions

Π (x ∶ A) . B(x)→ B′(x). In this sense, ΣA, ΠA and ConstA are actually functors: we

can define function terms in

(A ↓U)(B, B′)→ (ΣA(B)→ ΣA(B′)) and (A ↓U)(B, B′)→ (ΠA(B)→ ΠA(B′))
1These are sometimes called wild categories.

28 2. HOMOTOPY TYPE THEORY

for B, B′ ∶ A → U , and a function term in

(B → B′)→ (A ↓U)(ConstA(B), ConstA(B′))
for B, B′ ∶ U , judgmentally respecting identity and composition. Such functions

present the functorial action of ΣA, ΠA and ConstA on maps, and are defined as

follows:

• for ΣA, given a morphism f ∶ (A ↓U)(B, B′), we can produce

⟨idA, f ⟩ ∶ Σ (x ∶ A) . B(x)→ Σ (x ∶ A) . B′(x)
as shown in Definition 2.18;

• for ΠA, given a morphism f ∶ (A ↓U)(B, B′), we can produce the (dependent)

composition

(h ↦ (z ↦ f (z) ○ h(z))) ∶ (Π (x ∶ A) . B(x))→ Π (x ∶ A) . B′(x);

• for ConstA, given a morphism g ∶ X → X′, we can produce

(a ↦ g) ∶ A → X → X′.

These functors are in an adjoint triple

ΣA ⊣ ConstA
⊣ ΠA ∶ A ↓U → U ,

which gives rise to two adjunctions:

ΣA ConstA
⊣ ΠA ConstA

∶ U → U , (2.19)

ConstA
ΣA ⊣ ConstA

ΠA ∶ A ↓U → A ↓U . (2.20)

By computing the compositions, the adjunction in (2.19) corresponds, categorically,

to the adjunction (A ×−) ⊣ (A → −) (cf. Remark 2.12), while the one in (2.20) is its

“dependent” counterpart (Σ (x ∶ A) . − (x)) ⊣ (Π (x ∶ A) . − (x)).

2.3 Inductive Types

We saw in Definition 2.16 and Definition 2.18 how the elimination principle of Σ-

types allows us to define functions out of a Σ-type by declaring the image of the

terms specified by its introduction rule, i.e. pair terms; indeed, the type itself is de-

fined by means of this universal property. Types that are defined in terms of such a

INDUCTIVE TYPES 29

universal property are called inductive types. The presentation of inductive types

is given by a list of constructors (also called generators) of their terms, specifying the

introduction rule(s), and by an elimination principle, which can often be inferred

by the list of constructors alone. This section presents inductive types that are com-

monly used.

The Unit Type, the Empty Type, and the Type of Booleans

Definition 2.21 (Unit type). The inductive type 1 has one constructor, denoted by

the symbol ∗ ∶ 1. Given a family C ∶ 1 → U and a term c ∶ C(∗), there is a function

ind1 ∶ (x ∶ 1)→ C(x)
satisfying the computation rule ind1(∗) ≡ c. The type 1 is called the unit type.

Definition 2.22 (Empty type). The inductive type 0 has no introduction rule, and

hence it is called the empty type. Given a family C ∶ 0 → U , there is a function

ind0 ∶ Π (x ∶ 0) . C(x),
also called ex falso: it states that a term of any type can be obtained, given a term

in 0. The elimination principle cannot be applied to any constructor of 0 (because

there is none), so no computation rule applies.

The unit type is a “type with exactly one term”: its elimination principle will be

used to show (in Lemma 2.47) that all terms in 1 can be brought back to ∗; hence,

this type will be used as building block to construct types with finitely many el-

ements (Definition 2.43). From a homotopical perspective, 1 will be a contractible

type (Remark 2.75). Similarly, the empty type is a “type with no terms”, as no term

of 0 can be produced. If a function f ∶ X → 0 is exhibited, the type X is itself empty

(see also Lemma 2.96); if X represents a mathematical statement, it has no proof.

The type 1 is terminal in U : given any type X, a function const∗ ∶ X → 1 can

be always defined as the constant map at ∗. Dually, the elimination principle of 0

shows that the empty type is initial in U .

Definition 2.23 (Type of booleans). The inductive type 2 has two constructors, yes

and no ∶ 2. Given a family C ∶ 2 → U and terms y ∶ C(yes) and n ∶ C(no), there is a

function

ind2 ∶ Π (x ∶ 2) . C(x)
satisfying the computation rules ind2(yes) ≡ y and ind2(no) ≡ n.

30 2. HOMOTOPY TYPE THEORY

Natural Numbers and Lists

The definition of inductive types allows recursion: one or more of the constructors of

an inductive type might quantify over the defined type itself. Recursive definitions

are common in mathematics; here we present the inductive types of natural num-

bers and of lists (over a type), which we will use in several occasions throughout

this thesis.

Definition 2.24 (Natural numbers). The inductive type N of natural numbers has

two constructors, 0 ∶N and s ∶N →N, respectively for the “zero” and the successor

function in the natural numbers. Given a family C ∶ N → U , a term z ∶ C(0) and a

function f ∶ Π (n ∶N) . C(n)→ C(s(n)), there is a function

indN ∶ Π (n ∶N) . C(n) (2.25)

satisfying the computation rules

indN(0) ≡ z

indN(s(n)) ≡ f (n, indN(n)) (2.26)

where the judgmental equality in (2.26) holds for every n ∶ N. This elimination

principle gives computational content to the classical induction on the natural num-

bers: the right-hand side in (2.26) is the inductive step in a proof by induction on

N, which recursively calls indN as proof of the induction hypothesis (given by the

second argument of f).

Remark 2.27 (Notation). We will use the usual notation for natural numbers (0, 1,

2, ...) as shorthand for terms in N. The operation of addition + ∶ N → N → N

on natural numbers can be defined by induction either on the left or on the right

summand (producing functions with different computational behaviour); in this

thesis, we will choose the former, but often denote 1+ n ≡ s(n) by “n+ 1”, purely for

reasons of improved readability.

Remark 2.28. The elimination rule for N has a simpler formulation when C is a

constant family. It states that, given a type C, a term z ∶ C and a function f ∶N → C →

C, there is a function recN ∶ N → C, satisfying computation rules corresponding to

those of indN . The non-dependent version rec of an elimination principle can always

be derived from its dependent version ind; hence, we will often omit its specification

and use rec whenever we wish to emphasize its non-dependent character (see also

the notes at the end of this section).

INDUCTIVE TYPES 31

Definition 2.29 (Lists). Given a type X, the inductive type list(X) of lists over X

has two constructors: nil ∶ list(X), the “empty list”; and cons ∶ X → list(X) → list(X),
which constructs a new list with a head in X and a tail in list(X). Given a family

C ∶ list(X) → U , a term e ∶ C(nil) and a function c ∶ Π (x ∶ X) . Π (l ∶ list(X)) . C(l) →
C(cons(x, l)), there is a function

indlist ∶ Π (l ∶ list(X)) . C(l)
satisfying the computation rules

indlist(nil) ≡ e

indlist(cons(x, l)) ≡ c(x, l, indlist(l)) (2.30)

where the judgmental equality in (2.30) holds for every x ∶ X and l ∶ list(X).

Remark 2.31 (Notation). Whenever we apply the constructor cons to two arguments,

we replace the notation cons(x, l) by x ∶ ∶ l (obviously associating to the right), which

has the advantage of displaying a list term graphically as a list. For instance, if a, b,

c ∶ X, the expression a ∶ ∶ b ∶ ∶ c ∶ ∶ a ∶ ∶ nil is a term of list(X). We will still keep the

notation cons in some cases, especially when the function is not completely applied.

Lists will be of particular importance in this thesis: they possess a monoidal

structure, with nil as unit. We will use the elimination rule to define its monoidal

product, which is the operation of appending lists. The elimination rule states that,

in order to define a function out of the type of lists, it is enough to give the image of

nil and, recursively, the image of x ∶ ∶ l for every x, given the image of some l ∶ list(X)
as inductive hypothesis.

Definition 2.32 (List append). Given a type X, the function −++− ∶ list(X) →
list(X)→ list(X) is defined by induction (on its first argument) by:

(nil++−) ∶≡ idlist(X) (2.33)

((x ∶ ∶ l)++−) ∶≡ cons(x) ○ (l ++−) (2.34)

for every x ∶ X and l ∶ list(X).

Remark 2.35 (Notation). We use the convention that makes ++ associate to the right,

so l1 ++ l2 ++ l3 stands for l1 ++(l2 ++ l3). Clearly, ∶ ∶ has priority on the right of ++,

as there is only one way of reading an expression such as a++ b ∶ ∶ c which makes

it type-check. On the left, it does not matter, as (2.34) implies that the expressions

(x ∶ ∶ l1)++ l2 and x ∶ ∶ (l1 ++ l2) are judgmentally equal.

32 2. HOMOTOPY TYPE THEORY

Remark 2.36. The operation ++ satisfies the left-unit law judgmentally, as (2.33) im-

plies that nil++ l ≡ l for all l ∶ list(X). Instances of (−++−) applied to nil as second

argument and any concrete list (for example, the one in Remark 2.31) as first ar-

gument do compute to the first argument; however, there is no computation rule

stating that l ++nil ≡ l given any term l ∶ list(X). Indeed, all we know about (l ++−)
is that it is a function list(X) → list(X), and we do not have means to compute its

value when applied to nil (or any other list). We will see in Chapter 3 how identity

types, describing a weaker notion of equality, will allow us to express the right-unit

law for ++.

Coproduct Types and Canonical Finite Types

The types 0, 1 and 2 are inductive types with zero, one and two constructors re-

spectively; it is not difficult to imagine similar definitions for types with an arbi-

trary (but fixed) number of constructors. The types list(X) and N offer examples

of inductive types with families of constructors (respectively: cons and s, which also

make the definitions recursive). Coproduct types are another such example.

Definition 2.37 (Coproduct type). Given types A and B, the inductive type A + B,

called coproduct type of A and B, has two families of constructors:

inl ∶ A → A + B and inr ∶ B → A + B.

Given a family C ∶ A + B → U and dependent functions f ∶ Π (a ∶ A) . C(inl(a)) and

g ∶ Π (b ∶ B) . C(inr(b)), there is a function

ind+ ∶ Π (x ∶ A + B) . C(x)

satisfying the computation rules ind+(inl(a)) ≡ f (a) and ind+(inr(b)) ≡ g(b) for

every a ∶ A and b ∶ B. Thus, when proving a statement depending on a term x ∶ A+B

by induction, we can perform case analysis on x.

Remark 2.38 (Notation). Coproducts associate to the left: the notation A + B + C

stands for (A + B)+C.

Remark 2.39. The elimination principle for coproduct types, for a constant family C,

makes the diagram in Fig. 2.2 commute judgmentally.

INDUCTIVE TYPES 33

A + B

A

B

C

f

g

ind+

inl

inr

Figure 2.2: Universal property of coproduct types.

Definition 2.40. Let A, A′, B and B′ be types. Given functions f ∶ A → A′ and

g ∶ B → B′, the function

f + g ∶ A + B → A′ + B′

is defined by induction, so that (f + g)(inl(a)) ∶≡ inl(f (a)) and (f + g)(inr(b)) ∶≡
inr(g(b)) for every a ∶ A and b ∶ B.

Definition 2.41. For types A, B ∶ U , the families is_inl, is_inr ∶ A + B → U are defined

by the elimination principle for coproducts:

is_inl(inl(a)) ∶≡ 1, is_inr(inl(a)) ∶≡ 0,

is_inl(inr(b)) ∶≡ 0, is_inr(inr(b)) ∶≡ 1,

for every a ∶ A and b ∶ B. A function inl−1
∶ Π (x ∶ A + B) . is_inl(x)→ A is also defined

by the same elimination principle, with inl−1(inl(a), l) ∶≡ a for every a ∶ A, and

inl−1(inr(b), l) obtained ex falso for every b ∶ B, since l ∶ is_inl(inr(b)) ≡ 0. Specularly,

we define a function inr−1
∶ Π (x ∶ A + B) . is_inr(x)→ B.

Coproducts allow us to define types with a finite but arbitrary number of terms.

For example, in (1+1)+(1+1)we find the four distinct terms inl(inl(∗)), inl(inr(∗)),
inr(inl(∗)) and inr(inr(∗)). We will use the elimination rule of N to define canonical

finite types uniformly.

Definition 2.42. The function add ∶ U → U is defined by add(A) ∶≡ A + 1.

Definition 2.43 (Canonical finite types). The family [−] ∶N → U of canonical finite

types is defined by induction, with:

[0] ∶≡ 0

[n + 1] ∶≡ add([n]) ≡ [n]+ 1.

34 2. HOMOTOPY TYPE THEORY

Syntax of Inductive Types

As the elimination principle and computation rules of an inductive type T can be

inferred from the list of its constructors, the type can be presented using the follow-

ing, widely used syntax:

T ∶ ∶= [list of typed constructors, separated by “∣”].

For example, we have:

1 ∶ ∶= ∗ ∶ 1; 0 ∶ ∶= ; A + B ∶ ∶= inl ∶ A → A + B ∣ inr ∶ B → A + B;

N ∶ ∶= 0 ∶N ∣ s ∶N →N; list(X) ∶ ∶= nil ∶ list(X) ∣ cons ∶ X → list(X)→ list(X).
The elimination principle of an inductive type T will be denoted by

indT ∶ Π (C ∶ T → U) . (. . .)→ Π (t ∶ T) . C(t);
its non-dependent version will be denoted by recT ∶ Π (C ∶ U) . (. . .)→ T → C.

The functions indT and recT take as arguments the target family or type C, a

number of terms corresponding to the constructors of T, and a term in t ∶ T. When

defining a function using the elimination principle of T, we will declare it as a defi-

nition by induction on t, where the case analysis (“pattern matching”) is performed by

providing the terms corresponding to the constructors of T, i.e., by stating its com-

putation rules. For example, we can define a function f ∶ N + 1 → N by induction

on x ∶N + 1 (using rec+), declaring f (inl(n)) ∶≡ n for every n ∶N and f (inr(y)) ∶≡ 0

for every y ∶ 1. If the list of constructors is long, or the definitions of the arguments

of indT or recT is complex, we might refer to the argument corresponding to a con-

structor γ as a term γ′ of the correct type. If one or more constructors give the

elimination principle a recursive nature (such as s for N or cons for list(X)), we

might present the definition recursively. For instance, a function g ∶ list(X) → N

returning the length of a list over a type X might be defined by stating g(nil) ∶≡ 0

and g(x ∶ ∶ l) ∶≡ g(l)+1 for every x ∶ X, or alternatively by declaring nil′ ∶≡ 0 ∶N and

cons′ ∶≡ (x ↦ s) ∶ X → N → N. We will use the same syntax for higher inductive

types in Section 2.6.

Families T ∶ I → U of inductive types may be indexed by a type I; in general, the

more complex the structure of I is, the more interesting the family is. An example

is the following inductive family T ∶N → U , defined by the constructors:

T(−) ∶ ∶= r ∶ T0 ∣ s ∶ Π (n ∶N) . Tn → Tn+2,

IDENTITY TYPES 35

so the types T1, T3, ... are a priori (and provably) empty. The elimination principle

of T(−) states that, given an indexed family C ∶ Π (n ∶N) . Tn → U of types over T, a

function indT ∶ Π (n ∶N) . Π (x ∶ Tn) . Cn(x) can be produced by exhibiting:

• a term r′ ∶ C0(r); and

• a term s′ ∶ Π (n ∶N) . Π (x ∶ Tn) . Cn(x)→ Cn+2(s(n, x));
this will compute indT(0, r) ≡ r′ and indT(n+ 2, sn(x)) ≡ s′(n, x, indT(n, x)) for every

n ∶ N and x ∶ Tn. The non-dependent version of this elimination principle accord-

ingly states that, for a family C ∶ N → U , a function Π (n ∶N) . Tn → Cn can be

obtained once given:

• a term r′ ∶ C0;

• a term s′ ∶ Π (n ∶N) . Cn → Cn+2,

computing recT(0, r) ≡ r′ and recT(n + 2, sn(x)) ≡ s′(n, recT(n, x)) for every n ∶ N

and x ∶ Tn.

Remark 2.44. We stress that the elimination principle for inductive families (in ei-

ther its dependent or non-dependent version) treats each member of the family

uniformly, so it cannot be directly applied to produce e.g. a function Tm → C for

a chosen m ∶ N. However, once established a notion of identity between natural

numbers, we will be able to use such an elimination principle to obtain a function

recm
T ∶ Π (n ∶N) . (n = m)→ Tn → C;

this can then be applied to m ∶ N and a term in m = m (which can always be con-

structed). The notion of identity we will use is described in the following section.

2.4 Identity Types

Identity types are a class of types in MLTT and HoTT. A term in an identity type em-

bodies the notion of equality between two terms in a type. Although, as we will see,

identity types are inductive types with only a constructor for “reflexivity” (respect-

ing the idea that any term is always equal to itself), the structure of identity types

in HoTT is rich and allows us, by iteration, to describe “higher” constructions.

Definition 2.45 (Identity types). Given a type A and a term a, the family of iden-

tity types Ida ∶ A → U , parametrized by A, is inductively defined with one con-

structor refla ∶ Ida(a), which is called identity path, reflexivity or trivial path. The elim-

ination principle states that, given a family C ∶ Π (x ∶ A) . Ida(x) → U and a term

36 2. HOMOTOPY TYPE THEORY

r ∶ C(a, refla), there is a function

indId,a ∶ Π (x ∶ A) . Π (p ∶ Ida(x)) . C(a, p)
satisfying the computation rule indId,a(a, refla) ≡ r.

Remark 2.46 (Notation). For a, x ∶ A, we denote the type Ida(x)with a =A x or simply

a = x when the type of a (and of x) is understood. For a, x ∶ A, a term p ∶ a = x is

called an identification or path between a and x in the type A; the latter, which we

use most often in this thesis, reflects the (homotopical) interpretation of types as

spaces (see Remark 2.56). Proofs using the elimination rule of identity types will be

refer to as proofs “by induction on the path p”. In this thesis, we will frequently use

expressions such as “a path (in) a = b is defined”, without reserving a specific name

for the term we define, in order not to overload this text with notation.

A path p ∶ a =A a is also called a loop at a ∶ A. The elimination principle for

identity types cannot be directly applied to produce a function out of a type of

loops (or a type of paths whose endpoints are both fixed), for the reason explained

in Remark 2.44.

The construction of identity types can be iterated: for example, if p, q ∶ a =A b,

we can form a type p =(a=Ab) q, whose terms are dubbed 2-paths. In general, we will

talk about n-paths, emphasizing their position in the tower of identity types on A

(we refer to Fig. 1.3 in the introduction).

On occasion, we will display mixed chains of identities = and judgmental equal-

ities ≡; for instance, if we need to construct a path a = b and we have a path p ∶ a′ = b′

with a′ ≡ a and b′ ≡ b, we will print p ∶ a ≡ a′ = b′ ≡ b.

With this notion of identity, we are now able to prove the following “unique-

ness” property of the constructors of inductive types.

Lemma 2.47. There are paths between: every term in 1 and ⋆; every term in 2 and either

yes or no; every term in a coproduct type and either inl(a) or inr(b) for some terms a and

b of the summands; every term in a Σ-type and some pair; every term in N and either 0 or

s(n) for some n ∶ N; every list in list(X) for some type X and either nil or x ∶ ∶ l for some

x ∶ X and l ∶ list(X).
Proof. All claims are proved using the elimination rules for the respective types. For

example, induction on 2 for the family C ∶ 2 → U defined as C ∶≡ (x ↦ (x = yes) +
(x = no)) provides a term ind2(x) ∶ (x = yes) + (x = no) if we are able to find terms

in C(yes) and C(no); these are given by inl(reflyes) as inr(reflno) respectively.

IDENTITY TYPES 37

Path Algebra

The given definition of identity types allows us to view a type A as having the struc-

ture of an∞-groupoid: specifically, operations of inverse and composition (concate-

nation) of paths can be defined, satisfying relevant coherence laws. The following

lemma defines such operations and enumerates a selection of statements concern-

ing the higher groupoid structure of a type.

Definition 2.48 (Groupoid structure of types). Let A be a type, and a, b, c and d ∶ A.

(i) For every p ∶ a = b, a path p−1 ∶ b = a (inverse path) is defined so that refl−1
a ≡

refla;

(ii) for every p ∶ a = b and q ∶ b = c, a path p ⋅ q ∶ a = c (concatenation) is defined so

that refla ⋅ refla ≡ refla;

(iii) for every p ∶ a = b, a 2-path inv_inv(p) ∶ (p−1)−1
= p in A is defined (the inverse

operation is an involution);

(iv) for every p ∶ a = b, q ∶ b = c and r ∶ c = d, a 2-path (p ⋅ q) ⋅ r = p ⋅ (q ⋅ r) in A is

defined (associativity of concatenation);

(v) for every p ∶ a = b, two 2-paths refla ⋅ p = p and p ⋅ reflb = p in A are defined (left

and right unitality for concatenation);

(vi) for every p ∶ a = b, two 2-paths p ⋅ p−1
= refla and p−1 ⋅ p = reflb in A are defined

(inverse laws for concatenation);

(vii) for every p1, p2 ∶ a = b, q1, q2 ∶ b = c and for every 2-paths r ∶ p1 = p2 and

s ∶ q1 = q2, a 2-path r ⋅h s ∶ p1 ⋅ q1 = p2 ⋅ q2 in A is defined (horizontal composition,

where vertical composition is concatenation of 2-paths); in case r (resp. s) is

the identity 2-path, this is called left (resp. right) whiskering;

(viii) for every l ∶ a = b and p, q ∶ b = c, a function (l ⋅ p = l ⋅ q)→ (p = q) (left cancelling)

is defined; similarly, cancelling can be performed on the right;

(ix) horizontal composition is associative and satisfies the unit laws; together with

concatenation, it satisfies the interchange laws, i.e. a 3-path

(r1 ⋅h s1) ⋅ (r2 ⋅h s2) = (r1 ⋅ r2) ⋅h (s1 ⋅ s2) (2.49)

in A is constructed for composable 2-paths ri, si (Fig. 2.3), and 1-coherence

diagrams (associativity pentagon, associativity-unitality triangle with respect

to (iv) and (v)).

38 2. HOMOTOPY TYPE THEORY

a b c

p1

p2

p3

q1

q2

q3

r1

r2

s1

s2

a b c

p1

p3

q1

q3

r1 ⋅ r2 s1 ⋅ s2

a c

p1 ⋅ q1

p2 ⋅ q2

p3 ⋅ q3

r1 ⋅h s1

r2 ⋅h s2

a c

p1 ⋅ q1

p3 ⋅ q3

↝

↝

↝ ↝

Figure 2.3: The interchange law for 2-paths provides a 3-path (in blue) between the two 2-

paths in the bottom-right diagram (in red), which are (r1 ⋅h s1) ⋅(r2 ⋅h s2) and (r1 ⋅ r2) ⋅h (s1 ⋅ s2).

All these terms are obtained by induction on the given paths or higher paths, i.e.

via the elimination rule for identity types. For example, in (i), the family

C ∶ Π (x ∶ A) . Ida(x)→ U
is defined for every a to be C ∶≡ (x ↦ (p ↦ x =A a)), and the term r ∶ C(a, refla) ≡
(a = a) is defined to be r ∶≡ refla, so the inverse is defined for every path and is such

that refl−1
a ∶≡ refla.

Remark 2.50. It would be tempting to complete the list in Definition 2.48 with a

general (and deliberately unspecific) item:

(x) “all” higher coherence relations are satisfied;

sadly, no type is known to express this statement. It is believed that the axiomati-

sation of so-called semi-simplicial types would allow the theory to express this and

other higher coherence statements and, in particular, to describe∞-groupoids and

(∞, 1)-categories internally to the theory [Buc19; RS17; KA18]. Even though this

problem is at the present time still open, for the purposes of this thesis (which will

never trespass groupoid coherence at the level of 2-paths) we can still work under

the informal assumption that path induction proves all the coherence statements

we need about the higher path structure of a type.

IDENTITY TYPES 39

Remark 2.51 (Notation). In this exposition we will not need to emphasize the dis-

tinction between differently-associated concatenations of the same paths, and we

will use the unbracketed notation p ⋅ q ⋅ . . . ⋅ r for the concatenation of three or more

paths.

Functions between types act functorially with respect to paths, in the following

sense.

Definition 2.52 (Application of functions and transport). Let A be a type. For every

type B, function f ∶ A → B and terms x, y ∶ A, we construct a function

[f] ∶ (x = y)→ (f (x) = f (y)) (2.53)

by path induction, declaring [f](reflx) ∶≡ refl f(x), i.e., [f] preserves identity paths

judgmentally. For every family C ∶ A → U and terms x, y ∶ A, we use path induction

again to construct a function

(−)C
∗
∶ (x = y)→ (C(x)→ C(y)), (2.54)

named transport, such that (reflx)C∗ ≡ idC(x) for all x ∶ A. Finally, for every function

f ∶ Π (x ∶ A) . C(x) and terms x, y ∶ A, we construct a function

[f]d ∶ Π (p ∶ x = y) . (pC
∗(f (x)) =C(y) f (y)) (2.55)

by path induction, defining [f]d(reflx) ∶≡ refl f(x) and hence making [f]d preserve

identity paths judgmentally. The functions [f] in (2.53) and [f]d in (2.55) are the

application to a path of a (dependent) function.2

Remark 2.56. The function (−)C
∗

in (2.54) represents transport of a term in a fiber

along a path, in the following sense. By path induction, we can prove that, for every

a1, a2 ∶ A and p ∶ a1 = a2, there is a function

lift(p) ∶ Π (z ∶ B(a1)) . ⟨a1, z⟩ =(Σ(x∶A). B(x)) ⟨a2, pB
∗(z)⟩ (2.57)

(Fig. 2.4); for this reason, one can see the type Σ (x ∶ A) . B(x) as the total space of

a fibration (given by the projection to A), where the base is given by the type A,

the fiber of any x ∶ A is the type B(x), and the function in (2.57) yields a lifting to

the total space of any path in A. A dependent function f ∶ Π (x ∶ A) . B(x) is then a

section of the fibration. We will see in Lemma 2.107 that the fibers of the endpoints

of a path in A are equivalent, for a suitable notion of equivalence (Section 2.5). This

interpretation justifies the following definition.
2In literature, the functions [f] and [f]d are often denoted by ap f and apd f , respectively.

40 2. HOMOTOPY TYPE THEORY

A

a1 a2
p

B(a1)

z

B(a2)

pB
∗(z)

Σ (x ∶ A) . B(x)

⟨a1, z⟩ ⟨a2, pB
∗(z)⟩

lift(p, z)

pB
∗

pr2

Figure 2.4: Lifting of a path to the total space of a fibration.

Definition 2.58. Let f ∶ A → B be a function of types and b ∶ B. The (homotopy-)fiber

of f over b is the type

fib f (b) ∶≡ Σ (a ∶ A) . (f (a) =B b).
In particular, if A ∶ U and B ∶ A → U , the fiber of pr1 ∶ (Σ (x ∶ A) . B(x))→ A over any

a ∶ A is the type

Σ (y ∶ Σ (x ∶ A) . B(x)) . (pr1(y) =A a),
which can be shown to be equivalent to B(a), for a notion of equivalence described

in Section 2.5.

Remark 2.59 (Pathovers). A path in the fiber of a family C ∶ A → U that belongs to

a type of the form pC
∗(u) = v for some path p in A is also called a path over p, or

pathover [LB15].

Application of functions and dependent functions to paths satisfies certain prop-

erties – for example, it respects concatenation of paths and composition of functions,

albeit not judgmentally. This fits in the categorical interpretation (as∞-groupoids)

of types: functions between types are actually functors. We will heavily rely on this

interpretation in order to reach the main results of this thesis. We summarize some

key properties in the following lemma.

IDENTITY TYPES 41

Definition 2.60 (Some path algebra). For types A, B, C ∶ U and functions f ∶ A → B

and g ∶ B → C:

(i) given a path p in A, we define a 2-path [idA](p) = p;

(ii) given composable paths p and q in A, a 2-path [f](p ⋅ q) = [f](p) ⋅ [f](q) is

defined;

(iii) given a path p in A, we define a 2-path [f](p−1) = [f](p)−1;

(iv) given a path p in A, we define a 2-path [g ○ f](p) = [g]([f](p));
(v) if f ≡ (z ↦ b) for some b ∶ B, i.e., if f is constant, we define a 2-path [f](p) =

reflb for every path p in A;

Given a type A ∶ U and a family C ∶ A → U :

(vi) for paths p ∶ x =A y and q ∶ y =A z, we derive a path between functions

(p ⋅ q)C
∗
=C(x)→C(z) qC

∗ ○ pC
∗ ;

(vii) given paths p ∶ x =A y and q ∶ y =A z, terms x′ ∶ C(x), y′ ∶ C(y) and z′ ∶ C(z)
and pathovers p′ ∶ pC

∗(x′) = y′ and q′ ∶ qC
∗(y′) = z′, we define a pathover

p′ ⋅d q′ ∶ (p ⋅ q)C
∗
(x′) = z′

so that, if p and q are identity paths at x, then p′ ⋅d q′ ≡ p′ ⋅ q′ (see Fig. 2.5);

(viii) given a path p ∶ x =A y, terms x′ ∶ C(x) and y′ ∶ C(y) and a pathover q ∶

pC
∗(x′) = y′, we define a pathover (p−1)C

∗
(y′) = x′;

(ix) if the family C is constant at B ∶ U , for a path p ∶ x =A y and a term b ∶

B, we define a pathover tr_const(p, b) ∶ pC
∗(b) = b, respecting identity paths

judgmentally.

Given types A, A′ ∶ U , families C ∶ A → U and C′ ∶ A′ → U , a path p ∶ x =A y, terms

x′ ∶ C(x) and y′ ∶ C(y) and a pathover q ∶ pC
∗(x′) = y′,

(x) for any function f ∶ A → A′ and g ∶ Π (a ∶ A) . C(a) → C′(f (a)), we define a

pathover (depicted in Fig. 2.6)

f ∣gq ∶ ([f](p))C′
∗
(gx(x′)) =C′(f(y)) gy(y′)

such that, if p is the identity path on x, there is a 2-path f ∣gq = [gx](q).
Given types A, B ∶ U and functions f , g ∶ A → B, we can consider the family C ∶ A →

U , C(z) ∶≡ f (z) = g(z) of identity types; then:

42 2. HOMOTOPY TYPE THEORY

(xi) given paths p ∶ x =A y, qx ∶ C(x) and qy ∶ C(y), we define a function

(qx ⋅ [g](p) =(f(x)=g(y)) [f](p) ⋅ qy)→ (pC
∗(qx) = qy) . (2.61)

For a type A ∶ U , a family C ∶ A → U and a function f ∶ Π (x ∶ A) . C(x):
(xii) for composable paths p and q in A, a 2-path [f]d(p ⋅ q) = [f]d(p) ⋅d [f]d(q) is

defined;

(xiii) if the family C is constant at B ∶ U , given a path p ∶ x =A y, we define a 2-path

[f]d(p) = tr_const(p, f (x)) ⋅ [f](p).
All terms are constructed by path induction. We note that the pathover p′ ⋅d q′ in

(vii) can be, alternatively, defined directly by:

(p ⋅ q)C
∗
(x′) = qC

∗(pC
∗(x′)) by (vi)

= qC
∗(y′) by [qC

∗](p′)
= z′ by q′.

We also remark that the function in (2.61) will be an equivalence, in the sense of

Definition 2.89, as shown in Lemma 2.102.

We will frequently use application of functions in two variables, as expressed in

the following lemma, which is also proved by path induction.

Lemma 2.62. Given types A, B and C ∶ U , a function f ∶ A → B → C and terms a1, a2 ∶ A

and b1, b2 ∶ B, a function

[f (−,−)] ∶ (a1 = a2)→ (b1 = b2)→ (f (a1, b1) = f (a2, b2)), (2.63)

is defined, computing to the identity path on identity paths in A and B, such that

[f (−, b)](p) = [x ↦ f (x, b)](p) and [f (a,−)](q) = [x ↦ f (a, x)](q)
for a ∶ A, b ∶ B, p ∶ x1 =A y1 and q ∶ x2 =B y2, and satisfying the interchange law:

[f (−,−)](p1, q1) ⋅ [f (−,−)](p2, q2) = [f (−,−)](p1 ⋅ p2, q1 ⋅ q2) (2.64)

for paths p1, p2, q1 and q2 making the expression well-typed.

Remark 2.65 (Notation). If a function ⊠ ∶ A → A → A is to represent a product, we

will generally use the infix notation a1 ⊠ a2 ∶≡ ⊠(a1, a2) for a1, a2 ∶ A. Similarly, the

notation p1 ⊠ p2 ∶≡ [−⊠−](p1, p2)will be used for paths p1, p2 in A.

IDENTITY TYPES 43

C
(x)

x′

C
(y)

pC
∗(x′)

y′

p′

C
(z)

(p ⋅ q)C
∗
(x′)qC

∗(pC
∗(x′))

qC
∗(y′) z′

[qC
∗](p′)

q′

A x y z
p q

pC
∗ qC

∗

Figure 2.5: Construction of the pathover p′ ⋅d q′ ∶ (p ⋅ q)C
∗
(x′) = z′ in Definition 2.60(vii). The

unlabelled horizontal path in C(z) is given by Definition 2.60(vi).

A

x

y

p

A′

f (x)

f (y)

[f](p)

C
(x) x′

C
(y)

pC
∗(x′)

y′

q

pC
∗

C
′
(f(

x
))

gx(x′)

C
′
(f(

y
)) ([f](p))C′

∗
(gx(x′))

gy(y′)
f ∣gq

([f](p))C′
∗

f

gx

gy

Figure 2.6: Depiction of f ∣gq in Definition 2.60(x). By induction on p, it is enough to provide

a path gx(x
′) =C′(f(x)) gx(y

′) for every term x ∶ A, terms x′, y′ ∶ C(x) and path q ∶ x′ = y′;

this is given by [gx](q), which, itself, is defined by induction on q.

44 2. HOMOTOPY TYPE THEORY

It is not hard to imagine countless other properties that transport of paths and

application of functions satisfy, all proved by path induction; we will refer to those

and to the ones stated in Definition 2.60 as “path algebra”.

Paths in Σ-types deserve particular attention. In the following lemmata, we as-

sume A ∶ U and P ∶ A → U .

Lemma 2.66. Let x, x′ ∶ A, y ∶ P(x) and y′ ∶ P(x′). A path p ∶ x = x′ and a pathover

q ∶ pP
∗(y) = y′ (i.e. a term in Σ (p ∶ x = x′) . pP

∗(y) = y′) are enough to define a path

⟨p, q⟩ ∶ ⟨x, y⟩ =(Σ(a∶A). P(a)) ⟨x′, y′⟩.
Conversely, given z, z′ ∶ Σ (a ∶ A) . P(a), a path r ∶ z = z′ determines the paths

pr1(r) ∶ pr1(z) = pr1(z′), pr2(r) ∶ (pr1(r))P∗(pr2(z)) = pr2(z′).
The definitions of ⟨−,−⟩, pr1 and pr2 are such that there are 2-paths

⟨pr1(r),pr2(r)⟩ = r, pr1⟨p, q⟩ = p, pr2⟨p, q⟩ = q. (2.67)

Proof. For the first claim: by induction on p, we need to check that, for a pathover

q ∶ (reflx)P∗(y) ≡ y =P(x) y′ there is a path ⟨x, y⟩ = ⟨x, y′⟩ in the Σ-type. By induction

on q it is enough to find a path ⟨x, y⟩ = ⟨x, y⟩, which can be given by refl⟨x,y⟩. The

computation rule of path induction then states that ⟨reflx, refly⟩ ≡ refl⟨x,y⟩. As for the

second claim, by induction on r we define pr1(reflz) ∶≡ reflpr1(z) and pr2(reflz) ∶≡
reflpr2(z). The 2-paths in (2.67) are then also found by induction on p, q and r.

Remark 2.68. We emphasize that the definition of pr1 in Lemma 2.66 matches the

one of [pr1]. Hence, from (2.67), we get that [pr1]⟨p, q⟩ = p. For z, z′ ∶ Σ (a ∶ A) . P(a),
Lemma 2.66 establishes an equivalence between the identity type z = z′ and the

type Σ (p ∶ pr1(z) = pr1(z′)) . pP
∗(pr2(z)) = pr2(z′), in the sense of Section 2.5.

Lemma 2.69. The following holds:

(i) for p1 ∶ x1 =A x2, p2 ∶ x2 =A x3, q1 ∶ (p1)P∗(y1) = y2 and q2 ∶ (p2)P∗(y2) = y3 (with

xi ∶ A and yi ∶ P(xi)), we construct a 2-path

⟨p1, q1⟩ ⋅ ⟨p2, q2⟩ = ⟨p1 ⋅ p2, q1 ⋅
d q2⟩;

(ii) given A′ ∶ U and P′ ∶ A′ → U , a path ⟨p, q⟩ ∶ ⟨x, y⟩ =(Σ(a∶A). P(a)) ⟨x′, y′⟩ as

in Lemma 2.66 and a function ⟨ f , g⟩ ∶ Σ (a ∶ A) . P(a) → Σ (a′ ∶ A′) . P′(a′) as in

Definition 2.18, we construct a 2-path

[⟨ f , g⟩]⟨p, q⟩ = ⟨[f](p), f ∣gq⟩
using the notation of Definition 2.60(x);

IDENTITY TYPES 45

(iii) given paths ⟨p, q⟩, ⟨p′, q′⟩ ∶ ⟨x, y⟩ =(Σ(a∶A). P(a)) ⟨x′, y′⟩, and 2-paths

r ∶ p =(x=x′) p′ s ∶ q =(pP
∗(y)=y′) [(−)P∗(y)](r) ⋅ q′,

we construct a 2-path ⟨p, q⟩ = ⟨p′, q′⟩.
Proof. All claims are proved by path induction.

Finally, it is useful to notice that identity types and transport can help us to

discriminate between different constructors of an inductive type.

Lemma 2.70. There is no path between: yes and no in 2; inl(a) and inr(b) in a coproduct

A + B of types, for any a ∶ A and b ∶ B; 0 and s(n) in N for any n ∶ N; nil and x ∶ ∶ l in

list(X) for any x ∶ X and l ∶ list(X).
Proof. Once again, all statements are proved in the same way. For example, in order

to show that there is no path betwen yes and no in 2, we need to produce a function

(yes = no) → 0. The function rec2 ∶ Π (A ∶ U) . A → A → 2 → A allows us to define a

family of types C ∶≡ rec2(U , 1, 0) ∶ 2 → U such that C(yes) ≡ 1 and C(no) ≡ 0. Given

a path p ∶ yes = no, we have pC
∗ ∶ C(yes)→ C(no), hence pC

∗(∗) ∶ 0.

Lemma 2.71. Referring to Definition 2.41, for every A, B ∶ U , we construct dependent

functions of types

Π (x ∶ A + B) . Π (l ∶ is_inl(x)) . inl(inl−1(x, l)) = x and

Π (x ∶ A + B) . Π (r ∶ is_inr(x)) . inr(inr−1(x, r)) = x.

Proof. The first function is defined by induction on x, with inl(inl−1(inl(a), l)) ≡
inl(a) for every a ∶ A, and inl(inl−1(inr(b), l)) = inr(b) obtained ex falso for every

b ∶ B, as l ∶ is_inl(inr(b)) ≡ 0. The second function is defined analogously.

Lemma 2.72. Let A, B ∶ U . We construct the dependent functions:

fA ∶ Π (a1, a2 ∶ A) . (inl(a1) =(A+B) inl(a2))→ (a1 =A a2) and

fB ∶ Π (b1, b2 ∶ B) . (inr(b1) =(A+B) inr(b2))→ (b1 =B b2).
Proof. What follows is part of a standard “encode-decode” proof, which we will

better describe in Section 3.4. We define a family C ∶ (A + B) → (A + B) → U using

the elimination principle of the coproduct:

C(inl(a1), inl(a2)) ∶≡ (a1 =A a2) for every a1, a2 ∶ A

C(inl(a), inr(b)) ∶≡ 0 for every a ∶ A, b ∶ B

C(inr(b), inl(a)) ∶≡ 0 for every a ∶ A, b ∶ B

C(inr(b1), inr(b2)) ∶≡ (b1 =B b2) for every b1, b2 ∶ B.

46 2. HOMOTOPY TYPE THEORY

Then, a function f ∶ Π (x1, x2 ∶ A + B) . (x1 = x2) → C(x1, x2) is produced by path

induction and subsequent elimination principle of the coproduct:

f (inl(a), inl(a), reflinl(a)) ∶≡ refla ∶ C(inl(a), inl(a))
f (inr(b), inr(b), reflinr(b)) ∶≡ reflb ∶ C(inr(b), inr(b)).

We can then define fA(a1, a2, p) ∶≡ f (inl(a1), inl(a2), p) ≡ (a1 =A a2), and similarly

fB(b1, b2, p) ∶≡ f (inr(b1), inr(b2), p) ≡ (b1 =B b2).

Homotopy n-Types

If the (n + 2)-path structure of a type X is trivial, i.e., if the type X supports all

the (n + 2)-paths it could have, then the type X is called a (homotopy) n-type, as

presented in the following definition.

Definition 2.73 (n-types). A type X is called a (−1)-type or proposition if there is

a path between every two terms of X, i.e. if there is a term

t ∶ IsHProp(X) ∶≡ Π (x, y ∶ X) . x = y.

A family of (−1)-types, i.e., a family P ∶ X → U together with a term in

Π (x ∶ X) . IsHProp(P(x)),
is also called a property about terms in X; if a term t ∶ P(a) is provided for some

a ∶ A, then a is said to satisfy the property P. If P ∶ U → U is a property, the Σ-type

Σ (A ∶ U) . P(a) is called a subuniverse of U .

A type X is called an (n + 1)-type, for n ≥ −1, if x =X y is an n-type for every x,

y ∶ X. Notably, X is a 0-type or set if there is a 2-path between every two paths in X,

i.e. if there is a term

t ∶ IsHSet(X) ∶≡ Π (x, y ∶ X) . Π (p, q ∶ x = y) . p = q;

families of 0-types are understood to be the interpretation of covering spaces of the

indexing type [FH18]. The type X is a 1-type or groupoid if there is a term

t ∶ IsHGpd(X) ∶≡ Π (x, y ∶ X) . Π (p, q ∶ x = y) . Π (r, s ∶ p = q) . r = s,

i.e. if there is a 3-path between every two 2-paths in X.

A type X is called a (−2)-type or contractible if it is a nonempty proposition, i.e.

if there is a term

t ∶ IsContr(X) ∶≡ X × IsHProp(X);

IDENTITY TYPES 47

assuming function extensionality (Definition 2.114), the type of IsContr(X) is equiv-

alent to the type

Σ (x0 ∶ X) . Π (y ∶ X) . x0 = y (2.74)

in the sense of Definition 2.89 [Uni13, Lemma 3.11.3], which we will use every time

we will need to prove that a type is contractible. If ⟨c, h⟩ is a term of the Σ-type in

(2.74), the terms c ∶ X and h ∶ Π (y ∶ X) . c = y are called, respectively, center and proof

of the contraction.

If X is an n-type, n is called the truncation level of X. The type expressing the

n-truncatedness of X is denoted by IsTruncn(X).

Remark 2.75. Using their elimination rules, one can see that the types 0 and 1 are

propositions, the latter being also contractible. The type N is a set; Σ-types of fami-

lies of n-types over an n-type are n-types themselves; Π-types of families of n-types,

via function extensionality (Definition 2.114 and Lemma 2.126), are also; coproducts

of (n + 2)-types are (n + 2)-types, and hence all canonical finite types are 0-types

[Uni13, Section 3.1].

We will liberally make use of the following lemmata throughout this thesis.

Lemma 2.76. If X is an n-type, then X is also an (n + 1)-type.

Proof. Proved in [Uni13, Theorem 7.1.7].

Lemma 2.77. For any type X, the type IsTruncn(X) is a (−1)-type.

Proof. This is shown in [Uni13, Theorem 7.1.10].

Remark 2.78 (Paths in Σ-types with contractible fibers). If P ∶ A → U is a property

about terms in a type A in the sense of Definition 2.73, by Lemma 2.66 we can

conclude that a path p ∶ x =A x′ is enough to define a path

⟨x, y⟩ =(Σ(a∶A). P(a)) ⟨x′, y′⟩
for any y ∶ P(x), y′ ∶ P(x′), as a pathover is provided by the truncation level of the

fibers of the Σ-type. We will often denote such a path as

⟨p, . . .⟩ ∶ ⟨x, y⟩ = ⟨x′, y′⟩,
omitting the pathover. Similarly, if all the types in the family P are 0-types, the

requirement s in Lemma 2.69(iii) is automatically fulfilled.

48 2. HOMOTOPY TYPE THEORY

Lemma 2.79. Let A be a type and P ∶ A → U a family of types. Assume that P(a) is an

(n + 1)-type for every a ∶ A, and that for every x, y ∶ Σ (a ∶ A) . P(a), the type pr1(x) =A

pr1(y) is an n-type. Then Σ (a ∶ A) . P(a) is an (n + 1)-type.

Proof. We need to show that, for every x, y ∶ Σ (a ∶ A) . P(a), the type x = y is an

n-type. From the assumptions, using Remark 2.75, we obtain that the type

B ∶≡ Σ (p ∶ pr1(x) = pr2(x)) . pP
∗(pr2(x)) = pr2(y)

is an n-type, since the type in the base is an n-type and the fibers are types of iden-

tities in an (n + 1)-type. The type B is equivalent to the type x = y (Remark 2.68);

hence, the latter is an n-type.

Given any type X, one constructs a type ∥X∥n by adding all (n+ 2)-paths; this is

a higher inductive type, which we will present in Definition 2.135.

2.5 Equivalences and Paths in the Universe

As shown in Section 2.4, two terms in the same type satisfy the same statements

whenever a path between them can be provided; that is, given a type A ∶ U , a

family B ∶ A → U and a path p ∶ x =A y, the operation of transport returns a term

pB
∗(u) ∶ B(y) once given a term u ∶ B(x). The functions pB

∗ ∶ B(x) → B(y) and

(p−1)B
∗
∶ B(y) → B(x) can be seen as inverse to each other, in the (weak) sense that,

by path algebra, we can provide a path

(p−1)B
∗
(pB
∗(u)) = (p ⋅ p−1)B

∗
(u) = (reflx)B∗(u) ≡ u

in B(x) (and vice versa, given a term v ∶ B(y)). This kind of correspondence asks for

a dedicated notion of equivalence between B(x) and B(y), which we will introduce

in this section.

Equivalences

Definition 2.80 (Homotopy). Given a type A, a family B ∶ A → U and dependent

functions f , g ∶ Π (a ∶ A) . B(a), a homotopy from f to g is a pointwise equality

between the two functions, i.e. a function

h ∶ Π (a ∶ A) . f (a) = g(a). (2.81)

We will denote the type of h as f ∼ g. The same definition applies to functions f ,

g ∶ A → B, if B is a type.

EQUIVALENCES AND PATHS IN THE UNIVERSE 49

Definition 2.82 (Involution). A function f ∶ A → A is an involution if there is a

homotopy h ∶ (f ○ f) ∼ idA.

Definition 2.83. For every A, B ∶ U and f ∶ A → B, there is an identity homotopy

id∗f ∶ f ∼ f , defined by id∗f (a) ∶≡ refl f(a) for every a ∶ A. Given a homotopy h ∶ f ∼ f ′,

there is an inverse homotopy h−1∗ ∶ f ′ ∼ f , defined by h−1∗(a) ∶≡ (h(a))−1 for every

a ∶ A. Given also a homotopy h′ ∶ f ′ ∼ f ′′, there is a composite homotopy h ⋅∗ h′,

defined by (h ⋅∗ h′)(a) ∶≡ h(a) ⋅ h′(a) for every a ∶ A.

Definition 2.84. Let A ∶ U , B ∶ A → U and f , g ∶ Π (a ∶ A) . B(a). There is a function

[−]∗ ∶ (f = g)→ (f ∼ g),
defined, by path induction, by [refl f]∗ ∶≡ id∗f . Notice that, by definition of the appli-

cation of functions, we have [h]∗(a) ≡ [(−)(a)](h) for every h ∶ f = g and a ∶ A.

Lemma 2.85. The function [−]∗ respects composition and inverses, i.e. there are paths

[p ⋅ q]∗ = [p]∗ ⋅∗ [q]∗ and [p−1]∗ = ([p]∗)−1∗.

Proof. By induction on p and q.

Lemma 2.86. For A ∶ U , B ∶ A → U and f , g ∶ A → B, if B(a) is a (−1)-type for every

a ∶ A, then there is a homotopy f ∼ g.

Proof. Immediate from the definition of (−1)-type.

Lemma 2.87. The function [−]∗ respects postcompositions, in the following sense: for

types A, B, C ∶ U , functions f , f ′ ∶ A → B and g ∶ B → C, a path p ∶ f = f ′ and a term

a ∶ A, a 2-path

[[(z ∶ A → B)↦ (x ∶ A)↦ g(z(x))](p)]∗(a) =(g(f(a))=g(f ′(a))) [g]([p]∗(a))
is defined.

Proof. By induction on the path p, we only need to provide a path reflg(f(a)) =

reflg(f(a)), which can be given by reflreflg(f(a))
.

Definition 2.88. Let f ∶ A → B be a function of types. A function g ∶ B → A, together

with a proof that f ○ g ∼ idB is called a section of f ; the function f is then said to be

a retraction of g, and the type B is called a retract of A.

50 2. HOMOTOPY TYPE THEORY

Definition 2.89 (Equivalence). Let A and B be types. The type of equivalences

between A and B is the type

A ≃ B ∶≡ Σ (f ∶ A → B) . Σ (g ∶ B → A) . Σ (h1 ∶ f ○ g ∼ idB) . Σ (h2 ∶ g ○ f ∼ idA) .

Π (a ∶ A) . h1(f (a)) = [f](h2(a)); (2.90)

i.e., the types A and B are equivalent if there are functions f ∶ A → B and g ∶ B → A

which are sections of each other in a “compatible” way. The components f and g in

⟨ f , g, h1, h2, δ⟩ ∶ A ≃ B are said to be half-adjoint in the equivalence they define, and

δ is called the adjunction between the homotopies h1 and h2. An equivalence A ≃ A

will also be called a symmetry.

Remark 2.91 (Notation). There is an obvious function (−)−1 ∶ (A ≃ B) → (B ≃ A),
defined by ⟨ f , g, h1, h2, δ⟩−1 ∶≡ ⟨g, f , h2, h1, δ′⟩, where the construction of the adjunc-

tion δ′ is obtained by path algebra and made explicit in [Uni13, Lemma 4.2.2]. Given

an equivalence e ∶ A ≃ B of types, we will be usually interested in the underlying

half-adjoint functions pr1(e) ∶ A → B and pr1(pr2(e)) ≡ pr1(e−1) ∶ B → A, which we

will denote, respectively, by e and e−1; the context will make clear whether we will

refer to an equivalence or to the underlying function. Conversely, we will say that

a function f ∶ A → B “is an equivalence” if its half-adjoint and the corresponding

homotopies can be provided, i.e. if the type

IsEquiv(f) ∶≡ Σ (g ∶ B → A) . Σ (h1 ∶ . . . , h2 ∶ . . .) . Π (a ∶ A) . h1(f (a)) = [f](h2(a))
is inhabited (so (A ≃ B) ≡ Σ (f ∶ A → B) . IsEquiv(f)). For example, assuming func-

tion extensionality (Definition 2.114), the function (−)−1 between equivalence types

is, itself, an equivalence. Similarly, we will say that two types A and B ∶ U “are

equivalent” if an equivalence e ∶ A ≃ B can be given.

Remark 2.92. In this thesis, every time we will prove that two functions are half-

adjoint in an equivalence, we will omit the proof of the adjunction between the

homotopies, as a consequence of the following lemma.

Lemma 2.93. Let f ∶ A → B; g ∶ B → A, h1 ∶ f ○ g ∼ idB and h2 ∶ g ○ f ∼ idA be given, for

A, B ∶ U . Terms h′2 and δ are constructed, such that ⟨ f , g, h1, h′2, δ⟩ ∶ A ≃ B.

Proof. Given in [Uni13, Theorem 4.2.3].

Example 2.94. Every involution f ∶ A → A is half-adjoint to itself in an equivalence

f ∶ A ≃ A. For example, the identity function idA ∶ A → A is an equivalence.

EQUIVALENCES AND PATHS IN THE UNIVERSE 51

Example 2.95. We can produce an equivalence 1 + 1 ≃ 2 in the following way:

• a function f ∶ 1+ 1 → 2 is defined using the elimination principles of the coprod-

uct and of the unit, by defining f (inl(∗)) ∶≡ yes and f (inr(∗)) ∶≡ no;

• conversely, we can use rec2 to define a function g ∶ 2 → 1 + 1, so that g(yes) ∶≡
inl(∗) and g(no) ∶≡ inr(∗);

• a dependent function h1 ∶ Π (b ∶ 2) . f (g(b)) = id2(b) is also defined by the elimi-

nation principle of 2 with h1(yes) ∶≡ reflyes and h1(no) ∶≡ reflno;

• similarly for a dependent function h2 ∶ Π (x ∶ 1 + 1) . g(f (x)) = x, defined by

declaring h2(inl(∗)) ∶≡ reflinl(∗) and h2(inr(∗)) ∶≡ reflinr(∗).

Lemma 2.96. For any type X, a function f ∶ X → 0 guarantees that X is equivalent to the

empty type 0.

Proof. The half-adjoint functions are f and rec0 ∶ 0 → X; instances of ind0 prove both

that f (rec0(z)) = z for every z ∶ 0 and that rec0(f (x)) = x for every x ∶ X (termwise

eliminating into the family (z ↦ rec0(z) = x)).

Lemma 2.97. Any function between contractible types is an equivalence; any two con-

tractible types are equivalent.

Proof. If f ∶ A → B is a function between contractible types, let its half-adjoint be

defined as the function B → A constant at the center of contraction of A. Then the

proofs of contractions of A and B provide homotopies g ○ f ∼ idA and f ○ g ∼ idB.

Since a function between contractible types can be always defined (constant at the

center of the contraction), the second claim follows.

Remark 2.98. A composition (− ○ −) ∶ (B ≃ C) → (A ≃ B) → (A ≃ C) of equivalences

can be defined, for every A, B and C ∶ U ; this is such that the function underlying a

composite equivalence g ○ f ∶ A ≃ C is (judgmentally) the composition g ○ f ∶ A → C

of the functions underlying the equivalences g ∶ B ≃ C and f ∶ A ≃ B.

Remark 2.99. For A, A′ ∶ U , B ∶ A → U and B′ ∶ A′ → U , given f ∶ A ≃ A′ and

g ∶ Π (x ∶ A) . B(x) ≃ B′(f (x)), the function ⟨ f , g⟩ in Definition 2.18 is an equivalence;

similarly, functions f × g and f + g (Definition 2.40) are equivalences whenever f

and g are.

We immediately use Remark 2.99 in the following definition.

52 2. HOMOTOPY TYPE THEORY

Definition 2.100. For A, B ∶ U , the function incr ∶ (A ≃ B) → ((A + 1) ≃ (B + 1)) is

defined by incr(e) ∶≡ e + id1. We then have incr(e) (inl(a)) ≡ inl(e(a)) for every a ∶ A,

and incr(e) (inr(∗)) ≡ inr(∗).

Remark 2.101. The operations described in Definitions 2.48 and 2.60 induce equiva-

lences on identity types. For example, for every X ∶ U and x, y ∶ X, we have

⟨(p ↦ p−1), (p ↦ p−1), inv_inv, inv_inv, . . .⟩ ∶ (x = y) ≃ (y = x),
where inv_inv is constructed in Definition 2.48(iii) and the proof of adjunction is

given by path induction. Similarly, there is an equivalence

(x = z) ≃ Σ (y ∶ X) . ((x = y)× (y = z))
induced by the concatenation, and an equivalence (p = q) ≃ (p ⋅ refly = q) for every

p, q ∶ x = y, and so on. In the following lemma we will examine the equivalence

relative to Definition 2.60(xi).

Lemma 2.102. Let A and B be types and let f , g ∶ A → B. Let p ∶ x =A y be a path in A.

Consider the family C ∶ A → U defined as C ∶≡ (z ↦ (f (z) = g(z))) and let qx ∶ C(x).
There is a 2-path

pC
∗(qx) = ([f](p))−1

⋅ qx ⋅ [g](p) (2.103)

determining, for every qy ∶ C(y), a corresponding equivalence:

(pC
∗(qx) = qy) ≃ (qx ⋅ [g](p) =(f(x)=g(y)) [f](p) ⋅ qy). (2.104)

Proof. By induction on p, the 2-path in (2.103) is trivially obtained. As for the equiv-

alence in (2.104), again by path induction, it is enough to verify that there is an

equivalence

(qx = qy) ≃ (qx ⋅ reflg(x) = refl f(x) ⋅ qy);
which is obtained by means of path algebra (Remark 2.101).

Remark 2.105. A consequence of Lemma 2.102 is that every homotopy h ∶ f ∼ g

determines a 2-path in B

h(x) ⋅ [g](p) = [f](p) ⋅ h(y) (2.106)

for every p ∶ x =A y, as there is a path [h]d(p) ∶ pC
∗(h(x)) = h(y). In Chapter 3 we will

use the notion of functions between types to represent functors between categories;

the family of 2-paths in (2.106) then makes homotopies suited to represent natural

isomorphisms between such functors.

EQUIVALENCES AND PATHS IN THE UNIVERSE 53

Lemma 2.107. The operation of transport is an equivalence, i.e., for every A ∶ U and path

p ∶ x =A y, the function pC
∗ ∶ C(x)→ C(y) is an equivalence for any family C ∶ A → U .

Proof. The half-adjoint is (p−1)C
∗
∶ C(y) → C(x); induction on p trivially provides

the proof of equivalence.

We will now focus on equivalences whose underlying function is the functorial

action of a function on paths.

Definition 2.108 (Embeddings). A function f ∶ A → B is said to be an embedding

if, for every x, y ∶ A, the function [f] ∶ (x =A y) → (f (x) =B f (y)) is an equivalence,

i.e., if there is a term in the type

IsEmb(f) ∶≡ Π (x, y ∶ A) . IsEquiv([f]),
where the arguments x and y are implicit in [f].

If a function is an equivalence, then it is also an embedding, as shown below.

Lemma 2.109. For every function f ∶ A → B, there is a function IsEquiv(f)→ IsEmb(f).
Proof. Let ⟨ f−1, h1, h2, δ⟩ ∶ IsEquiv(f). For every x, y ∶ A, we can define a function

unap f ∶ (f (x) = f (y))→ (x = y) by declaring

unap f (p) ∶≡ (h2(x))−1
⋅ [f−1](p) ⋅ h2(y)

for every p. We have [f] ○ unap f ∼ id(f(x)= f(y)), since, for every p ∶ f (x) = f (y),
[f](unap f (p)) = ([f](h2(x)))−1

⋅ [f ○ f−1](p) ⋅ [f](h2(y)) by path algebra

= (h1(f (x)))−1
⋅ [f ○ f−1](p) ⋅ h1(f (y)) by δ(y)

= (h1(f (x)))−1
⋅ h1(f (x)) ⋅ p = p by Remark 2.105.

Moreover, it is easily shown that unap f ○ [f] ∼ id(x=y) by path induction, so [f] is an

equivalence, i.e., f is an embedding.

Lemma 2.110. Let f ∶ A → B be an embedding. Then, for every b ∶ B, the type fib f (b) is a

(−1)-type.

Proof. By the elimination principle of Σ-types, for every x, y ∶ A, p ∶ f (x) = b and

q ∶ f (y) = b we need to find a path ⟨x, p⟩ =fib f (b) ⟨y, q⟩, i.e., by Lemma 2.66, a path

r ∶ x = y and a 2-path r
(z↦(f(z)=b))
∗ (p) = q. The first is defined as

r ∶≡ unap f (p ⋅ q−1),

54 2. HOMOTOPY TYPE THEORY

where unap f is the inverse of [f]; the latter, by Lemma 2.102, entails finding a 2-path

p = [f](unap f (p ⋅ q−1)) ⋅ q,

which is given by path algebra and the fact that [f] and unap f are half-adjoint in-

verses.

Univalence and Function Extensionality

For types A, B ∶ U , we have now established two notions of “identification”: one is

given by the identity type A =U B, while another one is given by the equivalence

type A ≃ B. Voevodsky’s univalence axiom, presented in the following paragraph,

establishes a correspondence between these two notions and responds to the need

of “modularity” principles in HoTT, namely, function extensionality and transport

of structure [see e.g. Coq17].

Definition 2.111 (Univalence). For every A, B ∶ U , consider the function

(p ↦ pidU∗) ∶ (A = B)→ (A ≃ B), (2.112)

where Lemma 2.107 ensures that the transport is an equivalence. The univalence

axiom, which we will assume in several parts of this thesis, states the following:

The function in (2.112) is an equivalence.

For convenience, will denote by ua ∶ (A ≃ B) → (A = B) the inverse of the function

in (2.112), and by ua−1 the function itself.

Lemma 2.113. The function ua respects identity, composition and inverses in the following

way: we can construct 2-paths

ua(idA) = reflA, ua(g ○ f) = ua(f) ⋅ ua(g), ua(f−1) = (ua(f))−1.

Proof. The first two claims are proved explicitly in [Uni13, Section 2.10]; the third

one, left to the reader, is proved here by way of example. For A, B ∶ U and f ∶ A ≃ B,

ua(f−1) = ua((ua−1(ua(f)))−1) ≡ ua(((ua(f))idU
∗
)−1)

≡ ua(((ua(f))−1)idU
∗
) ≡ ua (ua−1 ((ua(f))−1)) = (ua(f))−1,

using the fact that ua is an equivalence, the definition of ua−1 and the definition of

the inverse of the transport equivalence, given in Lemma 2.107.

EQUIVALENCES AND PATHS IN THE UNIVERSE 55

Definition 2.114 (Function extensionality). The principle of function extensional-

ity states the following:

The function [−]∗ in Definition 2.84 is an equivalence.

In particular, for every A ∶ U , B ∶ A → U and f , g ∶ Π (a ∶ A) . B(a), there is a function

fxt ∶ (f ∼ g)→ (f = g)
such that fxt([−]∗) ∼ id(f=g) and [fxt(−)]∗ ∼ id(f∼g). It follows from the definition

that there is a path

[−(a)](fxt(h)) ≡ [fxt(h)]∗(a) = h(a) (2.115)

for every h ∶ f ∼ g and a ∶ A.

Like the univalence axiom, function extensionality cannot be deduced from the

theory; we will make clear in this thesis the instances in which it is used. In par-

ticular, every time we will assume the univalence axiom, we will implicitly grant

ourselves the right to use function extensionality, by virtue of the following lemma.

Lemma 2.116. Assuming the univalence axiom, the principle of function extensionality

can be derived.

Proof. This is shown in [Uni13, Section 4.9].

Lemma 2.117. The function fxt respects identity, composition and inverses in the follow-

ing way: we can construct 2-paths

fxt(id∗f) = refl f fxt(h ⋅∗ h′) = fxt(h) ⋅ fxt(h′) fxt(h−1∗) = (fxt(h))−1.

Proof. This is shown using the fact that fxt is an equivalence, the definition of [−]∗,

and Lemma 2.85. For example, we have:

fxt(h ⋅∗ h′) = fxt([fxt(h)]∗ ⋅∗ [fxt(h)]∗) = fxt([fxt(h) ⋅ fxt(h′)]∗) = fxt(h) ⋅ fxt(h′).

Function extensionality also respects application of functions; in this thesis we

will use the following lemma.

Lemma 2.118. Given types A, B, C ∶ U , functions f , g ∶ A → B, j ∶ A → A and k ∶ B → C

and a homotopy h ∶ f ∼ g, a 2-path

[(z ∶ A → B)↦ (x ∶ A)↦ k(z(x))](fxt(h ○ j)) = fxt(x ↦ [k](h(j(x)))) (2.119)

is defined.

56 2. HOMOTOPY TYPE THEORY

Proof. As the function [−]∗ is an equivalence, there is a 2-path from the left-hand

side of (2.119) to the path

fxt([[(z ∶ A → B)↦ (x ∶ A)↦ k(z(x))](fxt(h ○ j))]∗) ∶ (k ○ f ○ j) = (k ○ g ○ j),
so it is sufficient to find a 2-path

[[(z ∶ A → B)↦ (x ∶ A)↦ k(z(x))](fxt(h ○ j))]∗ = (x ↦ [k](h(j(x)))).
By function extensionality, it is enough to find a 2-path

[[(z ∶ A → B)↦ (x ∶ A)↦ k(z(x))](fxt(h ○ j))]∗(a) = [k](h(j(a)))
for every a ∶ A. By Lemma 2.87 (on the left-hand side), we only need to find a 2-path

[k]([fxt(h ○ j)]∗(a)) = [k](h(j(a))),
for every a ∶ A, for which a 2-path [fxt(h ○ j)]∗ = h ○ j suffices; this is given by the

fact that [−]∗ and fxt are half-adjoint in an equivalence.

Function extensionality allows us to give alternative characterizations of types

of equivalences.

Lemma 2.120. Assuming function extensionality, the following holds for A, B ∶ U :

(i) for every f ∶ A → B, the type IsEquiv(f) is a (−1)-type;

(ii) for every f ∶ A → B, there is an equivalence

IsEquiv(f) ≃ Π (b ∶ B) . IsContr(fib f (b)), (2.121)

i.e., a function is an equivalence if and only if all its fibers are contractible;

(iii) given e, e′ ∶ A ≃ B, there is an equivalence

(e ∼ e′) ≃ (e =(A≃B) e′), (2.122)

where the homotopy is between functions underlying the equivalences.

Proof. The claims in (i) and (ii) are proved in [Uni13, Theorem 4.2.13 and Theo-

rem 4.4.5]. As for (iii), given h ∶ e ∼ e′, function extensionality provides a path

fxt(h) ∶ e =(A→B) e′, which by (i) and Remark 2.78 is enough to obtain a path

e =(Σ(f ∶A→B). IsEquiv(f)) e′; the other direction and the proof of equivalence follow

easily.

EQUIVALENCES AND PATHS IN THE UNIVERSE 57

It follows from Lemma 2.120(i) and Remark 2.75 that the type IsEmb(f) is a

(−1)-type for every f ∶ A → B.

The following lemmata will be useful in Chapter 5 when dealing with the com-

binatorics of finite types.

Lemma 2.123. Let A, A′, B, B′ ∶ U and let e ∶ (A + B) ≃ (A′ + B′). Referring to Defini-

tion 2.41, given terms

hA ∶ Π (a ∶ A) . is_inl(e(inl(a))), hB ∶ Π (b ∶ B) . is_inr(e(inr(b))),
and assuming function extensionality, there are equivalences e∣A ∶ A ≃ A′ and e∣B ∶ B ≃ B′

such that e∣A + e∣B = e. These will be called the restrictions of e, respectively, to A and to B.

Proof. The underlying function of e∣A is (a ↦ inl−1(e(inl(a)), hA(a))) and that of

e∣B is defined similarly; for the proof that e∣A and e∣B are equivalences, we refer to

the HoTT library [Hoq, equiv_unfunctor_sum_l, equiv_unfunctor_sum_r], where

we conveniently found these results already proven. By Lemma 2.120(iii), we can

show that e∣A + e∣B = e by verifying that Π (x ∶ A + B) . (e∣A + e∣B)(x) = e(x), which

we can do by induction on x. For every a ∶ A, we have:

(e∣A + e∣B)(inl(a)) ≡ inl(e∣A(a)) ≡ inl(inl−1(e(inl(a)), hA(a)))) = e(inl(a))
by Lemma 2.71, and similarly for the other inductive case.

Corollary 2.124. Let A, B ∶ U and e ∶ (A+1) ≃ (B+1). Assuming function extensionality,

if e(inr(∗)) = inr(∗), then e∣A ∶ A ≃ B can be defined, and incr(e∣A) = e, with incr as in

Definition 2.100.

Proof. Given p ∶ e(inr(∗)) = inr(∗), we obtain a term

(p−1)is_inr
∗
(∗) ∶ is_inr(e(inr(∗))),

so, by the elimination principle of the unit type, we get a term

h1 ∶ Π (x ∶ 1) . is_inr(e(inr(x))).
A term

h′A ∶ Π (a ∶ A) . Π (x ∶ B + 1) . (e(inl(a)) = x)→ is_inl(x)
is defined by induction on the term x, where h′A(a, inl(b), q) ∶≡ ∗ ∶ 1 ≡ is_inl(inl(b)),
and h′A(a, inr(∗), q) is given ex falso by Lemma 2.70, as there is a path

inl(a) = e−1(e(inl(a))) by the equivalence

= e−1(e(inr(∗))) by [e−1](q ⋅ p−1)
= inr(∗) by the equivalence.

58 2. HOMOTOPY TYPE THEORY

Then hA ∶ Π (a ∶ A) . is_inl(e(inl(a))) is defined as hA(a) ∶≡ h′A(a, e(inl(a)), refle(inl(a))).
By Lemma 2.123, equivalences e∣A ∶ A ≃ B and e∣1 ∶ 1 ≃ 1 are defined, with e = e∣A + e∣1
and e∣1 ∼ id1 (by the elimination principle of the unit type). Lemma 2.120(iii) gives

a path e∣1 = id1 between equivalences, so incr(e∣A) ≡ e∣A + id1 = e∣A + e∣1 = e.

Lemma 2.125. Let e ∶ A ≃ B be an equivalence of types. Assuming function extensionality,

there is an equivalence ((a = a′)→ 0) ≃ ((e(a) = e(a′))→ 0) for every a, a′ ∶ A.

Proof. Similar to the proof of Lemma 2.109.

Moreover, assuming function extensionality, we have the following result about

truncation levels of function types.

Lemma 2.126. Let A ∶ U and B ∶ A → U . If B(a) is an n-type for every a ∶ A, then so is

the type Π (a ∶ A) . B(a) of dependent functions. Similarly, if B ∶ U is an n-type, the type

A → B of functions is also.

Proof. This is shown in [Uni13, Examples 3.1.6 and 3.6.2] for (−1)- and 0-types; the

proof for a general truncation level can be performed by induction on n.

The function ua does not possess computational properties, as it is merely as-

sumed as half-adjoint of another function in an equivalence. However, as we have

seen in Lemma 2.113, the functorial action of ua on paths allows us sometimes to

establish identities between paths in the universe U obtained via univalence, if cor-

responding paths between equivalences can be provided. Moreover, path induction

techniques can be employed on paths of the form ua(e), where e is an equivalence

of types; an example is given in the proof of the following lemma.

Lemma 2.127. Let A, B ∶ U . For every e ∶ A ≃ B, there is a path

[add](ua(e)) =(A+1=B+1) ua(incr(e)), (2.128)

defined in the proof, with add and incr as in Definitions 2.42 and 2.100. Similarly, for every

p ∶ A = B, there is a path

ua−1([add](p)) =(A+1≃B+1) incr(ua−1(p)), (2.129)

as shown in Fig. 2.7.

Proof. We will prove (2.128), as (2.129) follows easily. Since ua is an equivalence,

there is a path ua(incr(ua−1(ua(e)))) = ua(incr(e)). A path

[add](ua(e)) = ua(incr(ua−1(ua(e))))

HIGHER INDUCTIVE TYPES 59

A ≃ B A = B A ≃ B

A + 1 ≃ B + 1 A + 1 = B + 1 A + 1 ≃ B + 1

ua

[add]incr

ua

ua−1

incr

ua−1

Figure 2.7: Relationship between incr and [add]. The two diagrams commute; on the left is

(2.128), while on the right we find (2.129).

can be found by induction on ua(e) ∶ A = B, by providing a path

reflA+1 ≡ [add](reflA) = ua(incr(ua−1(reflA))) ≡ ua(incr(idA)).
By ind+, we can find a homotopy idA+1 ∼ incr(idA); hence, by (2.122), there is a path

idA+1 =((A+1)≃(A+1)) incr(idA). Applying ua and using Lemma 2.113, a path

reflA+1 = ua(idA+1) = ua(incr(idA))
is obtained.

We will conclude this section with the following lemma.

Lemma 2.130. Let A, B ∶ U . Assuming univalence, if B is a (−1)-type, then so is (A = B).
Proof. Proved e.g. in [Hoq, trunc_path_IsHProp].

2.6 Higher Inductive Types

Higher inductive types (HITs) are a generalization of inductive types: they admit

constructors both for terms in the type (“0-constructors”) and for terms in the tower

of its identity types (“n-constructors”, if they are n-paths). Similarly to simple in-

ductive types, the elimination principle of a HIT describes a property of “initiality”

with respect to other families of types exhibiting terms and n-paths in correspon-

dence to those provided by such constructors.

Accounts of the theory of HITs are given e.g. in [Uni13, Chapter 6; LS19; Soj15].

Useful mathematical constructions can be formalized through HITs, such as cell

complexes, suspensions, wedge sums, smash products, suspensions and, in general,

homotopy pushouts. In this section, we will show some examples of HITs, using

60 2. HOMOTOPY TYPE THEORY

the same syntax adopted in Section 2.3 for the presentation of inductive types, and

dubbing them “n-HITs” if they are defined with at least one n-constructor, and

no (n + 1)-constructors except, potentially, an m-truncation with m ≥ n − 1 (which

provides all possible (m + 1)-paths).

Example 2.131 (Interval). The interval I is the 1-HIT presented by the constructors:

I ∶ ∶= i0 ∶ I ∣ i1 ∶ I ∣ seg ∶ i0 =I i1.

When providing such a definition, the elimination principle we imply is the follow-

ing. Given a family C ∶ I → U , a section indI ∶ Π (i ∶ I) . C(i) is obtained by providing:

• terms i′0 ∶ C(i0) and i′1 ∶ C(i1);
• a pathover seg′ ∶ segC

∗(i′0) =C(i1) i′1.

Note that the apparent asymmetry conveyed by the requirement seg′ (i.e., a path in

the fiber of the second endpoint of seg) is resolved by Lemma 2.107, by which we

find a corresponding path in the fiber of i0. The resulting elimination principle

indI ∶ Π (i′0 ∶ C(i0)) . Π (i′1 ∶ C(i1)) . ((segC
∗(i′0) = i′1)→ Π (i ∶ I) . C(i))

computes on 0-constructors:

indI(i′0, i′1, seg′)(i0) ≡ i′0, indI(i′0, i′1, seg′)(i1) ≡ i′1.

Moreover, a 2-path

ind
β,seg
I

∶ [indI(i′0, i′1, seg′)]d(seg) = seg′

is assumed as an axiom; although the two sides of the identity are not judgmen-

tally equal [see the discussion in Uni13, Section 6.2], we will still refer to the axiom

ind
β,seg
I

as a computation rule of the elimination principle. The workings of indI is

shown in Fig. 2.8.

It is useful to observe that, when eliminating into a family of identity types,

we can specialise the elimination principle by using Lemma 2.102 to simplify the

requirements. That is, given a type B and functions f , g ∶ I → B, a section indI ∶

Π (i ∶ I) . C(i) for the family C ∶≡ (z ↦ f (z) = g(z)) can be obtained by providing

paths i′0 ∶ f (i0) = g(i0) and i′1 ∶ f (i1) = g(i1), and a 2-path seg′ ∶ i′0 ⋅ [g](seg) =
[f](seg) ⋅ i′1 in lieu of the 2-path specified above.

If T is a type, the non-dependent version recI ∶ I → T of the elimination princi-

ple can be derived by indI assuming the family C constant at T; that is, there is a

function

recI ∶ Π (i′0, i′1 ∶ T) . (i′0 = i′1)→ I → T

HIGHER INDUCTIVE TYPES 61

i0 i1seg

C(i0)
i′0

≡ indI(i0)

C(i1)
segC
∗(i′0)

i′1
≡ indI(i1)

seg′ [indI]d(seg)ind
β,seg
I

segC
∗

I ∶≡ indI ∶ Π (i′0, i′1, seg′) . Π (x ∶ I) . C(x)

Figure 2.8: The interval I as a HIT, with, in red, the terms required by the elimination princi-

ple indI in order to produce a section Π (x ∶ I) . C(x) and, in green, its computation rules.

given by

recI(i′0, i′1, seg′) ∶≡ indI(i′0, i′1, tr_const(seg, i′0) ⋅ seg′),
where tr_const(seg, i′0) ∶ seg(z↦T)

∗ (i′0) = i′0 is constructed as in Definition 2.60(ix).

Such a function computes on i0 and i1:

recI(i′0, i′1, seg′)(i0) ≡ i′0, recI(i′0, i′1, seg′)(i1) ≡ i′1.

In addition, a 2-path rec
β,seg
I

∶ [recI(i′0, i′1, seg′)](seg) = seg′ can be derived; indeed,

we have:

tr_const(seg, i′0) ⋅ [recI(i′0, i′1, seg′)](seg)
= [recI(i′0, i′1, seg′)]d(seg) by Definition 2.60(xiii)

≡ [indI(i′0, i′1, tr_const(seg, i′0) ⋅ seg′)]d(seg)
= tr_const(seg, i′0) ⋅ seg′ by ind

β,seg
I

,

so the sought 2-path [recI(i′0, i′1, seg′)](seg) = seg′ can be obtained by left cancelling

(Definition 2.48(viii)).

Similarly to the interval, we can define the circle as a HIT.

Example 2.132 (Circle). The circle S1 is the 1-HIT presented by the constructors:

S1
∶ ∶= base ∶ S1 ∣ loop ∶ base =S1 base.

62 2. HOMOTOPY TYPE THEORY

This presentation implies an elimination principle indS1 , its non-dependent version

recS1 and their computation rules, specified analogously to those in Example 2.131

for the interval I.

Simple HITs with 2-constructors (or higher) can be defined similarly, although

spelling out the type of their elimination principles is more tedious. We present here

a toy HIT representing a “filled” polygon; the same example can be instantiated to

HITs representing more interesting shapes, such as the torus, the sphere, etc.

Example 2.133 (Filled triangle). The filled triangle ▸ is the 2-HIT presented by the

constructors:

▸ ∶ ∶= a ∶ ▸ ∣ b ∶ ▸ ∣ c ∶ ▸ ∣ p ∶ a =▸ b ∣ q ∶ b =▸ c ∣ r ∶ a =▸ c ∣ s ∶ p ⋅ q =(a=c) r.

Given a family C ∶ ▸→ U , a section ind▸ ∶ Π (x ∶ ▸) . C(x) is obtained by providing:

• terms a′ ∶ C(a), b′ ∶ C(b) and c′ ∶ C(c);
• pathovers

p′ ∶ pC
∗(a′) =C(b) b′, q′ ∶ qC

∗(b′) =C(c) c′ and r′ ∶ rC
∗(a′) =C(c) c′;

• a 2-path s′ ∶ ([(−)C
∗
(a′)](s))−1 ⋅ (p′ ⋅d q′) =(rC

∗(a′)=c′) r′,

as shown in Fig. 2.9. Again, the ensuing function

ind▸ ∶ Π (a′ ∶ C(a)) . Π (b′, c′, p′, q′, r′, s′ ∶ . . .) . Π (x ∶ ▸) . C(x)
computes on 0-constructors:

ind▸(a′, b′, c′, p′, q′, r′, s′)(a) ≡ a′, ind▸(a′, b′, c′, p′, q′, r′, s′)(b) ≡ b′, . . . ,

and there are 2-paths

ind
β,p
▸ ∶ [ind▸(a′, b′, c′, p′, q′, r′, s′)]d(p) = p′,

and similarly ind
β,q
▸ and ind

β,r
▸ , assumed axiomatically. Finally, a 3-path ind

β,s
▸ is as-

sumed between the 2-path

[[ind▸(. . .)]d]d(s) ∶ s(z∶(a=c)↦zC
∗(a

′)=c′)
∗ ([ind▸(. . .)]d(p ⋅ q)) = [ind▸(. . .)]d(r)

and the 2-path obtained as the concatenation:

s
(z∶(a=c)↦zC

∗(a
′)=c′)

∗ ([ind▸(. . .)]d(p ⋅ q))
= ([(−)C

∗
(a′)](s))−1

⋅ [ind▸(. . .)]d(p ⋅ q)
= ([(−)C

∗
(a′)](s))−1

⋅ ([ind▸(. . .)]d(p) ⋅d [ind▸(. . .)]d(q))
= ([(−)C

∗
(a′)](s))−1

⋅ (p′ ⋅d q′)
= r′ = [ind▸(. . .)]d(r),

HIGHER INDUCTIVE TYPES 63

a

b

c

p q

r

s

C(a)

a′

C(b)

pC
∗(a′)

b′

p′

C(c)

qC
∗(pC

∗(a′))

qC
∗(b′)

c′

q′

(p ⋅ q)C
∗
(a′)

rC
∗(a′)

r′

[qC
∗](p′)

[(−)C
∗
(a′)](s)

s′

pC
∗ qC

∗

rC
∗

▸ ∶≡
ind▸ ∶ Π (a′, b′, c′, p′, q′, r′, s′) .

Π (x ∶ X) . C(x)

Figure 2.9: The filled triangle ▸ as a HIT, with (in red) the terms required by the elimination

principle ind▸ in order to produce a section Π (x ∶ ▸) . C(x). The dashed path, top-to-bottom,

is p′ ⋅d q′.

using path algebra lemmata, ind
β,p
▸ , ind

β,q
▸ , ind

β,r
▸ and s′. We reiterate that, if C is

a family of identity types, the discussion in Example 2.131 still applies, and the

requirements can be given a simpler form.

The non-dependent version of the elimination principle, which can be derived from

what above, states that a function rec▸ ∶ ▸→ T can be produced for any type T, once

given terms a′, b′, c′ ∶ T, paths p′ ∶ a′ = b′, q′ ∶ b′ = c′ and r′ ∶ a′ = c′, and a 2-path

s′ ∶ p′ ⋅ q′ = r′. Such a function computes on a, b and c to a′, b′ and c′ respectively;

there is a 2-path rec
β,p
▸ ∶ [rec▸](p) = p′ and similarly for q and r; and a 3-path rec

β,s
▸

between [[rec▸]](s) ∶ [rec▸](p ⋅ q) = [rec▸](r) and the following one, obtained, via

path algebra, using rec
β,p
▸ , rec

β,q
▸ , rec

β,r
▸ and s′:

[rec▸](p ⋅ q) = [rec▸](p) ⋅ [rec▸](q) = p′ ⋅ q′ = r′ = [rec▸](r).

Remark 2.134. Oftentimes we will be in the situation of applying the elimination

principle of a HIT to families of n-types. If n is sufficiently small, some of the argu-

64 2. HOMOTOPY TYPE THEORY

ments of the elimination principle are provided by the truncation level of the target

type. For example, if C ∶ ▸ → U is a family of 0-types, we will not need to specify

explicitly the term s′ in Example 2.133, as the truncation level of C(c) guarantees

the presence of such a 2-path (which is unique, up to homotopy).

Of particular relevance to our thesis are truncations of types, which we present

below. We refer to [Uni13] for a more in-depth exposition on the subject.

Definition 2.135 (Truncation). Let n be a truncation level. The n-truncation ∥X∥n of

a type X is a HIT with the following constructors:

∥X∥n ∶ ∶= ∣−∣ ∶ X → ∥X∥n ∣ T ∶ IsTruncn(∥X∥n).
Here, ∣−∣ is a 0-constructor, while T acts as an n-constructor for every greater n. Its

elimination principle states that, for every family C ∶ ∥X∥n → U , a function ind∥−∥ ∶

Π (y ∶ ∥X∥n) . C(y) is obtained by exhibiting:

• a term ∣−∣′ ∶ Π (x ∶ X) . C(∣x∣), and

• a term T′ ∶ Π (x ∶ X) . IsTruncn(C(∣x∣));
such a function will compute ind∥−∥(∣x∣) ≡ ∣x∣′ for all x ∶ X. The non-dependent

elimination principle rec∥−∥ is derived accordingly. The (−1)-truncation ∥X∥
−1 of X

is also denoted by ∥X∥.
It follows from the definition that ∥X∥n is an n-type.

Remark 2.136. The truncation of a type is our first example of a recursive HIT, i.e., of

a HIT with a constructor quantifying over the terms (and paths) in the HIT itself.

Indeed, we see, for example, that the constructor T in ∥X∥ has type

T ∶ Π (x, y ∶ ∥X∥) . x = y.

Recursive HITs are, in general, harder to work with than non-recursive ones; they

fail to be encapsulated into a general pattern and they are not well supported by all

the main proof assistants currently in use (such as Lean [vDvRB17]). Efforts were

spent in order to replicate recursive HITs into non-recursive constructions [vD15;

Kra16], although it is not known to which extent this is possible. An easy example

is given by these two definitions of the half-line:

H ∶ ∶= 0 ∶H ∣ s ∶H →H ∣ l ∶ Π (x ∶H) . x = s(x) (recursive);

H
′
∶ ∶= i ∶N →H

′ ∣ l ∶ Π (n ∶N) . i(n) = i(n + 1) (non-recursive),

HIGHER INDUCTIVE TYPES 65

where the recursion in H
′ is “hidden” in the family of constructors i, which is in-

dexed by a recursive inductive type (the natural numbers); the two types are equiv-

alent because they are both provably contractible (Lemma 2.97).

In this thesis, we will make extensive use of recursive HITs.

Remark 2.137. The (−1)-truncation of a type (“propositional truncation”) is especially

interesting: a term in ∥X∥ provides a proof that X is inhabited in a weaker sense

than exhibiting a term in X, since we cannot use the elimination principle of the

truncation in order to define a function ∥X∥ → X, unless X is a (−1)-type (we do

remark that there are means to produce functions out of the (−1)-truncation of a

type even if the target type is not a (−1)-type [Kra15]). However, the function

(f ↦ x ↦ f (∣x∣)) ∶ (∥X∥ → 0)→ X → 0,

shows the contrapositive (but not equivalent) statement: if ∥X∥ is not inhabited,

then neither is X.

The (−2)-truncation of a type is, on the contrary, far less interesting, being it

always equivalent to the unit type.

Remark 2.138 (“There is”). The propositional truncation offers a counterpart in HoTT

to statements in classical (non proof-relevant) mathematics; for example, the state-

ment “there exists an even natural number” could be properly transposed to the

type ∥Σ (n ∶N) . E(n)∥, for a suitable definition of the family E ∶N → U . In this the-

sis, we adopt the convention by which, when claiming informally that “there is” a

term in a certain type X (e.g. “there is an equivalence...”), we do not just mean that

the propositional truncation of X is inhabited, but instead we mean that we provide

a specific, explicit construction for a term in X, which will always be accessible.

Lemma 2.139. Assuming univalence, for any A ∶ U , a, b ∶ A and any truncation level n,

there is an equivalence

path_trunc ∶ (∣a∣ =∥A∥n+1
∣b∣) ≃ ∥a =A b∥n . (2.140)

Proof. We omit the details of the proof of this statement, which can be found in the

HoTT library [Hoq, equiv_path_Tr]. The two types are shown equivalent via a stan-

dard “encode-decode” proof (which we will discuss in Section 3.4), characterizing

the identity types in ∥A∥n+1; this is done by defining a function

f ∶ ∥A∥n+1 → ∥A∥n+1 → U

which is supposed to compute f (∣a∣, ∣b∣) ≡ ∥a = b∥n for every a, b ∶ A and to be

such that (x =∥A∥n+1
y) ≃ f (x, y) for every x, y ∶ ∥A∥n+1. However, the elimination

66 2. HOMOTOPY TYPE THEORY

principle of the truncation cannot be employed directly in order to define f , as U is

not a (n + 1)-type. Hence, f is defined as pr1 ○ f ′, with

f ′ ∶ ∥A∥n+1 → ∥A∥n+1 → Σ (X ∶ U) . IsTruncn(X),
i.e., factoring through the subuniverse of n-types; univalence is used to prove that

the latter is an (n + 1)-type.

We will make use, in Chapter 5, of the following notions.

Definition 2.141 (Surjectivity). A function f ∶ A → B is said to be surjective if the

(−1)-truncation of the fiber over any term in B is inhabited, i.e., if one can provide

a term in

Π (b ∶ B) . ∥fib f (b)∥ .

Definition 2.142 (Connected types). A type X is said to be connected if the type

∥X∥0 is contractible. If we assume univalence, Lemma 2.139 shows that, in order to

prove that a type X is connected, it is enough to provide a term in x ∶ X (so that

∣x∣ ∶ ∥X∥0 can be the center of contraction) and a term in Π (a, b ∶ X) . ∥a = b∥.

Connected types satisfy the following lemma.

Lemma 2.143. Let A be a connected type and C ∶ A → U be a property (in the sense of

Definition 2.73). Assuming univalence, if any term a0 ∶ A satisfies the property C, then all

terms in A do, i.e. there is a function

conn_to_prop ∶ Π (a0 ∶ A) . (C(a0)→ Π (a ∶ A) . C(a)) ,

defined in the proof.

Proof. For every a0, a ∶ A and x ∶ C(a0), a function

fa0,a,x ∶ ∥a0 = a∥ → P(a)
is obtained using the elimination principle of the truncation; as P(a) is a (−1)-type

by hypothesis, it is enough to define f (∣p∣) ∶≡ pC
∗(x), for any p ∶ a0 = a. Since A is

connected, for any a0, a ∶ A there is a path qa0,a ∶ ∣a0∣ =∥A∥0 ∣a∣ given by the proof of

contraction of ∥A∥0, so we can define

conn_to_prop(a0, x, a) ∶≡ fa0,a,x(path_trunc(qa0,a))
for every x ∶ C(a0), with path_trunc as in Lemma 2.139.

HIGHER INDUCTIVE TYPES 67

By adding the constructor T of the truncation to the definition of other HITs,

we obtain (n-)truncated HITs; their elimination principles combine what seen above

for truncations with the presented scheme for HIT-elimination. In many cases, we

will not need to specify all the computation rules of the elimination principle of a

truncated HIT: for example, a 1-truncated HIT can only eliminate into a family of 1-

types, so it is redundant to make the computation rules relative to its 2-constructors

(if any) explicit, as they would be 3-paths in a 1-type. Finitary 1-truncated HITs (i.e.,

with constructors having a finite number of recursive arguments) are discussed e.g.

in [VvdW20].

An interesting kind of 2-constructor for a HIT is one that involves the inter-

play between 1-constructors and the application of a recursive 0-constructor to 1-

constructors. We call the resulting HITs “ap-recursive”; an example showing the

elimination scheme is provided below.

Example 2.144 (An ap-recursive HIT). Let R be the ap-recursive 2-HIT presented by

the following constructors, and depicted in Fig. 2.10:

R ∶ ∶= z ∶ R ∣ f ∶ R→ R ∣ p ∶ Π (x ∶ R) . x = f (x) ∣ s ∶ Π (x ∶ R) . [f](px) = p f(x).

The definition of R is similar to the half-line H in Remark 2.136, but we included

additional 2-paths. For a family C ∶ R → U of types, the elimination principle of R

states that a function indR ∶ Π (x ∶ R) . C(x) is produced by providing:

• a term z′ ∶ C(z);
• a function f ′ ∶ Π (x ∶ R) . C(x)→ C(f (x));
• for every x ∶ R and y ∶ C(x), a pathover p′x(y) ∶ (px)C∗(y) =C(f(x)) f ′x(y);

z f (z) f (f (z)) f (f (f (z))) ⋯
pz

p f(z)

[f](pz)

p f(f(z))

[f]([f](pz))

sz

s f(z)

[f](p f(z))

Figure 2.10: Some of the terms, paths and 2-paths in the ap-recursive 2-HIT R; the unmarked

2-path at the bottom center of the figure is given by [[f]](sz).

68 2. HOMOTOPY TYPE THEORY

• for every x ∶ R and y ∶ C(x), a 2-path

s′x(y) ∶ ([(−)C∗(f ′x(y))](sx))−1
⋅ (f ∣ f ′(p′x(y))) = p′f(x)(f ′x(y)),

where the identity is between terms in (p f(x))C∗(f ′x(y)) = f ′f(x)(f ′x(y)), with

f ∣ f ′(p′x(y)) ∶ ([f](px))C∗(f ′x(y)) = f ′f(x)(f ′x(y)) (Definition 2.60(x)).

The computation rules of indR (and its non-dependent version recR) follow the

scheme given in previous examples.

Indexed families of HITs can also be defined, with elimination principles fol-

lowing a pattern combining the one given above and the one shown in Section 2.3.

In general, a HIT might present several of the attributes we presented. For exam-

ple, in Chapter 5 we will define the deloopings of symmetric groups as an indexed

family of ap-recursive, 1-truncated HITs. Other kinds of HITs exist, such as higher

inductive-inductive types [KK18] and quotient inductive-inductive types [Alt+18].

They will not appear in this thesis, and hence they are not discussed here.

Chapter 3

Coherence for Monoidal

Groupoids

One of the core issues we meet in this thesis is finding good definitions in HoTT

of the objects of our study; that is, definitions that match our understanding of the

mathematical concepts they are supposed to represent, while fitting in the general

theory, and that make it feasible to prove theorems about them. The last point is

crucial in a proof-relevant environment, as the same object can be designed (i.e.,

defined) in different but equivalent ways. In HoTT, equivalent objects share the

same logical properties; however, the very design of a definition can make proofs

of specific statements easier or harder to achieve. Before introducing the topic of

coherence for monoidal groupoids, we will present an example to illustrate this

phenomenon.

The content of this chapter appears in [Pic20] in a shortened form.

3.1 Motivation

Let X be a type and consider the type list(X) and the operation ++ of list append

given in Definition 2.32. We saw in Remark 2.36 that ++ satisfies the left-unit law

judgmentally with respect to nil, i.e., nil++ l ≡ l for every l ∶ list(X). Hence, we can

easily construct a term

λlist ∶ Π (l ∶ list(X)) .nil++ l = l

by declaring λlist ∶≡ (l ↦ refll). Using the elimination principle of lists, we can also

prove that ++ satisfies the right-unit law and the associative law, as shown in the

following lemma.

69

70 3. COHERENCE FOR MONOIDAL GROUPOIDS

Lemma 3.1. We construct terms

ρlist ∶ Π (l ∶ list(X)) . l ++nil = l and

αlist ∶ Π (l1, l2, l3 ∶ list(X)) . (l1 ++ l2)++ l3 = l1 ++ l2 ++ l3.

Proof. We will define the term αlist, hence showing associativity of ++; right unitality

is proved similarly. By induction on l1, it is enough to define the terms

αlist(nil, l2, l3) ∶≡ refll2 ++ l3

∶ (nil++ l2)++ l3 ≡ l2 ++ l3 = l2 ++ l3 ≡ nil++ l2 ++ l3

and, given a term αlist(l1, l2, l3) for some l1 (inductive hypothesis),

αlist(x ∶ ∶ l1, l2, l3) ∶≡ [x ∶ ∶ −](αlist(l1, l2, l3))
∶ (x ∶ ∶ l1 ++ l2)++ l3 ≡ x ∶ ∶ ((l1 ++ l2)++ l3)
= x ∶ ∶ (l1 ++ l2 ++ l3) ≡ x ∶ ∶ l1 ++ l2 ++ l3

for every x ∶ X.

Having a unit and a product satisfying associativity and unitality, we can think

of list(X) as a monoid. It could be desirable to generalize this idea and specify a type

of types with the structure of a monoid:

Mon ∶≡ Σ (M ∶ U) . Σ (e ∶ M) . Σ (⊗ ∶ M → M → M) .

(Π (a, b, c ∶ M) . (a⊗ b)⊗ c = a⊗ (b⊗ c))
× (Π (a ∶ M) . e⊗ b = b)
× (Π (a ∶ M) . a⊗ e = a).

The type Mon is a data structure consisting of a carrier M, a unit term e and a product

⊗ (here used with infix notation) satisfying the monoid laws, which we will denote,

whenever needed, by the symbols α, λ and ρ (for associativity and left and right

unitality, respectively).1 For example, we have:

⟨list(X),nil,++, αlist, λlist, ρlist⟩ ∶Mon.

We will informally use the carrier to denote the tuple, and write e.g. list(X) ∶ Mon.

We stress that a term M ∶ Mon is only a monoid (in the classical sense) if its carrier

is a 0-type.

1Mon inhabits a higher universe than the one over which it quantifies (where the carriers live), but

we will not be concerned with this detail.

MOTIVATION 71

For a function f ∶ M → N between the carriers of two monoids, a reasonable

question to ask is whether it preserves unit and product, i.e. whether it is the case

that f (eM) = eN and f (a)⊗N f (b) = f (a⊗M b) for every a, b ∶ M, thus gaining the

status of monoid homomorphism. Given a type X, a monoid N and a function g from

X to the carrier of N, we can always produce a function fg from list(X) to the carrier

of N preserving the monoid structure. Indeed, we can define:

fg(nil) ∶≡ eN , fg(x ∶ ∶ l) ∶≡ g(x)⊗N fg(l). (3.2)

From (3.2), we immediately see that fg preserves the unit (judgmentally). In order

to show that it also preserves the product, we need a term

f++g ∶ Π (l1, l2 ∶ list(X)) . fg(l1)⊗N fg(l2) = fg(l1 ++ l2),
which we can obtain by induction. For every l2 ∶ list(X), we specify

f++g (nil, l2) ∶≡ λN(fg(l2))
∶ fg(nil)⊗N fg(l2) ≡ eN ⊗N fg(l2) = fg(l2) ≡ fg(nil++ l2)

where λN is the left unitality for ⊗N ; and, given a term f++g (l1, l2) for some l1,

f++g (x ∶ ∶ l1, l2) ∶≡ αN(g(x), fg(l1), fg(l2)) ⋅ [g(x)⊗N −](f++g (l1, l2))
∶ fg(x ∶ ∶ l1)⊗N fg(l2) ≡ (g(x)⊗N fg(l1))⊗N fg(l2)
= g(x)⊗N (fg(l1)⊗N fg(l2))
= g(x)⊗N fg(l1 ++ l2) ≡ fg(x ∶ ∶ l1 ++ l2)

for every x ∶ X, where αN is the associativity for ⊗N .

The complexity of the definition of f++g is due to the fact that the operation ++

is not a constructor of list(X). Instead, it is defined by list-elimination, and hence

statements about ++ are likely to require unfolding its definition (and producing

another proof by induction). Further statements involving f++g – for example, veri-

fying that fg also respects associativity – would entail unfolding its definition and

reasoning on the paths λN and αN appearing in each of the inductive cases. This

particular issue occurs, for example, if we want to prove that list(X) is “the” free

monoid over X, which entails finding an inverse to the function (g ↦ fg) (here the

obvious choice is the function sending a monoid homomorphism h ∶ list(X)→ N to

the function h ○ (− ∶ ∶ nil) ∶ X → N).

The fact that fg does not preserve the monoidal product judgmentally (but

rather, we had to resort to a proof by induction employing λN and αN) suggests that

72 3. COHERENCE FOR MONOIDAL GROUPOIDS

there might be other, more “canonical” candidates for a type enjoying the property

of being a free monoid. Consider the 1-HIT:

FM(X) ∶∶= eFM ∶ FM(X) ∣ ιFM ∶ X → FM(X) ∣ ⊗FM ∶ FM(X)→ FM(X)→ FM(X)
∣ αFM ∶ Π (a, b, c ∶ FM(X)) . (a⊗FM b)⊗FM c = a⊗FM (b⊗FM c)
∣ λFM ∶ Π (b ∶ FM(X)) . eFM ⊗FM b = b

∣ ρFM ∶ Π (a ∶ FM(X)) . a⊗FM eFM = a. (3.3)

It is clear that FM(X) ∶Mon, as the monoid structure is given entirely by its construc-

tors. Again, given a monoid with carrier N and a function g ∶ X → N, we can define

a function fg ∶ FM(X)→ N by FM-elimination (recFM). Following the scheme given

in Section 2.6, we can produce such a function by finding, for N, terms correspond-

ing to the constructors of FM. These can be directly extracted from the monoid struc-

ture of N: a term e′FM ∶ N can be given by eN , and so on. This works swimmingly

also for 1-constructors: for example, the required term λ′FM ∶ Π (x ∶ N) . eN ⊗N x = x

can be comfortably defined as λ′FM ∶≡ λN . In applying recFM, the only term which

is not provided by the monoid structure of N is the one corresponding to the con-

structor ιFM, i.e. a function X → N, which can be given by g.

The function fg preserves the unit and the product judgmentally: indeed, on 0-

constructors, it computes:

fg(eFM) ≡ eN fg(a⊗FM b) ≡ fg(a)⊗N fg(b)
for every a, b ∶ FM(X); moreover, fg ○ ιFM ≡ g. Conversely, given a monoid homo-

morphism h ∶ FM(X) → N, precomposition with ιFM gives a function h ○ ιFM ∶ X →

N, and it is rather easy to see that f(h○ιFM) and h compute to the same terms on the

0-constructors of FM (for example, f(h○ιFM) ○ ιFM ≡ h ○ ιFM). This suggests a corre-

spondence between monoid homomorphisms FM(X) → N and functions X → N:

specifically, the kind we normally use to verify adjunctions and to prove freeness

of a functor (one which is left adjoint to a forgetful one).

As a monoid, FM(X) can, indeed, be proved to be free over X. The type list(X)
is too [Uni13, Lemma 6.11.5], but the advantage of considering FM(X) lies in the

fact that the proof of freeness is contained in the very definition of FM(X) – to be pre-

cise, in its elimination rule (compare with the discussion on free groups in [Uni13,

Chapter 6]). Since verifying that a monoid M is free over X corresponds to showing

that it satisfies the universal property defining FM(X), proving its freeness is equiv-

alent to proving its (monoidal) equivalence to FM(X). This is, of course, trivial for

FM(X), but less so for list(X).

MOTIVATION 73

The type list(X), however, is an inductive type with two constructors, whereas

FM(X) is a higher inductive type with several 0- and 1-constructors. This makes

list(X), to all intents and purposes, much easier to handle than FM(X). For example,

it is easy to show that list(X) is a 0-type whenever X is a 0-type (Lemma 3.27);

roughly, this is based on the fact that, for every xi and li, there is an equivalence

(x1 ∶∶ l1 = x2 ∶∶ l2) ≃ (x1 = x2)× (l1 = l2)
and, by induction, the type on the right-hand side is (−1)-type if X is a 0-type. In

contrast, it is not immediately clear that the type

a1 ⊗FM b1 = a2 ⊗FM b2

is a (−1)-type for every (or any) ai, bi ∶ FM(X), when X is a 0-type.

In short, equivalent constructions respond to different practical needs when

it comes to building a proof. HITs are useful because of their ability to package

complex universal properties explicitly into their elimination principles, but at the

same time they are likely to make other results much harder to reach, in compari-

son to other constructions of equivalent types. A clear instance of this incongruity

emerged in Example 2.133: in light of the fact that a filled triangle is contractible,

and hence equivalent to the unit type 1, the elimination principle of ▸ appears to

be comically convoluted. Another famous – and far more interesting – example

is Sojakova’s proof of equivalence between a 2-HIT representing the torus and the

product of two circles in HoTT [Soj16], which shows how intrinsically demanding a

proof by induction on a (simple) 2-HIT might get, even when pursuing a seemingly

easy goal.

Resolving the tension between the different purposes a construction should

serve, and hence between different choices for the definition of the same object, is a

central issue in this thesis. For example, some of the theorems we formalize will be

of the form: “a mathematical object defined by means of a certain universal property also

satisfies a property P.” The strategy to prove them will be the following:

• defining a HIT C, tailored in such a way that its elimination rule expresses the

desired universal property;

• proving P(C′) for a type C′ with a simpler definition than C;

• establishing an equivalence between C and C′, thereby obtaining P(C).
The first case study will be a revisited form of the theorem of coherence for

monoidal categories. Selected parts of the formalization of the results of this chapter

are featured in Appendix A.1.

74 3. COHERENCE FOR MONOIDAL GROUPOIDS

3.2 Classical Monoidal Categories

We start by recalling the classical definitions of the mathematical objects and the re-

sults we want to formalize in HoTT. The main references for this section are [ML98]

and [Lei04].

A monoidal structure for a category C is the data consisting of a bifunctor ⊗ ∶

C × C → C, which serves as product, and a chosen object e ∈ ob(C), which serves

as unit, such that, up to natural isomorphism, the product is associative and unital

with respect to the unit object; i.e. there are natural isomorphisms

αa,b,c ∶ (a⊗ b)⊗ c ≅ a⊗ (b⊗ c) (associativity)

λb ∶ e⊗ b ≅ b (left unitality)

ρa ∶ a⊗ e ≅ a (right unitality)

which make, moreover, the coherence diagrams in Fig. 3.1 commute. We call mo-

noidal category a category C equipped with a monoidal structure, denoting it by

⟨C,⊗, e⟩. A monoidal structure or category is said to be strict – as opposed to weak –

if the natural isomorphisms α, λ and ρ are identities (in which case, the requirement

about the coherence diagrams is trivially satisfied).

Da,b,c,d ∶
((a⊗ b)⊗ c)⊗ d

(a⊗ b)⊗ (c⊗ d)

a⊗ (b⊗ (c⊗ d))

(a⊗ (b⊗ c))⊗ d a⊗ ((b⊗ c)⊗ d)

α α

α⊗ id

α

id⊗ α

▽a,b ∶

(a⊗ e)⊗ b a⊗ (e⊗ b)

a⊗ b

α

ρ⊗ id id⊗ λ

Figure 3.1: The coherence diagrams D (“Mac Lane’s pentagon”) and ▽ in a monoidal cate-

gory.

CLASSICAL MONOIDAL CATEGORIES 75

A (strong2) monoidal functor F ∶ ⟨C,⊗, e⟩ → ⟨D,⊠, u⟩ between monoidal cate-

gories is a functor F ∶ C → D together with isomorphisms in D:

F0 ∶ u → F(e) and F2 ∶ F(a)⊠ F(b)→ F(a⊗ b)
for all a, b ∈ ob(C) and natural in both, respecting α, λ and ρ (i.e. making certain dia-

grams commute; the precise definition will be given for the HoTT implementation

in Section 3.3). A monoidal natural transformation (resp. isomorphism) between

monoidal functors F and G is a natural transformation (resp. isomorphism) that

respects the (−)0 and (−)2 components of F and G.

Other notions of monoidal categories exist. For example, “unbiased” monoidal

categories are endowed with an n-ary product ⊗n ∶ C
n → C for every n ≥ 0 (as op-

posed to just a “nullary product” e ∶ C0 → C and a binary product ⊗), and dedicated

structural isomorphisms, but we do not investigate this notion in this thesis.

Monoidal categories satisfy a theorem of coherence, which has several, equiva-

lent formulations.

Theorem 3.4 (Coherence). The following (equivalent) statements hold:

(i) any monoidal category is equivalent, via a strong monoidal functor, to a strict mo-

noidal category;

(ii) in a monoidal category, every diagram built out of instances of α, λ and ρ commutes;

(iii) in a free monoidal category, every diagram commutes.

Mac Lane’s Proof of Coherence

A famous proof of statement (ii) of Theorem 3.4 appears in [ML98, Chapter VII];

we will now briefly summarize it, while omitting several details. A preliminary re-

sult of coherence for (representations of) binary trees is established. The binary trees

we consider have leaves labelled j and z; one can define this structure inductively,

declaring that j and z are binary trees, and if t1 and t2 are binary trees, so is t1 ⊠ t2.

Binary trees have a semantics that interprets them as elements in the free monoid

generated by j, with z being interpreted to the unit element and ⊠ to the product in

the monoid.

2The naming varies among sources; for example, in [Lei04] strong monoidal functors are called weak.

In general, one distinguishes between lax, colax and strong monoidal functors, depending on the direc-

tion of the arrows F0 and F2 and whether they are invertible; since we will only consider the latter, we

will often leave the designation implicit.

76 3. COHERENCE FOR MONOIDAL GROUPOIDS

Every binary tree has a j-length, counting the occurrences of j: so the trees z and

j have j-length 0 and 1 respectively, while the j-length of a tree t1 ⊠ t2 is the sum of

the j-lengths of t1 and t2. For example, (j⊠ j)⊠ (z⊠ j) is a binary tree of j-length 3.

For every n ∈N, a directed graph Gn is built, with all the binary trees of j-length

n as vertices, and edges defined inductively as follows. There are edges labelled:

1t ∶ t → t, αt1,t2,t2 ∶ (t1 ⊠ t2)⊠ t3 → t1 ⊠ (t2 ⊠ t3),
λt ∶ z⊠ t → t, ρt ∶ t⊠ z→ t,

for every tree t, t1, t2 and t3; moreover, if f ∶ t1 → t2 is an edge, then there are edges

labelled:

f ⊠ 1t ∶ t1 ⊠ t → t2 ⊠ t and 1t ⊠ f ∶ t⊠ t1 → t⊠ t2,

for every tree t. For any n, the graph Gn is closed under these rules.

Every tree t is then assigned a positive integer value describing its complexity,

i.e., how much it diverges from a “canonical” tree t̃ of the same length (its normal

form), of complexity 0 – for example, the one whose representation has all the paren-

theses lean on one side. For instance, if t = (j⊠ j)⊠ (j⊠ j), then t̃ = j⊠ (j⊠ (j⊠ j)).
Every path t1

∗
Ð→ t2 in Gn is shown to factor through the normal form, via paths

t1
∗
Ð→ t̃

∗
←Ð t2, which decrease the complexity of the word, in practice showing con-

fluence for the rewriting system given by the edges specified above. Uniqueness

of arrows t
∗
Ð→ t̃ can be proved “combinatorially”, by induction on the complexity

of t; we omit the technical details here (in particular, unitality requires a separate

argument than associativity).

We then consider the category T with binary trees as objects and a unique arrow

between two binary trees of the same j-length. The category T is a monoidal cate-

gory, with z as unit and ⊠ as monoidal product. Moreover, as a monoidal category,

it is free: indeed, given a monoidal category ⟨M,⊗, e⟩ and an object a ∈M, a mo-

noidal functor T →M is defined by sending a tree t ∈ T to the monoidal expression

inM obtained by substituting j with a, z with e and ⊠ with ⊗, and any morphism

t1 → t2 to the unique composition of instances of the associativity and unitality mor-

phisms inM corresponding to the path obtained by means of the proof above. For

any object a ∈M, all diagrams inM built out of instances of α, λ and ρ applied to a

have a counterpart in T , and hence they commute.

The argument extends to diagrams involving different objects ofM, as follows.

Consider the categoryM of functorsMn →M (for any finite n). This is a monoidal

category: the unit is the functor E ∶M0 →M sending the point to the unit e ofM,

CLASSICAL MONOIDAL CATEGORIES 77

while the product of two functors F ∶Mn1 →M and G ∶Mn2 →M is the functor

F⊕G ∶Mn1+n2 →M, defined by:

(F⊕G)(a1, . . . , an1
, b1, . . . , bn2) ∶= F(a1, . . . , an1

)⊗G(b1, . . . , bn2).
Since T is free, a morphism θ ∶ T → M of monoidal categories is uniquely deter-

mined given the image of j, which we take to be the identity functor idM ∶M→M.

As such, θ sends a binary tree t of j-length n to the functor θ(t) ∶Mn →M which

substitutes j with the identity functor; that is:

θ(z) ∶= E, θ(j) ∶= idM, θ(t1 ⊠ t2) ∶= θ(t1)⊕ θ(t2). (3.5)

Moreover, θ sends morphisms in T to natural transformations which are built out

of instances of associativity and unitality in M. Since all diagrams commute in

T , then so do the corresponding diagrams inM between functors, and also those

in M obtained by application of such functors. Fig. 3.2 shows an example of this

machinery in motion.

(j⊠ j)⊠ z

j⊠ (j⊠ z)

j⊠ j

αj,j,z

idj ⊠ ρj

ρj⊠j

(a)

T θ((j⊠ j)⊠ z)

θ(j⊠ (j⊠ z))

θ(j⊠ j)

θ(αj,j,z)

θ(idj ⊠ ρj)

θ(ρj⊠j)

(b)

M

(a⊗ b)⊗ e

a⊗ (b⊗ e)

a⊗ b

θ((j⊠ j)⊠ z)(a, b) =

= θ(j⊠ (j⊠ z))(a, b)

θ(j⊠ j)(a, b) =

αa,b,e = θ(αj,j,z)(a, b)

ida ⊗ ρb = θ(idj ⊠ ρj)(a, b)

θ(ρj⊠j)(a, b) = ρa,b

(c)

M

Figure 3.2: An example illustrating Mac Lane’s proof of coherence for monoidal categories.

The diagram in (a) between binary trees of j-length 2 in the category T commutes by unique-

ness of arrows; the functor θ in (3.5) transports such diagram to the one in (b) in the category

M of functors, which then also commutes. Then, for every a, b ∈M, the diagram in (c) in the

monoidal categoryM commutes. Mac Lane’s proof shows that any diagram inM built out

of instances of products of arrows α, λ and ρ can be constructed in such a way.

78 3. COHERENCE FOR MONOIDAL GROUPOIDS

Formalizing Coherence

In formalizing coherence in HoTT, we choose to prove statement (iii) of Theorem 3.4.

Our starting point is the proof presented by Beylin and Dybjer [BD96], where coher-

ence is formulated in MLTT and formalized with the proof assistant ALF [Mag95]

(using Axiom K, i.e., in HoTT terms, all types are 0-types); the same work was later

formalized in [ABD96] with the proof assistant HOL [Gor91].

The informal argument is the following: each monoidal expression in a free mo-

noidal category F has a normal form in the category, given e.g. by removing all

instances of the unit from a product of objects, and by re-associating products so

that the parentheses lean on the right; for example:

((a⊗ e)⊗ (b⊗ a))⊗ b ↝ a⊗ (b⊗ (a⊗ b)).
The discrete subcategory N of normal forms is a (strict) monoidal category, with

a product defined so that source and target of the associativity and unitality mor-

phisms coincide, and hence the morphisms can be defined to be identity arrows.

There are strong monoidal functors J ∶ N → F (which is the inclusion) and K ∶ F →

N (performing the normalisation); moreover, there is a monoidal natural isomor-

phism J ○ K ⇒ id, the existence of which is essentially a proof that the process of

normalisation can be achieved (recursively) via instances of associativity and uni-

tality. Since every diagram commutes in N , so does every diagram in F .

In [BD96], a category was defined as a set of objects together with a family of

(hom-)setoids for the morphisms; a setoid is a way of simulating a quotient by spec-

ifying a set and, separately, an equivalence relation on it. This means that, for every

term a, b in the set of objects, a set hom(a, b) of morphisms is provided and, for

every f , g in such a set, another set E(f , g) of equalities between them is defined. A

large number of structural equalities ought to appear in the family E. For example,

one needs to make sure that E encodes an equivalence relation (so we need terms

in E(f , f) for every f ; functions E(f , g) → E(g, f); and so on), but also that the cat-

egory axioms are satisfied (e.g. a term in E(f ○ ida, f)). For monoidal categories, the

list of equalities to be included in E grows substantially longer; these include: the

behaviour of the tensor product and its interplay with the composition in the cate-

gory; naturality and inverse laws for associativity and unitality of the product; and,

of course, the coherence conditions.

This set-up – and the proof of coherence – can obviously be replicated in HoTT

entirely. However, working with setoids is notoriously laborious and cumbersome,

because every construction depending on a setoid must respect the equivalence

CLASSICAL MONOIDAL CATEGORIES 79

relation; that is, one needs to verify that every function out of a setoid is constant

on equivalent terms.3 For example, if we need to define a functor F ∶ C → D between

categories defined as described above, we need to provide a function on hom-sets

Ð→
F ∶ Π (a, b ∶ ob(C)) . homC(a, b)→ homD(F(a), F(b)) (3.6)

preserving identity morphisms and composition, and then verify that
Ð→
F sends mor-

phisms in C in the same equivalence class to morphisms in D in the same equiva-

lence class. Instead, we can use the built-in equivalence relation on terms given by

the identity types. Indeed, in general, a category in HoTT is specified by a type X

of objects and, for the morphisms, a family hom containing “identity” terms 1(−)

and endowed with a composition operation ⊚, such that the paths in X and the

isomorphisms in the category are equivalent notions; that is, there is an equivalence

(a =X b) ≃ Σ (f ∶ hom(a, b)) . Σ (g ∶ hom(b, a)) . (g⊚ f = 1a)× (f ⊚ g = 1b) (3.7)

for every a and b ∶ X. In this way, for a functor F ∶ C → D we must still provide

a function
Ð→
F as in (3.6), but all we need to check is that

Ð→
F preserves the identity

morphisms and the composition.

Coherence for Monoidal Groupoids

We can now apply a further simplification. If we consider a 1-type X and define

hom(a, b) ∶≡ (a =X b), with the identity arrows given by refl and the composition

given by the concatenation of paths, the condition in (3.7) is trivially verified. In this

way, all the information about objects, morphisms and commutative diagrams in a

category is conveniently packed in just one type (and its relevant levels of identity

types); these correspond, respectively, to terms, paths and 2-paths. Moreover, for

a functor F between two such categories, the functorial action
Ð→
F on morphisms is

just given by [F], which, as we saw in Section 2.4, does respect reflexivity paths

(judgmentally) and concatenation (provably). In other words, we fully draw from

the∞-groupoid structure of a type, which scales down to just a groupoid structure

when considering 1-type. The drawback is that, in this way, we are only able to

design categories in which all arrows are invertible, i.e., groupoids, because every

path has an inverse.

Nonetheless, we argue that a result of coherence can still be obtained. Indeed,

if we want to prove statement (iii) of Theorem 3.4, we are only interested in free

3Separately dealing with a set and an equivalence relation defined on it, rather than considering the

ensuing quotient, is generally understood to be a problematic approach, paving the road to what is

informally known as “setoid hell” – a place that HoTT should help escaping [Buc19].

80 3. COHERENCE FOR MONOIDAL GROUPOIDS

monoidal categories. Since all arrows in a free monoidal category are built up on

instances of α, λ and ρ only, they are indeed invertible. Hence a free monoidal cate-

gory is actually a groupoid, which we can then formalize as a specific 1-type, as we

described above. For the reasons explained in Section 3.1, since a free monoidal cat-

egory over a (0-)type X is defined in terms of its universal property, it is convenient

to formalize it as a 1-truncated HIT, which we call FMG(X). Proving coherence then

entails showing that “all diagrams commute” in the ensuing construction; since

commutative diagrams in the category are 2-paths in the type, all we need to prove

is that FMG(X) is actually a 0-type.

Coherence for monoidal categories can then be established using a proof by

normalisation similar to the one used in [BD96] and described above, provided that

we can prove that the construction FMG is free as a monoidal category. Although

freeness of a category with respect to monoidal categories follows from freeness

with respect to monoidal 1-types, the latter is much easier to formulate and prove.

Since we are actually more interested in the proof of normalisation (summarized in

Remark 3.53 after the proof of coherence), in how it can be generalized to symmetric

monoidal structures (Chapter 4) and in how to exploit HITs to formalize free objects,

we will just use 1-types as framework, and declare our result a proof of coherence

for monoidal groupoids.

Incidentally, working with 1-types leads to a few interesting observations. Strict-

ness of a monoidal structure is a property that cannot be directly expressed in our

framework, because it is not homotopy invariant. Indeed, strictness and discrete-

ness are features related to judgmental equalities, over which we do not have con-

trol. This is enforced in our theory: a monoidal equivalence of groupoids rests on

an equivalence of the corresponding types; if there is such an equivalence, then the

types are indistinguishable in the theory, and so there cannot exist a property (e.g.

strictness) telling them apart.

In a different direction, the translation from categories to 1-types implies a “re-

laxation” of certain strict categorical properties: for example, associativity of the

composition of the arrows in a category is strict, while associativity of concatena-

tion of paths is only associative up to a coherent choice of higher paths. Hence

the result we formalize should more correctly be recognized as “coherence for mo-

noidal weak groupoids” (note the order of the adjectives).

We will now proceed to construct free monoidal groupoids in HoTT and prove

coherence. We will begin by defining monoidal groupoids, functors and natural

MONOIDAL GROUPOIDS 81

isomorphisms, and by formalizing a list of requirements that a construction should

satisfy in order to be considered a free monoidal groupoid.

Remark 3.8 (Notation in figures). As explained, commutativity of categorical dia-

grams will correspond to the (constructive) existence of specific 2-paths, which are

unique up to homotopy: indeed, if G is a 1-type, then by definition all types of paths

in G are 0-types, and hence all types of 2-paths in G are (−1)-types. To improve

readability, these 2-paths will be presented in form of pictures, with the important

caveat that any such picture will strictify the “relaxed” properties mentioned above

(e.g. one cannot see which bracketing a concatenation of paths is meant to be read

with). With this philosophy in mind, when we will need to prove the commuta-

tivity of a diagram, the pictures presented should be thought as already “simpli-

fied”, where the original diagram can be reconstructed by precomposing with some

whiskering corresponding to properties provable by path induction.

In figures, we will use double arrows for paths, to keep track of the direc-

tion they are defined with, although they always represent invertible arrows; we

will use, moreover, triple lines for judgmental equalities, and the notation

1 ∶≡ refl for the identity path. In large diagrams, we will occasionally replace some

bulky terms by the symbol ●, for them to fit in the figure.

To improve readability, many of the figures we refer to are moved to Section 3.8

at the end of this chapter.

3.3 Monoidal Groupoids

Definition 3.9. A groupoid is the data given by a type G and a proof that G is a

1-type. We call Gpd the subuniverse of 1-types, i.e.:

Gpd ∶≡ Σ (G ∶ U) . IsHGpd(G).
We will generally use the same notation for a groupoid G ∶ Gpd and for its under-

lying type pr1(G). A functor F between groupoids G and G′ is simply a function

F ∶ G → G′ between the underlying types. A natural isomorphism θ between two

functors F, F′ ∶ G → G′ is a homotopy θ ∶ F ∼ F′; this definition is justified by

Remark 2.105.

Remark 3.10. Given a groupoid G ∶ Gpd, we do not have access to its objects directly,

i.e., we cannot extract from G the discrete subcategory of its objects (notice that

∥G∥0 gives only the connected components of G, namely, the 0-type of isomorphism

classes of the objects in G).

82 3. COHERENCE FOR MONOIDAL GROUPOIDS

Definition 3.11. A monoidal structure on a type M is the data consisting of a unit

term in M, a product M → M → M and families of paths and 2-paths witnessing 1-

coherent associativity and unitality of the product with respect to the unit. Precisely,

given a type M, we define the type MonStructure(M) as the Σ-type encoding the

following data, which we present as a bulleted list:

• eM ∶ M (unit);

• ⊗M ∶ M → M → M (monoidal product);

• αM ∶ Π (a, b, c ∶ M) . (a⊗M b)⊗M c = a⊗M (b⊗M c) (associativity);

• λM ∶ Π (b ∶ M) . eM ⊗M b = b (left unitality);

• ρM ∶ Π (a ∶ M) . a⊗M eM = a (right unitality);

• families DM and ▽M of 2-paths filling the coherence diagrams in Fig. 3.1, with

instances of αM, λM and ρM in lieu of the arrows, i.e.:

DM ∶ Π (a, b, c, d ∶ M) . αM(a⊗M b, c, d) ⋅ αM(a, b, c⊗M d)
= (αM(a, b, c)⊗M refld) ⋅ αM(a, b⊗M c, d) ⋅ (refla ⊗M αM(b, c, d)), (3.12)

▽M ∶ Π (a, b ∶ M) . αM(a, eM, b) ⋅ (refla ⊗M λM(b)) = ρM(a)⊗M reflb, (3.13)

where we used the notation as in Remark 2.65 for product of paths. We will some-

times omit the arguments of αM, λM, ρM, DM and ▽M if they can be inferred from

the context. The type of monoidal groupoids is then defined as:

MonGpd ∶≡ Σ (M ∶ Gpd) .MonStructure(M);
we will use the same notation for a monoidal groupoid M ∶ MonGpd and its carrier

pr1(pr1(M)).
Remark 3.14. In general, the interchange law in (2.64) interacts with the one in (2.49)

and leads to the validity of “higher interchange laws”, defined as specific higher

paths; however, since ⊗M is defined for 1-types, all 3-paths and higher are already

filled, so we will not need to specify them. Indeed, the given definition of monoidal

structure on a type does not take into account higher coherence diagrams, as in this

thesis it is meant to be applied to groupoids only, as opposed to ∞-groupoids; in

general, a term s ∶ MonStructure(M) witnesses a 1-coherent monoidal structure for

the type M (borrowing the terminology from [Bru16]).

Classically, the associativity and unitality isomorphisms are required to be natu-

ral in all their arguments. In our framework, naturality of associativity and unitality

is expressed in terms of the application of ⊗M to paths, and hence it can be proved

by path induction.

MONOIDAL GROUPOIDS 83

Lemma 3.15. Associativity and unitality in a monoidal structure are natural in all their

arguments, i.e., given paths p ∶ a =M a′, q ∶ b =M b′ and r ∶ c =M c′, there are 2-paths filling

the squares in Fig. 3.3.

Proof. By induction on p, q and r, the squares are trivially filled.

(a⊗M b)⊗M c a⊗M (b⊗M c)

(a′ ⊗M b′)⊗M c′ a′ ⊗M (b′ ⊗M c′)

αM

p⊗M (q⊗M r)(p⊗M q)⊗M r

αM

eM ⊗M b b

eM ⊗M b′ b′

λM

q1⊗M q

λM

a⊗M eM a

a′ ⊗M eM a′

ρM

pp⊗M 1

ρM

Figure 3.3: Naturality of αM, λM and ρM.

Naturality of associativity and unitality, together with DT and▽T , combine into

other noteworthy diagrams [Kel64].

Lemma 3.16. The additional coherence diagrams in Fig. 3.4 commute for every a, b ∶ M.

(eM ⊗M a)⊗M b

eM ⊗M (a⊗M b)

a⊗M bαM

λM ⊗M 1

λM

(a)

(a⊗M b)⊗M eM

a⊗M (b⊗M eM)

a⊗M bαM

ρM

1⊗M ρM

(b)

eM ⊗M eM

eM

λM ρM

(c)

eM ⊗M (eM ⊗M b)

eM ⊗M b

1⊗M λM λM

(d)

(a⊗M eM)⊗M eM

a⊗M eM

ρM ⊗M 1 ρM

(e)

Figure 3.4: Additional coherence diagrams in a monoidal category.

84 3. COHERENCE FOR MONOIDAL GROUPOIDS

Proof. The construction of the 2-paths in Fig. 3.4a and Fig. 3.4c is shown in Fig. 3.9a

and Fig. 3.9b respectively; commutativity of the diagram in Fig. 3.4b is proved

similarly as for Fig. 3.4a. The diagram in Fig. 3.4d does not involve the coher-

ence diagrams DM and ▽M; rather, it is derived from the naturality square for λM

(Lemma 3.15), with q ∶≡ λM(b). The diagram in Fig. 3.4e is similarly derived from

the naturality square for ρM.

Definition 3.17. The type of (strong) monoidal functors between two monoidal

groupoids ⟨M, eM,⊗M, . . .⟩ and ⟨N, eN ,⊗N , . . .⟩ is defined as the Σ-type encoding

the following data:

• a functor F ∶ M → N, i.e., a function between the underlying types;

• a path F0 ∶ eN = F(eM);
• a family of paths F2 ∶ Π (a, b ∶ M) . F(a)⊗N F(b) = F(a⊗M b);
• families Fα, Fλ and Fρ of 2-paths corresponding to the diagrams in Fig. 3.5, for

every a, b, c ∶ M.

We will denote by MonGpd(M, N) the resulting type Σ (F ∶ M → N) . Σ (F0 ∶ . . .)

and use the same notation for a monoidal functor F ∶MonGpd(M, N) and its under-

lying function pr1(F).

Fα

(F(a)⊗N F(b))⊗N F(c) F(a)⊗N (F(b)⊗N F(c))

F(a⊗M b)⊗N F(c) F(a)⊗N F(b⊗M c)

F((a⊗M b)⊗M c) F(a⊗M (b⊗M c))

αN

1⊗N F2

F2

F2 ⊗N 1

F2

[F](αM)

Fλ

eN ⊗N F(b) F(b)

F(eM)⊗N F(b) F(eM ⊗M b)

λN

F0 ⊗N 1

F2

[F](λM) Fρ

F(a)⊗N eN F(a)

F(a)⊗N F(eM) F(a⊗M eM)

ρN

1⊗N F0

F2

[F](ρM)

Figure 3.5: Coherence conditions for monoidal functors.

MONOIDAL GROUPOIDS 85

Our implementation of monoidal functors is consistent with the classical def-

inition. Given any M ∶ MonGpd, we can construct an identity monoidal functor

idM ∶ MonGpd(M, M) with the identity map idM ∶ M → M as underlying function.

Moreover, we can define a composition (G ○ F) ∶ MonGpd(M, P) of two monoidal

functors F ∶MonGpd(M, N) and G ∶MonGpd(N, P), in the following way:

• the function underlying the composition G ○ F is the composition of the under-

lying functions G and F;

• the path (G ○ F)0 ∶ eP = G(F(eM)) is defined as (G ○ F)0 ∶≡ G0 ⋅ [G](F0);
• for all a, b ∶ M, the path (G ○ F)2(a, b) ∶ G(F(a))⊗P G(F(b)) = G(F(a⊗M b)) is

given by (G ○ F)2(a, b) ∶≡ G2 ⋅ [G](F2(a, b));
• (G ○ F)α, (G ○ F)λ and (G ○ F)ρ are the 2-paths displayed in Figs. 3.10a and 3.10b.

Definition 3.18. The type of monoidal natural isomorphisms between monoidal

functors F and G ∶MonGpd(M, N) is defined as the Σ-type encoding:

• a natural isomorphism (i.e., a homotopy) θ ∶ F ∼ G between the underlying

functors;

• a 2-path θ0 and a family θ2 of 2-paths, corresponding to the diagrams in Fig. 3.6,

for every a, b ∶ M.

We will denote by MonFunM,N(F, G) the resulting Σ-type and use the same nota-

tion for a monoidal natural isomorphism θ ∶ MonFunM,N(F, G) and its underlying

natural isomorphism.

eN

F(eM) G(eM)

F0 G0

θ(eM)
θ0

F(a)⊗N F(b) F(a⊗M b)

G(a)⊗N G(b) G(a⊗M b)

F2

θ(a⊗M b)θ(a)⊗N θ(b)

G2

θ2

Figure 3.6: Coherence conditions for a monoidal natural isomorphism.

Monoidal natural isomorphisms are, of course, invertible, and can be composed

vertically (using as underlying homotopy the composition in Definition 2.83) or

horizontally, although the latter will not be used in this thesis. Observe that no

conditions concerning the −α, −λ and −ρ components of F and G are required in the

definition of a monoidal natural isomorphism (indeed they would correspond to

3-paths in N, which are trivially given by the proof that N is a 1-type).

86 3. COHERENCE FOR MONOIDAL GROUPOIDS

Given F ∶ MonGpd(M, N), G ∶ MonGpd(N, P) and H ∶ MonGpd(P, Q), one can

construct a monoidal natural isomorphism

θ ∶MonFunM,Q((H ○G) ○ F, H ○ (G ○ F)),
i.e., that the composition of symmetric monoidal functors is associative. Explicitly:

• the underlying natural isomorphism θ is given pointwise by the identity path,

since composition of functions is judgmentally associative;

• θ0 and θ2 are proved by the fact that the application of functions to paths re-

spects composition of functions and concatenation of paths (note that the mo-

noidal product ⊗ preserves identity paths).

Similarly, one can show that the identity monoidal functor is a left and right unit

for the composition of monoidal functors.

Definition 3.19. Given F ∶ MonGpd(M, N) and G ∶ MonGpd(N, M), the underlying

homotopies in any two monoidal natural isomorphisms

ϵ ∶MonFunM,M(G ○ F, idM) and η ∶MonFunN,N(idN , F ○G)
prove that the underlying functions in F and G are half-adjoint in an equivalence be-

tween the carriers of M and N. The quadruple ⟨F, G, ϵ, η⟩will be called a monoidal

equivalence; the type of monoidal equivalences will be denoted by M ≃ N.

Conversely, an equivalence of the underlying types implies a monoidal equiva-

lence in a canonical way.

Lemma 3.20. If the underlying function of a monoidal functor F ∶ MonGpd(M, N) is

an equivalence of types, then F is a monoidal equivalence; i.e., the inverse G ∶ N → M of

the underlying functor can be promoted to a monoidal functor G ∶ MonGpd(N, M) which,

together with F, realizes a monoidal equivalence M ≃ N.

Proof. If h ∶ G ○ F ∼ idM and k ∶ F ○ G ∼ idN are the data of the equivalence, the

monoidal components of G are given as follows:

• a path G0 ∶ eM = G(eN) is given by G0 ∶≡ ([G](F0) ⋅ h(eM))−1;

• for all a, b ∶ N, a path G2(a, b) ∶ G(a)⊗M G(b) = G(a⊗N b) can be constructed:

G2(a, b) ∶≡ h(G(a)⊗M G(b))−1
⋅ [G](F2(G(a), G(b)))−1

⋅ [G](k(a)⊗N k(b));

• the families Gα, Gλ and Gρ are similarly obtained from Fα, Fλ and Fρ; a 2-path

for Gα is shown in Fig. 3.11, while Gλ is displayed in Fig. 3.12 and Gρ is obtained

similarly.

MONOIDAL GROUPOIDS 87

The required natural isomorphisms (i.e., homotopies) are provided directly by h

and k, while the 2-paths h0 and k0 and the families h2 and k2 of 2-paths are then

found by easy path algebra.

At this point, U , Gpd and MonGpd all have category-like features: the objects are,

respectively, types, 1-types and monoidal groupoids, and each of them comes with

an appropriate notion of morphisms, identity and composition. The subuniverse

Set ∶≡ Σ (S ∶ U) . IsHSet(S) also does, with 0-types as objects and functions as mor-

phisms. We might ask whether a functorial construction F ∶ Set→MonGpd is free. In

terms of a hom-set adjunction, from the perspective of category theory, we would

like to show that there is an equivalence

MonGpd(F(X), M) ≃ Set(X,ob(M)) (3.21)

natural in X and M, between the hom-sets of the category of monoidal groupoid

and monoidal functors and the category of sets and functions of sets. However,

as pointed out in Remark 3.10, we do not have access to the 0-type of objects of

a (monoidal) groupoid; hence, a forgetful functor ob ∶ MonGpd → Set cannot be

constructed. However, meta-theoretically, we have a natural isomorphism

Set(X,ob(M)) ≃ S(Xδ, M) (3.22)

where S is the category of spaces and functions of spaces, corresponding to U in

our theory, and Xδ ∶≡ pr1(X) is a discrete space (a 0-type, ignoring its property of

being so). In practice, this means that, if we can verify that a functorial construction

F ∶ U →MonGpd is free on types, then the same construction restricted to Set can be

considered as free on 0-types.

The notions of functors F ∶ U → MonGpd and of free functors are made precise

in the following definitions. These could be adapted to other types or subuniverses

with a category-like structure; we will refrain from making these definitions more

general, as they would require an internal theory of higher categories that we will

not need beyond what is included in this thesis (we stress that the “hom-types” of

U and MonGpd are not sets).

Definition 3.23. A functor from U to MonGpd consists of a function F ∶ U →MonGpd,

together with a function between “hom-types” (function types)

Ð→
F ∶ Π (X, Y ∶ U) . (X → Y)→MonGpd(F(X), F(Y))

88 3. COHERENCE FOR MONOIDAL GROUPOIDS

respecting identity and composition, i.e., with terms

Fid ∶MonFunF(X),F(X) (Ð→F (idX), idF(X)) ,

F○ ∶ Π (f ∶ X → Y, g ∶ Y → Z) .MonFunF(X),F(Z) (Ð→F (g) ○Ð→F (f),Ð→F (g ○ f)) ,

for every X, Y, Z ∶ U . Without the need for a name for the type of such functors, we

will just refer to a function F ∶ U → MonGpd as a “functor” if the remaining data is

implied.

Definition 3.24. Let F ∶ U →MonGpd be a functor in the sense of Definition 3.23. We

say that F is free if it is left adjoint to the forgetful functor to U ; i.e., if there are:

• a function ϕ ∶ Π (X ∶ U) . Π (M ∶MonGpd) .MonGpd(F(X), M) → X → M natural

in M, i.e. the diagram in Fig. 3.7a commutes for every H ∶MonGpd(M, N);
• a function ψ ∶ Π (X ∶ U) . Π (M ∶MonGpd) . (X → M) →MonGpd(F(X), M), natu-

ral in X, i.e. the diagram in Fig. 3.7b commutes for every h ∶ Y → X;

• a family of homotopies θ ∶ Π (X ∶ U) . Π (M ∶MonGpd) . ϕX,M ○ψX,M ∼ id(X→M);

• a family of monoidal natural isomorphisms

χ ∶ Π (X ∶ U) . Π (M ∶MonGpd) .MonFunF(X),M(ψX,M(ϕX,M(G)), G)
for every G ∶MonGpd(F(X), M).

If X ∶ U , the monoidal groupoid F(X) is said to be freely generated by X.

Remark 3.25. The types of homotopies and of monoidal natural isomorphisms pre-

sented in Definition 3.24 describing naturality of ϕ and ψ and the unit and counit

of the adjunction (θ and χ) are 0-types; hence, if such terms exist, they might not

be unique, accounting for the same functor being free in distinct ways. In contrast,

one could choose to require terms in the (−1)-truncation of those types – or even

to define the property of being free as the (−1)-truncation of the Σ-type describing

ϕ, ψ and their attributes. This choice, which is probably relevant while building an

internal theory of higher categories, is not so in our setting, hence we will use the

non-truncated definition for simplicity.

As mentioned above, in this thesis we will focus our attention to free monoidal

groupoids generated by sets. Statement (iii) in Theorem 3.4 then corresponds in our

framework to the following.

Theorem 3.26 (Coherence for monoidal groupoids). A functor F ∶ U → MonGpd

exists such that it is free and, for every 0-type X, the carrier of F(X) is a 0-type.

LISTS AS MONOIDAL GROUPOIDS 89

MonGpd(F(X), M) (X → M)

MonGpd(F(X), N) (X → N)

ϕX,M

H ○ −H ○ −

ϕX,N

(a) Naturality of ϕ in M: the diagram commutes for every H ∶ MonGpd(M, N), i.e. there is a homotopy

H ○ ϕX,M(G) ∼ ϕX,N(H ○G) for every G ∶MonGpd(F(X), M).

(X → M) MonGpd(F(X), M)

(Y → M) MonGpd(F(Y), M)

ψX,M

− ○ F(h)− ○ h

ψY,M

(b) Naturality of ψ in X: the diagram commutes for every h ∶ Y → X, i.e. there is a monoidal natural

isomorphism in MonFunF(Y),M(ψX,M(g) ○ F(h), ψY,M(g ○ h)) for every g ∶ X → M.

Figure 3.7: Naturality conditions for ϕ and ψ in the definition of a free functor.

We will achieve this result in several steps. First, we will examine two functors:

one (list) easily proved to produce monoidal groupoids that are 0-types; one easily

proved to be free. Then we will show that these two functors produce equivalent

types.

3.4 Lists as Monoidal Groupoids

A candidate for the free monoidal groupoid generated by a 0-type X is the type

list(X). Before discussing its freeness, we need to make sure that list(X) is a 1-type.

The following lemma will show that it is, in fact, a 0-type.

Lemma 3.27. Let X ∶ U and assume that X is an 0-type. Then list(X) is also a 0-type.

Proof. We will make use of an “encode-decode” argument to characterize the iden-

tity types in list(X); this technique, presented e.g. in [LS13], systematizes the use of

path induction in the proof that a family of paths is equivalent to another family of

types.

An encode-decode proof works in the following way. In general, for a type T,

one defines a a comparison family code ∶ T → T → U where, for every t1, t2 ∶ T,

the type code(t1, t2) is a guess for what the type (t1 = t2) should be equivalent to.

In particular, one needs to find, in the family code, terms corresponding to identity

90 3. COHERENCE FOR MONOIDAL GROUPOIDS

paths reflt for every t ∶ T, i.e., a function r ∶ Π (t ∶ T) . code(t, t) needs to be defined. A

family of equivalences Π (t1, t2 ∶ T) . (t1 = t2) ≃ code(t1, t2) is then constructed; the

families of half-adjoint functions take the name of encode (from the identity types to

code) and decode. The family encode ∶ Π (t1, t2 ∶ T) . (t1 = t2)→ code(t1, t2) is defined,

for every p ∶ t1 = t2, by transporting r(t1) along p in the family code(t1,−), i.e.,

encode(t1, t2, p) ∶≡ p
(t↦code(t1,t))
∗ (r(t1)); (3.28)

in particular, encode(t, t, reflt) ≡ r(t) for every t ∶ T. The construction of the family

decode ∶ Π (t1, t2 ∶ T) . code(t1, t2) → (t1 = t2) is problem-specific, but it should be

designed in such a way that

decode(t, t, r(t)) = reflt (3.29)

for every t ∶ T. In proving that encode(t1, t2) and decode(t1, t2) are half-adjoint equiv-

alences, one of the steps is then automatic: we have that

Π (t1, t2 ∶ T) . Π (p ∶ t1 = t2) .decode(t1, t2, encode(t1, t2, p)) = p

by induction on p and by (3.29), so decode(t1, t2) is a section of encode(t1, t2). The

other direction, again, depends on the specific T and definition of code.

We will use the machinery we just described to prove that list(X) is a 0-type

whenever X is a 0-type; we will do this by showing that the types of paths in list(X)
are equivalent to a family of (−1)-types. We refer to Definition 2.29 for the notation

relevant to lists, and to Definition 2.8 for the notation relevant to terms in product

types.

Given l1, l2 ∶ list(X), we define the type code(l1, l2) by (double) induction on lists.

We declare:

code(nil,nil) ∶≡ 1, code(nil, x2 ∶ ∶ l2) ∶≡ 0,

code(x1 ∶ ∶ l1,nil) ∶≡ 0, code(x1 ∶ ∶ l1, x2 ∶ ∶ l2) ∶≡ (x1 = x2)× code(l1, l2),
for every x1, x2 ∶ X. Induction on l1 and l2 shows that code(l1, l2) is a (−1)-type, as it

is either 1, 0, or the product of an identity type between terms in a 0-type and what

is, by the induction hypothesis, a (−1)-type (see Remark 2.75), so we have a term

code−trunc ∶ Π (l1, l2 ∶ list(X)) . Π (a, b ∶ code(l1, l2)) . a = b.

A function r ∶ Π (l ∶ list(X)) . code(l, l) is defined by induction on l, as:

r(nil) ∶≡ ∗ ∶ 1 ≡ code(nil,nil),
r(x ∶ ∶ l) ∶≡ ⟨reflx, r(l)⟩ ∶ (x = x)× code(l, l) ≡ code(x ∶ ∶ l, x ∶ ∶ l),

LISTS AS MONOIDAL GROUPOIDS 91

for every x ∶ X and l ∶ list(X). Then a function encode ∶ Π (l1, l2 ∶ list(X)) . (l1 = l2) →
code(l1, l2) can defined as in (3.28), i.e.,

encode(l1, l2, p) ∶≡ p
(k↦code(l1,k))
∗ (r(l1)).

The identity

encode(x1 ∶ ∶ l1, x2 ∶ ∶ l2, [cons](p, q)) =code(x1 ∶∶ l1,x2 ∶∶ l2) ⟨p, encode(l1, l2, q)⟩ (3.30)

holds for every p ∶ x1 = x2 and q ∶ l1 = l2, as proved by induction on p and q, since

encode(x1 ∶ ∶ l1, x1 ∶ ∶ l1, [cons](reflx1
, refll1)) ≡ encode(x1 ∶ ∶ l1, x1 ∶ ∶ l1, reflx1 ∶∶ l1)

≡ r(x1 ∶ ∶ l1) ≡ ⟨reflx1
, r(l1)⟩

≡ ⟨reflx1
, encode(l1, l1, refll1)⟩.

In the other direction, a function decode ∶ Π (l1, l2 ∶ list(X)) . code(l1, l2)→ (l1 = l2) is

defined by induction:

decode(nil,nil, c) ∶≡ reflnil,
decode(x1 ∶ ∶ l1,nil, c) ∶≡ ind0(c),
decode(nil, x2 ∶ ∶ l2, c) ∶≡ ind0(c),

decode(x1 ∶ ∶ l1, x2 ∶ ∶ l2, ⟨p, q⟩) ∶≡ [cons](p,decode(l1, l2, q))
for every x1, x2 ∶ X and l1, l2 ∶ list(X). We can now prove that encode and decode are

half-adjoint in a family of equivalences. Given l1, l2 ∶ list(X), we have

dec−enc ∶ Π (l1, l2 ∶ list(X)) . Π (p ∶ l1 = l2) .decode(l1, l2, encode(l1, l2, p)) = p,

as proved by induction on p and then on l1, since we can define terms:

dec−enc(nil,nil, reflnil) ∶≡ reflreflnil
because decode(nil,nil, encode(nil,nil, reflnil)) ≡ reflnil, and

dec−enc(x1 ∶ ∶ l1, x1 ∶ ∶ l1, reflx1 ∶∶ l1) ∶≡ [[x1 ∶ ∶ −]](dec−enc(l1, l1, refll1))
for every x1 ∶ X, l1 ∶ list(X), because

decode(x1 ∶ ∶ l1, x1 ∶ ∶ l1, ⟨reflx1
, r(l1)⟩) ≡ [cons](reflx1

,decode(l1, l1, r(l1)))
≡ [x1 ∶ ∶ −](decode(l1, l1, r(l1))).

Conversely, we have

enc−dec ∶ Π (l1, l2 ∶ list(X)) . Π (c ∶ code(l1, l2)) . encode(l1, l2,decode(l1, l2, c)) = c,

92 3. COHERENCE FOR MONOIDAL GROUPOIDS

as proved by induction on l1 and l2, by defining:

enc−dec(nil,nil, c) ∶≡ ind1(c, refl∗) ∶ ∗ = c,

enc−dec(x1 ∶ ∶ l1,nil, c) ∶≡ ind0(c) ∶ encode(x1 ∶ ∶ l1,nil, ind0(c)) = c,

enc−dec(nil, x2 ∶ ∶ l2, c) ∶≡ ind0(c) ∶ encode(nil, x2 ∶ ∶ l2, ind0(c)) = c,

while a term enc−dec(x1 ∶ ∶ l1, x2 ∶ ∶ l2, c) can be found by induction on the product

type of c, as the concatenation:

encode(x1 ∶ ∶ l1, x2 ∶ ∶ l2,decode(x1 ∶ ∶ l1, x2 ∶ ∶ l2, ⟨p, c′⟩))
≡ encode(x1 ∶ ∶ l1, x2 ∶ ∶ l2, [cons](p,decode(l1, l2, c′)))
= ⟨p, encode(l1, l2,decode(l1, l2, c′))⟩ by (3.30)

= ⟨p, c′⟩ by enc−dec(l1, l2, c′).
Hence encode and decode produce half-adjoint functions in a family of equivalences,

i.e., for every l1, l2 ∶ list(X), we have: (l1 = l2) ≃ code(l1, l2).
We are now ready to prove that list(X) is a 0-type. Given l1, l2 ∶ list(X) and p,

q ∶ l1 = l2, we have a term:

t ∶ encode(l1, l2, p) =code(l1,l2) encode(l1, l2, q)
given by t ∶≡ code−trunc(l1, l2, encode(l1, l2, p), encode(l1, l2, q)), and hence a 2-path

p = q by Remark 2.105 (where the homotopy used is dec−enc(l1, l2)).
Lemma 3.31. If X is a 0-type, then list(X) has the structure of a monoidal groupoid,

defined in the proof.

Proof. Since X is a 0-type, then list(X) is a 0-type by Lemma 3.27, and in particular a

1-type, so it is the carrier type in a term list(X) ∶ Gpd. The operation ++ serves a mo-

noidal product, with nil as unit; this satisfies associativity and unitality as proved

in Lemma 3.1 at the beginning of this chapter. Moreover, there are families of 2-

paths Dlist and ▽list corresponding to the coherence diagrams, since list(X) is a

0-type.

Remark 3.32. The type list(X) can be given the structure of a monoidal groupoid

also if X is a 1-type, by suitably modifying the proof given for Lemma 3.27. The

proof of Lemma 3.31 still holds, except that the coherence diagrams are not pro-

vided by the truncation level of list(X). However, a term Dlist(l1, l2, l3, l4) corre-

sponding to the diagram in Fig. 3.13a can be produced for every li ∶ list(X) by

LISTS AS MONOIDAL GROUPOIDS 93

induction on l1 (Figs. 3.13b and 3.13c), using the fact that, for all paths p and q in

list(X) and x ∶ X, the following 2-paths can be found by path induction:

reflnil ++ p = p, (3.33)

[x ∶ ∶ −](p)++ q = [x ∶ ∶ −](p++ q). (3.34)

A term▽list(l1, l2) can be produced in the same way.

We will use the notation list ∶ U →MonGpd for the function

list ∶≡ (X ↦ ⟨∥list(X)∥1 ,nil,++, αlist, λlist, ρlist, Dlist,▽list⟩) . (3.35)

If X is a 0-type, then ∥list(X)∥1 ≃ list(X), as the n-truncation of an n-type is al-

ways equivalent to the n-type itself. Since, in proving coherence, we will always

consider monoidal groupoids over a 0-type, we will forget from now on about the

1-truncation.4

It is then easy to show that list is a functor.

Lemma 3.36. The function list in (3.35) is a functor, in the sense of Definition 3.23.

Proof. Given types A and B ∶ U and a function f ∶ A → B, a monoidal functor

list(f) ∶MonGpd(list(A), list(B)) can be produced with underlying function defined

by induction:

list(f)(nil) ∶≡ nil,
list(f)(x ∶ ∶ l) ∶≡ f (x) ∶ ∶ list(f)(l).

We can then define list(f)0 ∶≡ reflnil ∶ nil = nil; moreover, a function

list(f)2 ∶ Π (l1, l2 ∶ list(X)) . list(f)(l1)++ list(f)(l2) = list(f)(l1 ++ l2)
can be defined by induction on l1:

list(f)2(nil, l2) ∶ list(f)(l2) = list(f)(l2) by refl,

list(f)2(x ∶ ∶ l1, l2) ∶ list(f)(x ∶ ∶ l1)++ list(f)(l2)
≡ f (x) ∶ ∶ list(f)(l1)++ list(f)(l2)
= f (x) ∶ ∶ list(f)(l1 ++ l2) by [f (x) ∶ ∶ −](list(f)2(l1, l2))
≡ list(f)(x ∶ ∶ l1 ++ l2).

The families of 2-paths list(f)α and list(f)ρ are given by induction on the leftmost

list in a way completely similar to the proof in Fig. 3.13, while list(f)λ is a family of

4In the formalization, we only consider (free) functors Set→MonGpd, so this issue is avoided.

94 3. COHERENCE FOR MONOIDAL GROUPOIDS

trivial 2-paths. The verification that list respects identity and composition of func-

tions is straightforward. For the identity, we need a monoidal natural isomorphism

MonFunlist(X),list(X)(list(idX), idlist(X));
its underlying homotopy θid ∶ list(idX) ∼ idlist(X) is defined by list induction:

θid(nil) ∶≡ reflnil ∶ list(idX)(nil) = idlist(X)(nil);
θid(x ∶ ∶ l) ∶≡ [x ∶ ∶ −](θid(l)) ∶ list(idX)(x ∶ ∶ l) = idlist(X)(x ∶ ∶ l),

for every x ∶ X and l ∶ list(X). The diagrams in Fig. 3.6 commute: the triangle triv-

ially; the square by induction on the leftmost list. That list respects composition is

done similarly.

If list is free, then Theorem 3.26 is immediately established by Lemma 3.27. In

order to show that list is free, we will use another functor as comparison.

3.5 A Free Functor to Monoidal Groupoids

We will use HITs to define a functor FMG ∶ U → MonGpd so that the resulting con-

struction contains the proof of freeness in its elimination principle.

Definition 3.37 (FMG). Given a type X ∶ U , we define the ap-recursive, 1-truncated

HIT FMG(X)with the following constructors:

FMG(X) ∶ ∶= e ∶ FMG(X) ∣ ι ∶ X → FMG(X) ∣ ⊗ ∶ FMG(X)→ FMG(X)→ FMG(X)
∣ α ∶ Π (a, b, c ∶ FMG(X)) . (a⊗ b)⊗ c = a⊗ (b⊗ c)
∣ λ ∶ Π (b ∶ FMG(X)) . e⊗ b = b ∣ ρ ∶ Π (a ∶ FMG(X)) . a⊗ e = a

∣ D ∶ . . . ∣ ▽ ∶ . . .

∣ T ∶ IsHGpd(FMG(X)),
where D and ▽ are families of 2-path constructors as in (3.12) and (3.13), corre-

sponding to the coherence diagrams of a monoidal groupoid displayed in Fig. 3.1

earlier in this chapter (compare with the definition of FM(X) in (3.3)). We use sub-

scripts for the arguments of the 1- and 2-constructors of FMG(X), as in, e.g., αa,b,c.

The elimination principle of FMG(X) follows the scheme given in Section 2.6.

The ap-recursivity (see Example 2.144) appears with respect to the constructor ⊗ in

the coherence diagrams: for example, one of the “sides” of the pentagon Da,b,c,d is

αa,b,c ⊗ refld, which is shorthand for [−⊗−](αa,b,c, refld).

A FREE FUNCTOR TO MONOIDAL GROUPOIDS 95

It is trivial to see that FMG(X) is a monoidal groupoid: T guarantees that it is

a groupoid, while the monoidal structure is entirely given by its constructors. The

resulting construction is also functorial, as proved below.

Lemma 3.38. The function FMG ∶ U →MonGpd given by

FMG ∶≡ (X ↦ ⟨⟨FMG(X), T⟩, e,⊗, α, λ, ρ, D,▽⟩)
is a functor, in the sense of Definition 3.23.

Proof. Let f ∶ X → Y be a function of types. A monoidal functor

FMG(f) ∶MonGpd(FMG(X),FMG(Y))
is produced as follows. The underlying function FMG(f) ∶ FMG(X) → FMG(Y) is

defined by the (non-dependent) elimination rule of FMG(X), by sending the con-

structors of FMG(X) to those of FMG(Y):
FMG(f) ∶≡ recFMG(FMG(Y), e, ι ○ f ,⊗, α, λ, ρ, D,▽, T),

i.e. sending the unit and the product of FMG(X) to those of FMG(Y), terms ι(x) ∶
FMG(X) to ι(f (x)) ∶ FMG(Y) for every x ∶ X, and letting the other constructors of

FMG(Y) provide the required paths, 2-paths and 1-truncation. Then the paths:

FMG(f)0 ∶ e = FMG(f)(e),
FMG(f)2(a, b) ∶ FMG(f)(a⊗ b) = FMG(f)(a)⊗FMG(f)(b)

can be defined as identity paths; hence, the 2-paths FMG(f)α, FMG(f)λ and FMG(f)ρ
filling the diagrams in Fig. 3.5 reduce to proving that

[FMG(f)](α(a, b, c)) = α(FMG(f)(a),FMG(f)(b),FMG(f)(c)),
[FMG(f)](λ(b)) = λ(FMG(f)(b)),
[FMG(f)](ρ(a)) = ρ(FMG(f)(a));

we have these by the computation rules of the elimination rule of FMG(X).
We are left to show that FMG preserves identity and composition of functions,

i.e., to find monoidal natural isomorphisms

FMGid ∶MonFunFMG(X),FMG(X) (FMG(idX), idFMG(X)) ,

FMG○(f , g) ∶MonFunFMG(X),FMG(Z) (FMG(g) ○ FMG(f),FMG(g ○ f)) ,

for X, Y, Z ∶ U , f ∶ X → Y and g ∶ Y → Z. For FMGid, the underlying homotopy

θid ∶ recFMG(FMG(X), e, ι,⊗, α, λ, ρ, D,▽, T) ∼ idFMG(X)

96 3. COHERENCE FOR MONOIDAL GROUPOIDS

is defined by induction, using the scheme for elimination of 1-truncated HITs into

families of paths in a groupoid. We need to provide:

• θid(e) ∶ e = e, given by refle;

• θid(ι(x)) ∶ ι(x) = ι(x) for every x ∶ X, given by reflι(x);

• θid(a⊗ b) ∶ recFMG(. . .)(a)⊗ recFMG(. . .)(b) = a⊗ b for every a, b ∶ FMG(X), given

inductive hypotheses θ(a) and θ(b); this can then be defined as θ(a)⊗ θ(b);
• 2-paths for α, λ and ρ, which are obtained by naturality of associativity and

unitality, together with the computation rules of the elimination rule of FMG(X),
as shown by way of example for α in Fig. 3.14.

With these definitions, the diagrams in Fig. 3.6 defining a monoidal natural isomor-

phism do not require induction on terms in FMG(X) to be shown to commute, as

they trivially do so. The monoidal natural isomorphism FMG○(f , g) is provided in

a completely similar fashion.

We will proceed to prove that FMG is a free functor by fulfilling, in the following

definitions and lemmata, all the conditions listed in Definition 3.24.

Definition 3.39. We define a function

ϕ ∶ Π (X ∶ U) . Π (M ∶MonGpd) .MonGpd(FMG(X), M)→ X → M.

Given X ∶ U , M ∶MonGpd and a monoidal functor G ∶MonGpd(FMG(X), M), we can

produce a function ϕX,M(G) ∶ X → M by precomposing the underlying function

G ∶ FMG(X) → M of the monoidal functor G with the constructor ι ∶ X → FMG(X);
that is,

ϕX,M(G) ∶≡ G ○ ι. (3.40)

Lemma 3.41. The function ϕX,M in Definition 3.39 is natural in M.

Proof. Given a monoidal functor H ∶MonGpd(M, N), we have

H ○ ϕX,M(G) ≡ H ○ (G ○ ι) ≡ (H ○G) ○ ι ≡ ϕX,N(H ○G),
so the diagram in Fig. 3.7a commutes judgmentally (hence pointwise) and ϕX,M is

natural in M.

Definition 3.42. We define a function

ψ ∶ Π (X ∶ U) . Π (M ∶MonGpd) . (X → M)→MonGpd(FMG(X), M).
Given X ∶ U , M ∶ MonGpd and a function g ∶ X → M, we can produce a monoidal

functor ψX,M(g) ∶MonGpd(FMG(X), M) in the following way:

A FREE FUNCTOR TO MONOIDAL GROUPOIDS 97

• the underlying function ψX,M(g) ∶ FMG(X) → M is defined by the elimination

rule of FMG(X) as

ψX,M(g) ∶≡ recFMG(M, eM, g,⊗M, αM, λM, ρM, DM,▽M, TM) (3.43)

sending the constructors of FMG(X) to the components of the monoidal struc-

ture of M, and terms ι(x) ∶ FMG(X) to g(x) ∶ M for every x ∶ X;

• the paths

ψX,M(g)0 ∶ eM = ψX,M(g)(e),
ψX,M(g)2(a, b) ∶ ψX,M(g)(a⊗ b) = ψX,M(g)(a)⊗M ψX,M(g)(b)

are given by refl for every a, b ∶ FMG(X), since the two sides of each identity

compute to the same terms;

• the 2-paths ψX,M(g)α, ψX,M(g)λ and ψX,M(g)ρ filling the diagrams in Fig. 3.5 are

given by the computation rule of recFMG; indeed, since ψX,M(g)0 and ψX,M(g)2
are identity paths, they reduce to proving that

[ψX,M(g)](α(a, b, c)) = αM(ψX,M(g)(a), ψX,M(g)(b), ψX,M(g)(c)),
[ψX,M(g)](λ(b)) = λM(ψX,M(g)(b)),
[ψX,M(g)](ρ(a)) = ρM(ψX,M(g)(a)),

for every a, b, c ∶ FMG(X).
Lemma 3.44. The function ψX,M in Definition 3.42 is natural in X.

Proof. If h ∶ Y → X is a function of types, a monoidal natural isomorphism

θψ ∶MonFunFMG(Y),M(ψX,M(g) ○ FMG(h), ψY,M(g ○ h))
can be given as follows, for every g ∶ X → M. The underlying homotopy between

the underlying functions

θψ ∶ ψX,M(g) ○ FMG(h) ∼ ψY,M(g ○ h)
is defined by the elimination rule of FMG on families of paths in a groupoid. On

0-constructors, we have:

(e′) ψX,M(g)(FMG(h)(e)) ≡ ψX,M(e) ≡ eM ≡ ψY,M(g ○ h)(e),
(ι′) ψX,M(g)(FMG(h)(ι(y))) ≡ ψX,M(g)(ι(h(y)))

≡ g(h(y)) ≡ ψY,M(g ○ h)(ι(y)),

98 3. COHERENCE FOR MONOIDAL GROUPOIDS

(⊗′) ψX,M(g)(FMG(h)(a⊗ b)) ≡ ψX,M(g)(FMG(h)(a)⊗FMG(h)(b))
≡ ψX,M(g)(FMG(h)(a))⊗M ψX,M(g)(FMG(h)(b))
= ψY,M(g ○ h)(a)⊗M ψY,M(g ○ h)(b)
≡ ψY,M(g ○ h)(a⊗ b),

where the identity in (⊗′) is given by θψ(a)⊗M θψ(b). The 2-paths corresponding

to the requirement (α′), (λ′) and (ρ′) are given by naturality of αM, λM and ρM,

together with the computation rules of the elimination principle of FMG; for exam-

ple, (α′) corresponds to a 2-path filling the diagram in Fig. 3.15. The requirements

(D′) and (▽′) correspond to 3-paths, which are always present in a groupoid (and

unique up to homotopy).

The 2-paths (θψ)0 and (θψ)2 are trivial. In particular, all the paths in the triangle

(θψ)0 are defined to be identity paths, while for (θψ)2 we have that θψ(a)⊗M θψ(b) ≡
θψ(a ⊗ b) for every a, b ∶ FMG(Y) and the other sides of the square are defined

as identity paths. Hence, a monoidal natural isomorphism making the diagram in

Fig. 3.7b commute is provided and ψX,M is natural in X.

Lemma 3.45. There is a homotopy θ ∶ ϕX,M ○ ψX,M ∼ id(X→M), for every X ∶ U and

M ∶MonGpd, and for ϕ and ψ as in Definitions 3.39 and 3.42.

Proof. For every g ∶ X → M, we have ϕX,M(ψX,M(g)) ≡ ψX,M(g) ○ ι ≡ g, so the

homotopy is trivially given.

Lemma 3.46. There is a monoidal natural isomorphism

χ ∶MonFunFMG(X),M(ψX,M(ϕX,M(G)), G)
for every X ∶ U , M ∶ MonGpd and G ∶ MonGpd(FMG(X), M), with ϕ and ψ as in Defini-

tions 3.39 and 3.42.

Proof. First of all, we need to provide a homotopy

χ ∶ ψX,M(ϕX,M(G)) ∼ G,

between the underlying functions (in FMG(X) → M). This we can get by the elimi-

nation principle of FMG(X), using again the scheme for elimination of 1-truncated

HITs into families of paths in a groupoid. On 0-constructors, we have, for every

x ∶ X and a, b ∶ FMG(X):
(e′) ψX,M(ϕX,M(G))(e) ≡ eM = G(e) by G0,

(ι′) ψX,M(ϕX,M(G))(ι(x)) ≡ ϕX,M(G)(x) ≡ G(ι(x)) = G(ι(x)) by reflG(ι(x)),

THE PROOF OF COHERENCE 99

(⊗′) ψX,M(ϕX,M(G))(a⊗ b)
≡ ψX,M(ϕX,M(G))(a)⊗M ψX,M(ϕX,M(G))(b)
= G(a)⊗M G(b) by χ(a)⊗M χ(b)
= G(a⊗ b) by G2(a, b).

The 2-paths α′, λ′ and ρ′ are given by the computation rules of ψX,M, naturality of

αM, λM and ρM and by Gα, Gλ and Gρ; Fig. 3.16 shows α′, while the other 2-paths

are obtained similarly. With this definition of the underlying homotopy, there are

trivial 2-paths χ0 and χ2, corresponding to the diagrams in Figs. 3.17a and 3.17b,

making χ into a monoidal natural isomorphism.

Corollary 3.47. FMG is a free functor in the sense of Definition 3.24, so the monoidal

groupoid FMG(X) is freely generated by X, for every X ∶ U .

Proof. Follows from the lemmata in this section.

3.6 The Proof of Coherence

This section is devoted to the proof of Theorem 3.26. We will show that, for every

0-type X, there is a monoidal equivalence

FMG(X) ≃ list(X). (3.48)

A consequence of this equivalence is that (the carrier of) FMG(X) is a 0-type. Indeed,

the property of being a 0-type can be transported along the equivalence, either via

univalence (see Section 3.7) or by directly obtaining all 2-paths in FMG(X) from

the corresponding ones in list(X). Coherence will then follow from Lemma 3.27

and Corollary 3.47.

In order to prove that FMG(X) is a 0-type, it is actually enough to show the

much weaker condition stating that FMG(X) is a retract of list(X) (Definition 2.88),

which we will do in Lemma 3.52. However, we find it interesting to construct ex-

plicitly a monoidal equivalence (Corollary 3.56).

Throughout this section, X is a 0-type. All definitions involving X are to be read

as given uniformly (Π (X ∶ Set)).

Definition 3.49. We define a monoidal functor

K ∶MonGpd(FMG(X), list(X)).

100 3. COHERENCE FOR MONOIDAL GROUPOIDS

The underlying function K ∶ FMG(X)→ list(X) is given by the elimination principle

of FMG(X), sending ι(x) to x ∶ ∶ nil for every x ∶ X, and the monoidal structure of

FMG(X) to the one of list(X). Precisely, K(e) ∶≡ nil and K(a⊗ b) ∶≡ K(a)++K(b) for

every a, b ∶ FMG(X), while the families of paths and 2-paths α′, λ′, ρ′, D
′ and ▽′,

required by the elimination principle are given by the monoidal structure of list(X),
discussed in Section 3.4. Finally, the requirement about list(X) being a 1-type is

fulfilled by virtue of Lemma 3.27.

The paths K0 ∶ nil = K(e) and K2(a, b) ∶ K(a)++K(b) = K(a⊗ b) for a, b ∶ FMG(X)
are then given by identity paths; in this way, the required 2-paths Kα, Kλ and Kρ

reduce to exhibiting terms in the following identity types:

αlist = [K](α), λlist = [K](λ), ρlist = [K](ρ);
these are given by the computation rules of K.

Definition 3.50. We define a monoidal functor

J ∶MonGpd(list(X),FMG(X)).
The underlying function J ∶ list(X)→ FMG(X) is defined by induction on lists:

J(nil) ∶≡ e, J(x ∶ ∶ l) ∶≡ ι(x)⊗ J(l).
A path J0 ∶ e = J(nil) is then given by refle, while, given l1, l2 ∶ list(X), a path J2(l1, l2) ∶
J(l1)⊗ J(l2) = J(l1 ++ l2) can be produced by induction on l1:

J2(nil, l2) ∶ J(nil)⊗ J(l2) ≡ e⊗ J(l2) = J(l2) ≡ J(nil++ l2) by λ;

J2(x ∶ ∶ l, l2) ∶ J(x ∶ ∶ l)⊗ J(l2) ≡ (ι(x)⊗ J(l))⊗ J(l2)
= ι(x)⊗ (J(l)⊗ J(l2)) by α

= ι(x)⊗ J(l ++ l2) by reflι(x) ⊗ J2(l, l2)
≡ J(x ∶ ∶ l ++ l2).

We now need to provide families of 2-paths Jα, Jλ and Jρ as in Fig. 3.5. With the

given definitions of J0 and J2, and since ++ satisfies left unitality judgmentally, we

can easily find 2-paths Jλ(l) for every l ∶ list(X), as the sought diagram (Fig. 3.18) is

trivial. Moreover, for every p ∶ l1 =list(X) l2 and x ∶ X, we have a 2-path

[J]([x ∶ ∶ −](p)) = reflι(x) ⊗ [J](p), (3.51)

by induction on p. This, together with the coherence diagrams and naturality of

associativity and unitality, allows us to define the families of 2-paths Jρ(l) and

Jα(l1, l2, l3) by list elimination (on the first argument for Jα), as shown in Fig. 3.19

and Fig. 3.20 respectively.

THE PROOF OF COHERENCE 101

In the following lemma, we will show that there is a monoidal natural isomor-

phism η between the identity monoidal functor idFMG(X) and the composition J ○K;

the underlying homotopy in η alone proves that FMG(X) is a retract of list(X).
Lemma 3.52. There is a monoidal natural isomorphism

η ∶MonFunFMG(X),FMG(X)(id, J ○K).
Proof. The underlying homotopy η ∶ id ∼ J ○K is given by the elimination principle

of FMG(X), adopting the scheme for elimination in a type of paths in a groupoid.

On 0-constructors we have, for x ∶ X and a, b ∶ FMG(X):
(e′) ∶ e ≡ J(nil) ≡ J(K(e)) = J(K(e)) by reflJ(K(e)),

(ι′) ∶ ι(x) = ι(x)⊗ e ≡ ι(x)⊗ J(nil) by ρ−1

≡ J(x ∶ ∶ nil) ≡ J(K(ι(x))),
(⊗′) ∶ a⊗ b = J(K(a))⊗ J(K(b)) by η(a)⊗ η(b)

= J(K(a)++K(b)) ≡ J(K(a⊗ b)) by J2(K(a), K(b)).
The requirements α′, λ′ and ρ′ correspond to the diagrams illustrated in Fig. 3.21.

We emphasize here the role of the coherence diagrams: α′ and ρ′ are defined using

Jα and Jρ respectively, both of which employ the coherence diagrams D and▽ (also

via the additional coherence diagrams from Lemma 3.16). To complete the proof, a

2-path

η0 ∶ id0 ⋅ η(e) = (J ○K)0
is trivially given, since all terms involved are identity paths. A family of 2-paths

η2(a, b) ∶ id2(a⊗ b) ⋅ η(a⊗ b) = η(a)⊗ η(b) ⋅ (J ○K)2(a, b)
for a, b ∶ FMG(X) is also trivially given, from the definition of η, since id2(a, b) is the

identity path and (J ○K)2(a, b) ≡ J2(K(a), K(b)) ⋅ [J](K2(a, b)), where K2(a, b) is the

identity path.

At this point, the proof of coherence then becomes immediate.

Proof of Theorem 3.26. Given a 0-type X, Corollary 3.47 shows that FMG(X) is the

free monoidal groupoid generated by X. For paths p, q ∶ a =FMG(X) b, we have

[K](p) =(K(a)=K(b)) [K](q)
because list(X) is a set (Lemma 3.27); by path algebra we then get

η(a) ⋅ [J ○K](p) ⋅ η(b)−1
= η(a) ⋅ [J ○K](q) ⋅ η(b)−1;

102 3. COHERENCE FOR MONOIDAL GROUPOIDS

since η is a homotopy, the left-hand side is equal to [id](p) by Remark 2.105, and

hence to p, and similarly the right-hand side is equal to q. Then we have that p = q,

so FMG(X) is a set.

Remark 3.53. In the process of proving coherence, we have produced a technique

of normalisation of monoidal expressions in FMG(X); a normal form in list(X) is

mapped to a monoidal expression in FMG(X) which contains one and only one

instance of the unit e and whose product is right-leaning. An example is shown in

Fig. 3.8.

(ι(x)⊗ (ι(y)⊗ e))⊗ ι(z)

x ∶ ∶ y ∶ ∶ z ∶ ∶ nil

ι(x)⊗ (ι(y)⊗ (ι(z)⊗ e))

K

J

Figure 3.8: Example of normalisation of a monoidal expression in FMG(X), for x, y, z ∶ X.

Although, in order to prove that FMG(X) is a set, we only needed the underly-

ing homotopy in η, we will show for completeness that K and J are half-adjoint in

an equivalence. The equivalence FMG(X) ≃ list(X) for every 0-type X can be used

to show that list(X) is free; this will require function extensionality (to construct the

homotopy θ of functions between function types in Definition 3.24). Transporting

freeness along such a family of equivalences is a tedious exercise and has not been

formalized.

Lemma 3.54. There is a monoidal natural isomorphism

ϵ ∶MonFunlist(X),list(X)(K ○ J, id).

Proof. The underlying homotopy ϵ ∶ K ○ J ∼ id is produced by list induction:

ϵ(nil) ∶ K(J(nil)) ≡ nil = nil by reflnil,

ϵ(x ∶ ∶ l) ∶ K(J(x ∶ ∶ l)) ≡ x ∶ ∶ K(J(l)) = x ∶ ∶ l by [x ∶ ∶ −](ϵ(l)).
Since both K0 and J0 are identity paths, so is (K ○ J)0. Hence, a 2-path

ϵ0 ∶ (K ○ J)0 ⋅ ϵ(nil) = id0

DISCUSSION 103

is trivially obtained. A family of 2-paths ϵ2(l1, l2) filling the diagram in Fig. 3.22a is

obtained by induction on l1, as shown in Figs. 3.22b and 3.22c, using that

[K](reflι(x) ⊗ q) = [x ∶ ∶ −]([K](q)) (3.55)

for every q ∶ a =FMG(X) b, as proved by induction on q.

Corollary 3.56. There is a monoidal equivalence FMG(X) ≃ list(X).
Proof. Follows from the lemmata in this section.

3.7 Discussion

Comparison to Known Formalizations

The proof of coherence in [BD96], of which a thorough description and formaliza-

tion can be found in [Bey97], makes implicit use of uniqueness of identity proofs

(UIP), specifically when showing coherence for the (discrete) category of normal

forms N . The set Nobj of the objects of N is defined inductively as the type of lists

over a set X; the families of sets Nhom(n1, n2) of arrows between objects n1 and n2

are defined inductively, with only the identity arrow as generator:

Nhom ∶Nobj →Nobj → Set

∶ ∶=Ni ∶ Π (n ∶Nobj) . Nhom(n, n).
Finally, the families of sets NE(n1, n2, h, h′) of equalities between arrows h and h′

sharing source n1 and target n2 are also defined by induction, with reflexivity as

the only generator:

NE ∶ Π (n1, n2 ∶Nobj) . Nhom(n1, n2)→Nhom(n1, n2)→ Set (3.57)

∶ ∶=Nref ∶ Π (n ∶Nobj) . Π (h ∶Nhom(n, n)) . NE(n, n, h, h).
The proof of the statement of coherence, given as

Ncoherence ∶ Π (n1, n2 ∶Nobj) . Π (h, h′ ∶Nhom(n1, n2)) . NE(n1, n2, h, h′),
is perfomed by “strong” induction on both h and h′, by providing a term

Ncoherence(n, n, Ni(n), Ni(n)) ∶≡Nref(n, Ni(n)).
Without UIP, simultaneous induction on h and h′ cannot be performed. Induction

on h reduces the goal of coherence to finding a term in NE(n, n, Ni(n), h′) for every

104 3. COHERENCE FOR MONOIDAL GROUPOIDS

n ∶ Nobj and h′ ∶ Nhom(n, n); further induction on h′ cannot be performed, since the

elimination principle of Nhom applies to families

C ∶ Π (n1, n2 ∶Nobj) . Nhom(n1, n2)→ Set,

but the definition

C ∶≡ (n1, n2, f ↦NE(n, n, Ni(n), f))
is ill-typed, as source and target of Ni(n) ∶Nhom(n, n) and a generic f ∶Nhom(n1, n2)
do not match. This can be solved by redefining the type of the family NE in (3.57):

NE ∶ Π (n1, n2 ∶Nobj) . Nhom(n1, n2)→Nhom(n3, n4)→ Set

∶ ∶=Nref ∶ Π (n ∶Nobj) . Π (h ∶Nhom(n, n)) . NE(n, n, h, h),
allowing equality between arrows with varying (a priori) source and target.

Employing identity types and HITs in HoTT largely simplifies the definition of

a free monoidal groupoid. In [Bey97], the free monoidal category over a set X is

defined via:

• an inductive set of objects, corresponding the 0-constructors in our FMG(X);
• inductive families of arrows, with id, (− ○ −), (−⊗ −), α, α−1, λ, λ−1, ρ and ρ−1

as constructors, on which induction is performed when proving the result cor-

responding to our Lemma 3.52; in our implementation, the groupoid structure

of identity types takes care of most of the inductive cases, whereas the cases

for α, λ and ρ remain present in the application of the elimination principle of

FMG(X);
• inductive families of equalities between arrows, with a sizeable number of con-

structors, including: reflexivity, symmetry and transitivity of equality; associa-

tivity and unitality of composition; substitution for composition and for the mo-

noidal product; naturality of associativity and unitality of the monoidal product;

the interchange law between composition and the monoidal product; composi-

tion of associativity and unitality arrows with their inverse; and the coherence

diagrams. All but the latter is made redundant in our implementation, as path

induction proves everything but the defining diagrams D and▽ of the monoidal

structure.

Another feature of our approach is the simplicity in the formulation and proof

of freeness of FMG (Section 3.5), omitted in [Bey97].

One final important difference between the two formalizations lies in the design

of the normalising functor, which in [Bey97] is made to factor through the type of

DISCUSSION 105

functions list(X) → list(X). The argument can be reproduced in our setting: a func-

tion N ∶ FMG(X)→ list(X)→ list(X) can be defined via the elimination principle of

FMG(X):
• on 0-constructors, N is defined to send e to the identity function, ι(x) to the

function (l ↦ x ∶ ∶ l) for every x ∶ X, and, recursively, a⊗ b to the composition

N(a) ○N(b), for every a, b ∶ FMG(X);
• associativity of composition of functions and unitality with respect to the iden-

tity function then hold judgmentally, and similarly the coherence diagrams com-

mute;

• list(X)→ list(X) is a 0-type, and hence a 1-type (by Remark 2.75).

Subsequently, a function ev ∶ list(X) → (list(X) → list(X)) → list(X) can be defined

by ev(l) ∶≡ (f ↦ f (l)), evaluating a function to a given term. Normalisation is then

achieved by the composition ev(nil) ○N ∶ FMG(X) → list(X). It is possible to show

(again using the elimination principle of FMG(X)) that

Π (a ∶ FMG(X)) . Π (l ∶ list(X)) . ev(l, N(a)) = K(a)++ l, (3.58)

with K ∶ FMG(X) → list(X) as in Definition 3.49, and hence that N(a,nil) = K(a) for

every a ∶ FMG(X), by (3.58) followed by an instance of ρ. Thus, the two normalis-

ing processes coincide on all monoidal expressions and the resulting (equivalent)

proofs of coherence present the same complexity. However, the approach of nor-

malisation “by evaluation” will not easily generalise to coherence for symmetric

monoidal groupoids, since composition of functions is not symmetric, so we choose

to adopt Definition 3.49 for the normalising functor, directly mapping the monoidal

structure of FMG(X) to that of list(X).

Univalence and Function Extensionality

With monoidal natural isomorphisms defined as homotopies, our proof does never

employ function extensionality. Its use could, however, render the proof shorter:

in Lemma 3.27 it is shown that list(X) is a 0-type whenever X is a 0-type via an

“encode-decode” argument; assuming function extensionality, one could see that

list(X) is equivalent to the W-type with labels given by the coproduct 1 + X and

arities 0 for 1 and 1 for X [see Uni13, Section 5.3]. Since W-types preserve truncation

levels [Dan12] and both the labels and the types in the family of arities are 0-types,

it follows that list(X) is also a 0-type.

Theorem 3.26 can be alternatively proved assuming the univalence axiom: the

equivalence in (3.48), realized by J and K, provides us with a path list(X) = FMG(X),

106 3. COHERENCE FOR MONOIDAL GROUPOIDS

over which we can transport the proof given in Lemma 3.27 in the family of types

(X ↦ IsHSet(X)) indexed by the universe, to obtain a term in IsHSet(FMG(X)).
Despite the viable shortcuts described above, we conclude that univalence and

function extensionality do not play a key role in the proof of normalisation of mo-

noidal expressions, and hence of coherence for monoidal groupoids. In contrast,

we will use function extensionality in Chapter 4 and the full power of univalence

in Chapter 5 in order to obtain meaningful results for symmetric monoidal group-

oids.

Relationship to Vectors

Assuming function extensionality, the type list(X) is also equivalent to the type

Vec(X) ∶≡ Σ (n ∶N) . ([n]→ X)
of finite-dimensional vectors with coordinates in X. Indeed, a function f ∶ list(X) →
Vec(X) can be defined inductively on the list argument:

f (nil) ∶≡ ⟨0, rec0⟩, f (x ∶ ∶ l) ∶≡ ⟨pr1(f (l))+ 1, pr2(f (l))+ constx⟩,
for every x ∶ X and l ∶ list(X), where rec0 ∶ 0 → X is the non-dependent version

of the elimination principle of the empty type (ex falso), while const(−) ∶ 1 → X

is defined as constx(u) ∶≡ x for every u ∶ 1. In the opposite direction, a function

g ∶ Vec(X) → list(X) can be given by induction of the first component of the vector

(which is a natural number):

g⟨0, v⟩ ∶≡ nil g⟨n + 1, v⟩ ∶≡ v(inr(∗)) ∶ ∶ g(v ○ inl).
Proving that f and g are half-adjoint in an equivalence is an easy task; however,

as expected, function extensionality is required, since proving a homotopy f ○ g ∼

idVec(X) entails showing an identity between functions.

The type Vec(X) can be endowed with a monoidal structure: a monoidal prod-

uct ⊞ ∶ Vec(X) → Vec(X) → Vec(X) is defined so that, for n1, n2 ∶ N, v1 ∶ [n1] → X

and v2 ∶ [n2]→ X,

⟨n1, v1⟩⊞ ⟨n2, v2⟩ ∶≡ ⟨n1 + n2, v1 ⊕ v2⟩,
where n1 + n2 is the addition in N, while v1 ⊕ v2 ∶ [n1 + n2] → X is defined by using

the fact that the types [n1 + n2] and [n1] + [n2] are equivalent, and then by using

the elimination principle of the coproduct to build a function [n1] + [n2] → X out

of v1 and v2. In this way, the functions f and g defined above can be proved to

DISCUSSION 107

be half-adjoint in a monoidal equivalence, and hence there is a chain of monoidal

equivalences

FMG(X) ≃ list(X) ≃ Vec(X). (3.59)

We will not present here the details of this proof, as these will be discussed in a

similar setting in Chapter 5.

As the type of finite vectors with coordinates in 1 is equivalent to N, we obtain

the following chain of monoidal equivalences:

FMG(1) ≃ list(1) ≃ Vec(1) ≃N, (3.60)

although, of course, an equivalence list(1) ≃ N can be obtained more directly. We

will investigate a similar chain of equivalences for symmetric monoidal groupoids

in Chapter 5.

108 3. COHERENCE FOR MONOIDAL GROUPOIDS

3.8 Figures in Proofs

●

●

●

● ●

(e⊗ a)⊗ b

e⊗ (a⊗ b)

a⊗ bα

λ⊗ 1

λ

●

λ

λ

λ

1⊗ (λ⊗ 1)

1⊗ λ
ρ⊗ (1⊗ 1)

●

α

(1⊗ λ)⊗ 1

(ρ⊗ 1)⊗ 1

α

α

α⊗ 1α

1⊗ α

1

2

3

4

5

6

7

8

(a) Commutativity of the diagram in Fig. 3.4a, here appearing as the unmarked triangle. The 2-paths (1),

(2) and (3) are instances of naturality of λM ; (4) and (6) are instances of naturality of αM ; (5) and (7) are

instances of▽M ⊗M 1 and▽M respectively; the outer pentagon (8) is an instance of DM .

e

e⊗ e

e⊗ e

ee⊗ e(e⊗ e)⊗ ee⊗ (e⊗ e)

λ

λ

ρ

ρ

λ

ρ

ρ

λ⊗ 1

ρ⊗ 1

α

λ

1⊗ λ

1
2

3

4

5

6 7

(b) Commutativity of the diagram in Fig. 3.4c, here appearing as the unmarked bigon. The outer square

(1) is an instance of naturality of λM ; the 2-path (2) is the diagram in Fig. 3.4a; (3) is an instance of ▽M ;

(4) and (5) are instances of naturality of ρM ; (6) and (7) are trivial.

Figure 3.9: Additional coherence diagrams in a monoidal groupoid. We dropped the −M

from the terms in the monoidal structure and replaced some vertices by ● for readability.

FIGURES IN PROOFS 109

(G(F(a))⊗P G(F(b)))⊗P G(F(c)) G(F(a))⊗P (G(F(b))⊗P G(F(c)))

G(F(a)⊗N F(b))⊗P G(F(c)) G(F(a))⊗P G(F(b)⊗N F(c))

G(F(a⊗M b))⊗P G(F(c)) ● ● G(F(a))⊗P G(F(b⊗M c))

G(F(a⊗M b)⊗N F(c)) G(F(a)⊗N F(b⊗M c))

G(F((a⊗M b)⊗M c)) G(F(a⊗M (b⊗M c)))

αP

1⊗P G2

1⊗P [G](F2)

G2

[G](F2)

G2 ⊗P 1

[G](F2)⊗P 1

G2

[G](F2)

[G ○ F](αM)

[G]([F](αM))

G2

[G](F2 ⊗N 1)

G2

[G](1⊗N F2)

[G](αN)

1

2

3

4 5

(a) Derivation of the 2-path (G ○ F)α, after unfolding the definition of (G ○ F)2. The 2-path (1) is Gα; (2)

follows from [[G]](Fα); (3), (4) and (5) are instances of functoriality of application of functions.

eP ⊗P G(F(b)) G(F(b))

G(eN)⊗P G(F(b)) G(eN ⊗N F(b))

G(F(eM))⊗P G(F(b)) G(F(eM)⊗N F(b)) G(F(eM ⊗M b))

λP

G0 ⊗P 1

[G](F0)⊗P 1

G2 [G](F2)

[G ○ F](λM)[G]([F](λM))
G2

[G](F0 ⊗N 1)

[G](λN)
1

2
3

4

(b) Derivation of the 2-path (G ○ F)λ, after unfolding the definitions of (G ○ F)0 and (G ○ F)2. The 2-path

(1) is an instance of Gλ; (2) and (4) are instances of functoriality of application of functions; (3) follows

from [[G]](Fλ). The derivation of the 2-path (G ○ F)ρ is done similarly.

Figure 3.10: The composition G ○ F of two monoidal functors G and F is a monoidal functor.

110 3. COHERENCE FOR MONOIDAL GROUPOIDS

(G(a)⊗M G(b))⊗M G(c)

G(a⊗N b)⊗M G(c)

G((a⊗N b)⊗N c)

●

●

G(F(G(a)⊗M G(b)))⊗M G(F(G(c)))

G(F(G(a)⊗M G(b)))⊗M G(c)

G(F(G(a))⊗ F(G(b)))⊗M G(c)

G(F(G(a))⊗N F(G(b)))⊗M G(F(G(c)))

αM

G2 ⊗M 1

G2

[G](αN)

h

[G]((k⊗N k)⊗N k)

[G](F2)

h

h⊗M h

1⊗M h

[G](F2)⊗M 1

1⊗M h

[G](F2)⊗M 1

h⊗M 1

[G
](

k⊗
N

k)
⊗

M
1

[G](k⊗N k)⊗M h

1

2

3

4

5

6

7

Figure 3.11: Monoidal component Gα of the half-adjoint inverse G of the underlying func-

tion of a monoidal functor F ∶ MonGpd(M, N). The 2-paths (1) and (6) are obtained by the

definition of G2; (2), (3) and (4) are given by path algebra; (5) and (10) are provided by the

homotopy h; (7), (8) and (9) are instances of functoriality of application of functions (note

that [G](k) = h and [F](h) = k); (11) is derived from Fα; (12) is obtained by naturality of αN ;

(13) is obtained similarly to the composition of the 2-paths (1)–(9).

FIGURES IN PROOFS 111

G(a)⊗M (G(b)⊗M G(c))

G(a)⊗M G(b⊗N c)

G(a⊗N (b⊗N c))

G(F((G(a)⊗M G(b))⊗M G(c)))

G(F(G(a)⊗M (G(b)⊗M G(c))))

G(F(G(a)⊗M G(b))⊗N F(G(c)))

G(F(G(a))⊗N F(G(b)⊗M G(c)))

G((F(G(a))⊗N F(G(b)))⊗N F(G(c)))

G(F(G(a))⊗N (F(G(b))⊗N F(G(c))))

[G]([F](αM))

[G](F2)

[G](F2 ⊗N 1)

[G](F2)

[G](1⊗N F2)

[G](αN)

1⊗M G2

G2

h

[G](k⊗N (k⊗N k))

[G]([F](h⊗M h))

[G](k⊗N k)

G2

G2

8

9

10

11

12

13

112 3. COHERENCE FOR MONOIDAL GROUPOIDS

eM ⊗M G(b) G(b)

eM ⊗M G(F(G(b)))

G(F(G(b)))

G(F(eM))⊗M G(F(G(b)))

G(F(eM ⊗M G(b)))

●

●

●

G(eN)⊗M G(F(G(b))) G(eN ⊗N F(G(b)))

G(eN)⊗M G(b) G(eN ⊗N b)

λM

G2

1⊗M h

h

[G]([F](λM))

h

h⊗M hh⊗M 1

[G
]([

F
](h
⊗

M
h
))

h

[G](F2)

[G](k⊗N k)

[G
](F

2
)

G
0
⊗

M
1

[G
](F

0
)⊗

M
1

G2

G2

[G](F0 ⊗N 1)

[G
](λ

N
)

[G
](λ

N
)

G
0
⊗

M
1

1⊗M h [G](1⊗N k)

1

2

3

4 5

6 7 8 9

10

11

Figure 3.12: Monoidal component Gλ of the half-adjoint inverse G of the underlying func-

tion of a monoidal functor F ∶ MonGpd(M, N). The 2-paths (1) and (3) are provided by the

homotopy h; (2) and (6) are given by path algebra; (4) is the definition of G2; (5), (8) and (11)

are instances of functoriality of application of functions (note that [G](k) = h and [F](h) = k);

(7) is the definition of G0; (9) is derived from Fλ; (10) is an instance of naturality of λN .

FIGURES IN PROOFS 113

((l1 ++ l2)++ l3)++ l4

(l1 ++ l2)++ l3 ++ l4

l1 ++ l2 ++ l3 ++ l4

(l1 ++ l2 ++ l3)++ l4 l1 ++(l2 ++ l3)++ l4

αlist αlist

αlist ++1l4

αlist

1l1 ++αlist

(a) The 2-path Dlist(l1, l2, l3, l4) is produced by induction on l1.

(l2 ++ l3)++ l4

l2 ++ l3 ++ l4

l2 ++ l3 ++ l4

(l2 ++ l3)++ l4 (l2 ++ l3)++ l4

αlist 1

1l2 ++ l3 ++1l4

1

1nil ++ αlist

(b) The 2-path Dlist(nil, l2, l3, l4). Using (3.33), the diagram becomes trivial.

x ∶ ∶ ((l1 ++ l2)++ l3)++ l4

x ∶ ∶ (l1 ++ l2)++ l3 ++ l4

x ∶ ∶ l1 ++ l2 ++ l3 ++ l4

x ∶ ∶ (l1 ++ l2 ++ l3)++ l4 x ∶ ∶ l1 ++(l2 ++ l3)++ l4

[x ∶ ∶ −](αlist) [x ∶ ∶ −](αlist)

[x ∶ ∶ −](αlist)++1l4

[x ∶ ∶ −](αlist)

[x ∶ ∶ −](1l1)++ αlist

(c) The 2-path Dlist(x ∶ ∶ l1, l2, l3, l4), filled using [[x ∶ ∶ −]](Dlist(l1, l2, l3, l4)) recursively, together with

(3.34).

Figure 3.13: Coherence pentagon for ++.

114 3. COHERENCE FOR MONOIDAL GROUPOIDS

(FMG(idX)(a)⊗FMG(idX)(b))⊗FMG(idX)(c)

(a⊗ b)⊗ c

FMG(idX)(a)⊗ (FMG(idX)(b)⊗FMG(idX)(c))

a⊗ (b⊗ c)

(θid(a)⊗ θid(b))⊗ θid(c)

[idX](α)α

[recFMG(. . .)](α) α

θid(a)⊗ (θid(b)⊗ θid(c))

1

2

3

Figure 3.14: FMG, as a functor, respects identity; diagram for α. The 2-path in (1) is given by

a computation rule of the elimination principle of FMG(X); (2) is an instance of naturality of

α; (3) is obtained by path algebra. The diagrams for λ and ρ are similarly proved.

FIGURES IN PROOFS 115

(ψX,M(g)(FMG(h)(a))⊗M ψX,M(g)(FMG(h)(b)))⊗M ψX,M(g)(FMG(h)(c))

ψX,M(g)(FMG(h)((a⊗ b)⊗ c))

ψY,M(g ○ h)((a⊗ b)⊗ c)

ψX,M(g)(FMG(h)(a⊗ (b⊗ c)))

ψY,M(g ○ h)(a⊗ (b⊗ c))

ψY,M(g ○ h)(a)⊗M (ψY,M(g ○ h)(b)⊗M ψY,M(g ○ h)(c))

(θψ(a)⊗M θψ(b))⊗M θψ(c)

[ψY,M(g ○ h)](α)αM

[ψX,M(g) ○ FMG(h)](α) αM

θψ(a)⊗M (θψ(b)⊗M θψ(c))

1

3

2

Figure 3.15: The underlying homotopy θψ in the proof of naturality of ψX,M in X is achieved

via the elimination rules of ψX,M and FMG; these require certain 2-paths in M to be filled,

corresponding to the 1-path constructors of FMG(Y). This figure shows the 2-path for asso-

ciativity. The 2-paths (1) and (3) are given by the computation rules of ψX,M and FMG; (2) is

filled by naturality of αM. The terms on the top and bottom of the diagram are judgmentally

equal to the top-left and bottom-right corner of the square. The 2-paths in M corresponding

to the constructors for unitality are proved similarly.

116 3. COHERENCE FOR MONOIDAL GROUPOIDS

(ψX,M(ϕX,M(G))(a)⊗M ψX,M(ϕX,M(G))(b))⊗M ψX,M(ϕX,M(G))(c)

ψX,M(ϕX,M(G))((a⊗ b)⊗ c)

ψX,M(ϕX,M(G))(a⊗ (b⊗ c))

(G(a)⊗M G(b))⊗M G(c)

G(a)⊗M (G(b)⊗M G(c))

G(a⊗ b)⊗M G(c)

G(a)⊗M G(b⊗ c)

G((a⊗ b)⊗ c)

G(a⊗ (b⊗ c))

αM

1⊗M G2(b, c)

G2(a, b⊗ c)

G2(a, b)⊗M 1

G2(a⊗ b, c)

[G](α)

[ψX,M(ϕX,M(G))](α)
αM

χ(a)⊗M (χ(b)⊗M χ(c))

(χ(a)⊗M χ(b))⊗M χ(c)
1

2

3

Figure 3.16: The 2-path in M providing α′ in the definition of χ using the elimination prin-

ciple of FMG(X). The 2-path (1) is given by a computation rule of ψX,M; (2) is an instance

of naturality of αM; (3) is an instance of Gα. The term on the top is judgmentally equal to

the top-left corner of (2). The vertical paths correspond to the ones given by ⊗′, after (2.64):

indeed, there are 2-paths

χ((a⊗ b)⊗ c) ≡ (((χ(a)⊗M χ(b)) ⋅G2(a, b))⊗M χ(c)) ⋅G2(a⊗ b, c)

= ((χ(a)⊗M χ(b))⊗M χ(c)) ⋅ (G2(a, b)⊗M 1) ⋅G2((a⊗ b), c)

and

χ(a⊗ (b⊗ c)) ≡ χ(a)⊗M ((χ(b)⊗M χ(c)) ⋅G2(b, c)) ⋅G2(a, b⊗ c)

= (χ(a)⊗M (χ(b)⊗M χ(c))) ⋅ (1⊗M G2(b, c)) ⋅G2(a, b⊗ c).

The 2-paths for λ′ and ρ′ are obtained similarly.

FIGURES IN PROOFS 117

eM

eM G(e)ψX,M(ϕX,M(G))(e)

(ψX,M(ϕX,M(G)))0 G0

χ(e)
(a) The 2-path χ0 corresponding to the diagram in Fig. 3.17a is trivial, as (ψX,M(ϕX,M(G)))0 ≡ refleM by

definition and χ(e) ≡ G0 by computation rule of χ.

ψX,M(ϕX,M(G))(a)⊗M ψX,M(ϕX,M(G))(b)

ψX,M(ϕX,M(G))(a⊗ b) ψX,M(ϕX,M(G))(a⊗ b)

G(a)⊗M G(b) G(a⊗ b)

(ψX,M(ϕX,M(G)))2(a, b)

χ(a⊗ b)χ(a)⊗M χ(b)

G2(a, b)
(b) For a, b ∶ FMG(X), the 2-path χ2 corresponding to the diagram in is also trivial, since by definition

(ψX,M(ϕX,M(G)))2(a, b) ≡ reflψX,M(ϕX,M(G))(a⊗b),

while χ(a⊗ b) ≡ (χ(a)⊗M χ(b)) ⋅G2(a⊗ b) by computation rule of χ.

Figure 3.17: The 2-paths χ0 and χ2 in the definition of χ as a monoidal natural isomorphism.

118 3. COHERENCE FOR MONOIDAL GROUPOIDS

e⊗ J(l) J(l)

e⊗ J(l) J(l)J(nil)⊗ J(l) J(nil++ l)

λ

1

λ

[J](λlist) ≡ 1

Figure 3.18: Construction of the 2-path Jλ(l), after unfolding the definitions of J0 and J2. The

square is filled by path algebra.

e⊗ e e

e⊗ e e

J(nil)⊗ e J(nil)

J(nil)⊗ J(nil) J(nil++nil)

ρ

1

λ

[J](ρlist) ≡ 1

(a) The 2-path Jρ(nil) in the inductive definition of Jρ can be obtained by the additional coherence dia-

gram in Fig. 3.4c.

(ι(x)⊗ J(l))⊗ e ι(x)⊗ J(l)

ι(x)⊗ (J(l)⊗ e)

(ι(x)⊗ J(l))⊗ e ι(x)⊗ (J(l)⊗ e) ι(x)⊗ J(l ++nil)

J(x ∶ ∶ l)⊗ e J(x ∶ ∶ l)

J(x ∶ ∶ l)⊗ J(nil) J(x ∶ ∶ l ++nil)

ρ

1

α 1⊗ J2(l,nil)

[J]([x ∶ ∶ −](ρlist))
1⊗ [J](ρlist)1

1⊗ ρ
1

2 3

(b) The 2-path Jρ(x ∶ ∶ l) in the inductive definition of Jρ. The 2-path (1) is an instance of the additional

coherence diagram in Fig. 3.4b; (2) is given recursively by reflι(x) ⊗ Jρ(l); (3) is an instance of (3.51).

Figure 3.19: Construction of the 2-path Jρ(l) by induction on l, after unfolding the definitions

of J0, J2 and some path algebra.

FIGURES IN PROOFS 119

(J(nil)⊗ J(l2))⊗ J(l3)

(e⊗ J(l2))⊗ J(l3) e⊗ (J(l2)⊗ J(l3))

J(l2)⊗ J(l3) e⊗ J(l2 ++ l3)

J(l2 ++ l3) J(l2 ++ l3)

J(nil++ l2 ++ l3)

α

1⊗ J2(l2, l3)

λ

λ⊗ 1

J2(l2, l3)

[J](1) ≡ 1

λ

λ

1

2

3

(a) The 2-path Jα(nil, l2, l3) in the inductive definition of Jα. The 2-path (1) is an instance of the additional

coherence diagram in Fig. 3.4a; (2) is an instance of naturality of λ; (3) is trivial.

(J(x ∶ ∶ l)⊗ J(l2))⊗ J(l3)

((ι(x)⊗ J(l))⊗ J(l2))⊗ J(l3) (ι(x)⊗ J(l))⊗ (J(l2)⊗ J(l3))

(ι(x)⊗ (J(l)⊗ J(l2)))⊗ J(l3)

(ι(x)⊗ J(l ++ l2))⊗ J(l3) (ι(x)⊗ J(l))⊗ J(l2 ++ l3)

ι(x)⊗ (J(l ++ l2)⊗ J(l3)) ι(x)⊗ (J(l)⊗ J(l2 ++ l3))

ι(x)⊗ J((l ++ l2)++ l3) ι(x)⊗ J(l ++ l2 ++ l3)

J(x ∶ ∶ l ++ l2 ++ l3)

●

●

α

(1⊗ 1)⊗ J2(l2, l3)

α

1⊗ J2(l, l2 ++ l3)

α⊗ 1

(1⊗ J2(l, l2))⊗ 1

α

1⊗ J2(l ++ l2, l3)

[J]([x ∶ ∶ −](αlist))

1⊗ [J](αlist)

α

1⊗ (J2(l, l2)⊗ 1)

α

1⊗ (1⊗ J2(l2, l3))
1⊗ α

1

2

3

4

5

(b) The 2-path Jα(x ∶ ∶ l, l2, l3) in the inductive definition of Jα. The 2-path (1) is an instance of D; (2) and

(3) are instances of naturality of α; (4) is given recursively by reflι(x) ⊗ Jα(l, l2, l3); (5) is an instance of

(3.51).

Figure 3.20: Construction of the 2-path Jα(l1, l2, l3) by induction on l1, after unfolding the

definition of J2 and some path algebra.

120 3. COHERENCE FOR MONOIDAL GROUPOIDS

(a⊗ b)⊗ c a⊗ (b⊗ c)

(J(K(a))⊗ J(K(b)))⊗ J(K(c)) J(K(a))⊗ (J(K(b))⊗ J(K(c)))

J(K(a)++K(b))⊗K(c) J(K(a))⊗ J(K(b)++K(c))

J((K(a)++K(b))++K(c)) J(K(a)++K(b)++K(c))

J(K((a⊗ b)⊗ c)) J(K(a⊗ (b⊗ c)))

[id](α)

α
η(a)⊗ (η(b)⊗ η(c))

1⊗ J2

J2

(η(a)⊗ η(b))⊗ η(c)

α

J2 ⊗ 1

J2

[J](αlist)

[J]([K](α))

[J ○K](α)

1

2

3

4

5

(a) The 2-path for α′ in the inductive definition of η. The vertical path on the left is equal to η((a⊗ b)⊗ c),

since

η((a⊗ b)⊗ c) ≡ (η(a⊗ b)⊗ η(c)) ⋅ J2(K(a⊗ b), K(c))

≡ (((η(a)⊗ η(b)) ⋅ J2(K(a), K(b)))⊗ η(c)) ⋅ J2(K(a)++K(b), K(c))

= ((η(a)⊗ η(b))⊗ η(c)) ⋅ (J2(K(a), K(b))⊗ refl) ⋅ J2(K(a)++K(b), K(c))

using (2.64); similarly for the vertical path on the right. The 2-paths (1) and (5) are given by path algebra;

(2) is an instance of naturality of α; (3) is an instance of Jα; (4) is given by a computation rule of K.

Figure 3.21: The diagrams corresponding to α′, λ′ and ρ′ in the inductive definition of η, after

unfolding the definition of ⊗′ (vertical sides) and some path algebra.

FIGURES IN PROOFS 121

e⊗ b b

e⊗ J(K(b)) J(K(b))

J(nil++K(b)) J(K(b)) J(K(b)

J(K(e⊗ b)) J(K(b))

[id](λ)

λ
η(b)η(e)⊗ η(b)

≡ 1⊗ η(b)

λ

J2(nil, K(b)) ≡ λ

[J](λlist) ≡ 1

[J]([K](λ))

[J ○K](λ)

1

2

3

4

5

(b) The 2-path for λ′ in the inductive definition of η. The 2-paths (1) and (5) are given by path algebra;

(2) is an instance of naturality of λ; (3) is trivial, as J2(nil, K(b)) ≡ λ; (4) is given by a computation rule

of K.

a⊗ e a

J(K(a))⊗ e J(K(a))

J(K(a))⊗ J(K(e)) J(K(a))⊗ J(nil)

J(K(a)++nil) J(K(a))

J(K(a⊗ e)) J(K(a))

[id](ρ)

ρ
η(a)η(a)⊗ η(e)

≡ η(a)⊗ 1

ρ

J2

1⊗ J0 ≡ 1

J2 [J](ρlist)

[J]([K](ρ))

[J ○K](ρ)

1

2

3

4

5

6

7

(c) The 2-path for ρ′ in the inductive definition of η. The 2-paths (1) and (7) are given by path algebra; (2)

is an instance of naturality of ρ; (3) and (4) are trivial; (5) is an instance of Jρ; (6) is given by a computation

rule of K.

Figure 3.21: Continued.

122 3. COHERENCE FOR MONOIDAL GROUPOIDS

K(J(l1))++K(J(l2)) K(J(l1)⊗ J(l2)) K(J(l1 ++ l2))

l1 ++ l2 l1 ++ l2

K2 ≡ 1 [K](J2)

ϵ(l1 ++ l2)ϵ(l1)++ ϵ(l2)

id2 ≡ 1

ϵ(l1)++ ϵ(l2) ∗

(a) The sought diagram for ϵ2(l1, l2), filled by induction on l1, as shown in Figs. 3.22b and 3.22c. Since

K2 is the identity path, we will focus on (*), unfolding in each case the definition of J2.

K(e⊗ J(l2)) K(J(l2))

l2 l2

[K](λ)

λlist ≡ 1
ϵ(l2)1++ ϵ(l2) ϵ(l2)

1

1

2

3

(b) The 2-path ϵ2(nil, l2) in the inductive definition of ϵ2. The top-left term is judgmentally equal to

nil++K(J(l2)) ≡ K(J(l2)) and the bottom-left term is judgmentally equal to nil++ l2. The 2-path (1) is

given by a computation rule of K; (2) is an instance of (3.33); (3) is trivial.

Figure 3.22: Derivation of the 2-path ϵ2(l1, l2) for l1, l2 ∶ list(X).

FIGURES IN PROOFS 123

K(J(x ∶ ∶ l)⊗ J(l2)) x ∶ ∶ K(J(l)⊗ J(l2)) x ∶ ∶ K(J(l ++ l2))

x ∶ ∶ l ++ l2 x ∶ ∶ l ++ l2

[K](α)

αlist ≡ 1

[K](1⊗ J2(l, l2))

[x ∶ ∶ −]([K](J2(l, l2)))

[x ∶ ∶ −](ϵ(l ++ l2))
[x ∶ ∶ −](ϵ(l))

++ ϵ(l2) [x ∶ ∶ −](ϵ(l)++ ϵ(l2))

1 ≡ [x ∶ ∶ −](1)

1 2

3 4

(c) The 2-path ϵ2(x ∶ ∶ l, l2) in the inductive definition of ϵ2. The 2-path (1) is an instance of a computation

rule of K; observe that

[K](α) ∶ K(J(x ∶ ∶ l)⊗ J(l2)) ≡ K((ι(x)⊗ J(l))⊗ J(l2)) = K(ι(x)⊗ (J(l)⊗ J(l2)))

≡ x ∶ ∶ K(J(l)⊗ J(l2))

and that

αlist ∶ K(J(x ∶ ∶ l)⊗ J(l2)) ≡ x ∶ ∶ (nil++K(J(l)))++K(J(l2)) = x ∶ ∶ nil++K(J(l))++K(J(l2))

≡ x ∶ ∶ K(J(l)⊗ J(l2)),

is the identity path, since αlist(x ∶ ∶ nil, . . . , . . .) ≡ [x ∶ ∶ −](αlist(nil, . . . , . . .)) ≡ [x ∶ ∶ −](refl) ≡ refl. The

2-path (2) is an instance of (3.55), where

[K](1⊗ J2) ∶ x ∶ ∶ K(J(l)⊗ J(l2)) ≡ K(ι(x)⊗ (J(l)⊗ J(l2))) = K(ι(x)⊗ J(l ++ l2)) ≡ x ∶ ∶ K(J(l ++ l2)).

The 2-path (3) is an instance of (3.34), where the source of the arrows is judgmentally equal to

x ∶ ∶ (K(J(l))++K(J(l2))); (4) is given recursively by [[x ∶ ∶ −]](ϵ2(l, l2)).

Figure 3.22: Continued.

Chapter 4

Coherence for Symmetric

Monoidal Groupoids

A natural extension of the result presented in Chapter 3 concerns coherence for

symmetric monoidal categories. A symmetric monoidal structure on a category ex-

tends a monoidal structure by introducing a braiding for the monoidal product,

i.e., a natural isomorphism τa,b ∶ a ⊗ b → b ⊗ a, producing involutions that satisfy

Yang-Baxter relations (Fig. 4.2). Symmetric monoidal categories also satisfy a theo-

rem of coherence [ML98], stating that they can be strictified up to associativity and

unitality, but not symmetry. In particular, not every diagram in a free symmetric

monoidal category commutes; Fig. 4.1 shows an example of such a diagram. For

this reason, a coherence statement for symmetric monoidal categories is harder to

formulate than its non-symmetric counterpart, as it involves isolating the class of

commutative diagrams from the class of all diagrams in the category.

a⊗ a a⊗ a

τa,a

id

Figure 4.1: A non-commutative diagram in a free symmetric monoidal category.

In this chapter, we will adapt the results presented in Chapter 3 in order to ob-

tain a proof of coherence for symmetric monoidal groupoids via normalisation of

symmetric monoidal expressions. As we will see, univalence and function exten-

sionality will be needed in this presentation.

The content of this chapter has been formalized entirely; selected parts of the

formalization are featured in Appendix A.2.

125

126 4. COHERENCE FOR SYMMETRIC MONOIDAL GROUPOIDS

4.1 Symmetric Monoidal Groupoids

A symmetric monoidal groupoid is a groupoid endowed with a symmetric monoidal

structure, which features a monoidal product which is symmetric, and ensuing co-

herence diagrams. We use the definition and notation for groupoids from the previ-

ous chapter (Definition 3.9).

Definition 4.1. A symmetric monoidal structure on a type M is the data consisting

of a unit term and a product in M and families of paths and 2-paths witnessing 1-

coherent associativity, unitality with respect of the unit term, and symmetry of the

product; that is, given a type M, we define the type SymMonStructure(M) as the

Σ-type encoding the following data:

• terms eM ∶ M (unit) and ⊗M ∶ M → M → M (symmetric monoidal product);

• families of paths αM, λM, ρM (resp. associativity, left and right unitality) as in

Definition 3.11;

• a family of paths τM ∶ Π (a, b ∶ M) . a⊗M b = b⊗M a (symmetry);

• families of 2-paths DM, ▽M as in Definition 3.11, and 7M, M filling the coher-

ence diagrams depicted in Fig. 4.2, i.e.:

7M ∶ Π (a, b, c ∶ M) . αM(a, b, c) ⋅ τM(a, b⊗M c) ⋅ αM(b, c, a)
= (τM(a, b)⊗M reflc) ⋅ αM(b, a, c) ⋅ (reflb ⊗M τM(a, c)),

M ∶ Π (a, b ∶ M) . τM(a, b) ⋅ τM(b, a) = refla⊗Mb.

As for monoidal groupoids, we define a type of symmetric monoidal groupoids

as:

SymMonGpd ∶≡ Σ (M ∶ Gpd) .SymMonStructure(M)
and use the same notation for a symmetric monoidal groupoid M ∶ SymMonGpd

and its carrier.

Remark 4.2. Assuming univalence, the universe U (though not a 1-type) can be en-

dowed with a symmetric monoidal structure in several ways; for example:

• with the product type former × ∶ U → U → U as symmetric monoidal product

and the unit type 1 as unit of the structure;

• with the coproduct type former + ∶ U → U → U as symmetric monoidal product

and the empty type 0 as unit of the structure.

SYMMETRIC MONOIDAL GROUPOIDS 127

7M(a, b, c) ∶

(a⊗M b)⊗M c a⊗M (b⊗M c)

(b⊗M a)⊗M c (b⊗M c)⊗M a

b⊗M (a⊗M c) b⊗M (c⊗M a)

αM

τM

αM

τM ⊗M 1

αM

1⊗M τM

M(a, b) ∶ a⊗M b b⊗M a

τM

τM

Figure 4.2: Coherence diagrams 7 and in a symmetric monoidal groupoid.

In both cases, the families of paths αU , λU , ρU and τU are produced, via univalence,

by families of equivalences witnessing associativity, unitality (with respect to the

unit and the empty type, respectively) and symmetry of the product and coprod-

uct of types, while the coherence diagrams are obtained by “univalence algebra”

(Lemma 2.113). The symmetric monoidal structure induced by the coproduct of

types is discussed in more detail in Section 5.1; the one induced by the product of

types is obtained analogously.

Remark 4.3. The universe U∗ ∶≡ Σ (X ∶ U) . X of pointed types is supposed to find a

symmetric monoidal structure seeing the pointed type ⟨2, yes⟩ as unit and the smash

product ∧ ∶ U∗ → U∗ → U∗ as symmetric monoidal product. This can be defined, for

every ⟨A, a0⟩, ⟨B, b0⟩ ∶ U∗ as the type given by the HIT

A ∧ B ∶ ∶= ⟨−,−⟩ ∶ A → B → (A ∧ B) ∣ auxl, auxr ∶ A ∧ B

∣ gluel ∶ Π (a ∶ A) . ⟨a, b0⟩ = auxl ∣ gluer ∶ Π (b ∶ B) . ⟨a0, b⟩ = auxr,

pointed at ⟨a0, b0⟩. The efforts spent in defining a complete symmetric monoidal

structure are presented in [vD18, Section 4.3].1 There, the structural components

rely on notions of “pointed equivalences” and “pointed homotopies” rather than

paths and 2-paths, similarly to the structures described in Remark 4.2, whose pre-

sentation in terms of paths and 2-paths is entirely cosmetic and solely based on

established equivalences between types.

1Joint work of Floris van Doorn and S. P.

128 4. COHERENCE FOR SYMMETRIC MONOIDAL GROUPOIDS

Remark 4.4. There is a projection SymMonStructure(M) → MonStructure(M) for

every type M. Moreover, the naturality squares for associativity and unitality (in

Lemma 3.15) and all diagrams commuting for a monoidal structure (e.g. Lemma 3.16)

do, obviously, commute also for the data given by a symmetric monoidal structure.

As we did for (non-symmetric) monoidality, we will show the proof of commu-

tativity of certain diagrams, which we will encounter in this thesis in the proof of

some statements.

Lemma 4.5. Symmetry in a monoidal structure is natural in both arguments, i.e., given

paths p ∶ a =M a′ and q ∶ b =M b′, there is a 2-path filling the diagram in Fig. 4.3.

Proof. By induction on p and q.

Lemma 4.6. The diagrams in Fig. 4.4 commute for every a, b, c ∶ M.

Proof. Commutativity of the diagram in Fig. 4.4a is shown in Fig. 4.12. Commuta-

tivity of the diagrams in Fig. 4.4b and Fig. 4.4c is proved by glueing instances of M

to, respectively, the diagram in Fig. 4.4a and 7M(a, b, c) [see also Kel64; JS93].

We can extend the definition of monoidal functors to include symmetry.

Definition 4.7. The type of (strong) symmetric monoidal functors between two

symmetric monoidal groupoids ⟨M, eM,⊗M, . . .⟩ and ⟨N, eN ,⊗N , . . .⟩ is defined as

the Σ-type encoding the following data:

• a functor F ∶ M → N, a path F0 ∶ eN = F(eM) and a family of paths F2 ∶

Π (a, b ∶ M) . F(a)⊗N F(b) = F(a⊗M b) as in Definition 3.17;

• families of 2-paths Fα, Fλ, Fρ as in Definition 3.17 and Fτ corresponding to the

diagram in Fig. 4.5 for every a, b ∶ M.

We will denote this type by SymMonGpd(M, N) and equate, in the notation, a sym-

metric monoidal functor and its underlying functor, as we did for MonGpd.

The identity symmetric monoidal functor idM ∶ SymMonGpd(M, M) and the

composition (G ○ F) ∶ SymMonGpd(M, P) of any two symetric monoidal functors

F ∶ SymMonGpd(M, N) and G ∶ SymMonGpd(N, P) are defined in the same way

as for (non-symmetric) monoidal functors; in particular, the 2-path (G ○ F)τ is dis-

played in Fig. 4.13.

There is no distinction between the notions of monoidal natural isomorphism

and its symmetric counterpart, other than the fact that they refer to different classes

of functors.

SYMMETRIC MONOIDAL GROUPOIDS 129

a⊗M b b⊗M a

a′ ⊗M b′ b′ ⊗M a′

τM

q⊗M pp⊗M q

τM

Figure 4.3: Naturality of τM.

a⊗M eM eM ⊗M a

a

τM

ρM λM

(a)

a⊗M eM eM ⊗M a

a

τM

ρM λM

(b)

(a⊗M b)⊗M c a⊗M (b⊗M c)

(b⊗M a)⊗M c (b⊗M c)⊗M a

b⊗M (a⊗M c) b⊗M (c⊗M a)

αM

τM

αM

τM ⊗M 1

αM

1⊗M τM

(c)

Figure 4.4: Additional coherence diagrams in a symmetric monoidal category.

Fτ

F(a)⊗N F(b) F(b)⊗N F(a)

F(a⊗M b) F(b⊗M a)

τN

F2F2

[F](τM)
Figure 4.5: Coherence condition for symmetric monoidal functors.

130 4. COHERENCE FOR SYMMETRIC MONOIDAL GROUPOIDS

Definition 4.8. The type SymMonFunM,N(F, G) of (symmetric) monoidal natural

isomorphisms between symmetric monoidal functors F and G ∶ SymMonGpd(M, N)
is defined as the Σ-type encoding a homotopy θ and families of 2-paths θ0 and

θ2 as appearing in Definition 3.18. A symmetric monoidal equivalence M ≃ N

consists of two symmetric monoidal functors F and G in opposite directions, to-

gether with monoidal natural isomorphisms ϵ ∶ SymMonFunM,M(G ○ F, idM) and

η ∶ SymMonFunN,N(idN , F ○G). Note that the symmetric aspect imposes no further

conditions with respect to Definition 3.18.

Remark 4.9. Similarly to Lemma 3.20, an equivalence between the underlying types

of two symmetric monoidal groupoids, where one of the half-adjoint functions is a

symmetric monoidal functor, gives the other half-adjoint the structure of a symmet-

ric monoidal functor.

The notions of functor from types to symmetric monoidal groupoids, and of

freeness of those, are defined in the same way as those given in Section 3.3.

4.2 Symmetric Lists

In the proof of coherence for monoidal groupoids from Chapter 3, the terms in

list(X) played the role of normal forms of monoidal expressions; indeed, in FMG(X)
the distinction between e.g. terms (a⊗ b)⊗ c and a⊗(b⊗ c) is ingrained in the defini-

tion of the constructor⊗ (and reconciled by the constructor α), while associativity of

the monoidal product in list(X) is simply a statement about a function which is de-

fined a posteriori. Informally, the type list(X) should represent a free strict monoidal

groupoid, even though strictness is not a property we can express (as discussed

in Section 3.2). This can be seen from the fact that αlist, λlist and ρlist compute to

the identity path when evaluated to concrete lists (see the discussion in Section 4.4),

although this is not a statement that can be expressed uniformly, except for λlist. Nor-

malisation of monoidal expressions involves “forgetting” products −⊗ e and e⊗−,

and a choice of directions of the brackets (for example, K and J in Definitions 3.49

and 3.50 make it so that the the brackets are right-leaning in normal forms).

For normal forms of symmetric monoidal expressions, we again require associa-

tivity and unitality to be “invisible”, while symmetry will be related to groups of

permutations. In this sense, we want to build a permutative groupoid from the type of

lists, identifying those lists in the same orbit under the action of symmetric groups;

that is, modulo homotopy, we want one path between any two lists for every dis-

tinct permutation that rearranges the elements of one into the other. We will use as

SYMMETRIC LISTS 131

a reference the following standard (informal) presentation of the symmetric group

Sn of order n with generators and relations: the groups S0 and S1 are trivial, while

Sn+2 ∶=
(a1, . . . , an+1)

a2
i = 1, ai+1aiai+1 = aiai+1ai, aiaj = ajai for ∣i − j∣ ≥ 2.

(4.10)

is the quotient of the free group on {a1, . . . , an+1} by the specified relations.

Throughout this section, X is a type.

Definition 4.11 (Symmetric lists). We define the type slist(X) of symmetric (un-

ordered) lists as the following ap-recursive, 1-truncated HIT:2

slist(X) ∶ ∶= nil ∶ slist(X)
∣ cons ∶ X → slist(X)→ slist(X) used with infix notation ∶ ∶

∣ swap ∶ Π (x, y ∶ X, l ∶ slist(X)) . x ∶ ∶ y ∶ ∶ l = y ∶ ∶ x ∶ ∶ l

∣ double ∶ Π (x, y ∶ X, l ∶ slist(X)) . swapx,y,l ⋅ swapy,x,l = reflx ∶∶ y ∶∶ l

∣ triple ∶ Π (x, y, z ∶ X, l ∶ slist(X)) . (. . .)
∣ Tslist ∶ IsHGpd(slist(X)),

where triplex,y,z,l is the 2-path in Fig. 4.6.

x ∶ ∶ y ∶ ∶ z ∶ ∶ l y ∶ ∶ x ∶ ∶ z ∶ ∶ l

x ∶ ∶ z ∶ ∶ y ∶ ∶ l y ∶ ∶ z ∶ ∶ x ∶ ∶ l

z ∶ ∶ x ∶ ∶ y ∶ ∶ l z ∶ ∶ y ∶ ∶ x ∶ ∶ l

swapx,y,z ∶∶ l

[y ∶ ∶ −](swapx,z,l)

swapy,z,x ∶∶ l

[x ∶ ∶ −](swapy,z,l)

swapx,z,y ∶∶ l

[z ∶ ∶ −](swapx,y,l)

Figure 4.6: The constructor triple in the definition of slist(X).

In the definition above, we see a correspondence between the generator an+1 in

(4.10) and the 1-constructor swap of slist(X) (transposition of the first two elements

in a list), while the other generators are related to the application [x ∶ ∶ −] to a

2We thank S. Awodey for making us aware in June 2019 that the same HIT construction had been

considered, in parallel, by V. Choudhury and M. Fiore [CF19]. Compare also with the construction of

Kuratowski finite sets as listed finite sets in [Fru+18].

132 4. COHERENCE FOR SYMMETRIC MONOIDAL GROUPOIDS

“swap”, for some x (matching the inclusions Sn ↪ Sn+1). The first two relations in

(4.10) correspond to the 2-constructors double and triple, while the last one is due

to naturality of swap in its third argument [compare ML98, Chapter XI, proof of

Theorem 1]. In this sense, informally, we have that the loop space of slist(1) at the

(only) list of n element represents Sn, or better, the classifying space of all symmetric

groups is represented by the type slist(1). We will investigate this claim in Chapter 5.

The constructor swap is natural in all arguments; as mentioned, we are interested

in naturality in the list argument, which is stated in the following lemma.

Lemma 4.12. For every x, y ∶ X and p ∶ l =slist(X) l′, the diagram in Fig. 4.7 commutes.

Proof. By induction on p.

x ∶ ∶ y ∶ ∶ l y ∶ ∶ x ∶ ∶ l

x ∶ ∶ y ∶ ∶ l′ y ∶ ∶ x ∶ ∶ l′

swapx,y,l

[y ∶ ∶ −]([x ∶ ∶ −](p))[x ∶ ∶ −]([y ∶ ∶ −](p))

swapy,x,l

Figure 4.7: Naturality of swap.

We argue that slist(X) is the carrier of a symmetric monoidal groupoid. In order

to show this, we need to provide a monoidal product. Such a monoidal product

is a “symmetric” version of list append, defined in the same way as ++ for lists

on the 0-constructors of slist(X), so that it is compatible with the additional 1- and

2-constructors.

We remark that, from this point on, function extensionality needs to be assumed.

Definition 4.13 (Symmetric list append). The function −++− ∶ slist(X)→ slist(X)→
slist(X) is defined by induction (on its first argument):

• a term nil′ ∶ slist(X)→ slist(X) is given by idslist(X);

• given x ∶ X and a function f ∶ slist(X)→ slist(X), a term

cons′(x, f) ∶ slist(X)→ slist(X)

is given by cons(x) ○ f ;

SYMMETRIC LISTS 133

• given x, y ∶ X and a function f ∶ slist(X)→ slist(X), a term

swap′x,y, f ∶ cons
′(x, cons′(y, f)) = cons′(y, cons′(x, f)) (4.14)

is obtained by function extensionality; indeed, the identity type in (4.14) is judg-

mentally equal to

cons(x) ○ cons(y) ○ f = cons(y) ○ cons(x) ○ f ,

which is inhabited by fxt(l ↦ swapx,y, f(l));
• given x, y ∶ X and a function f ∶ slist(X)→ slist(X), a term

double′x,y, f ∶ swap
′

x,y, f ⋅ swap
′

y,x, f = refl(l↦cons′(x,cons′(y, f))(l))

is obtained along the following chain of identities:

swap′x,y, f ⋅ swap
′

y,x, f ≡ fxt(l ↦ swapx,y, f(l)) ⋅ fxt(l ↦ swapy,x, f(l))
= fxt(l ↦ swapx,y, f(l) ⋅ swapy,x, f(l)) by Lemma 2.117

= fxt(l ↦ reflx ∶∶ y ∶∶ f(l)) by [fxt](fxt(l ↦ doublex,y, f(l)))
= refl(l↦x ∶∶ y ∶∶ f(l)) by Lemma 2.117

≡ refl(l↦cons′(x,cons′(y, f))(l));

• given x, y, z ∶ X and a function f ∶ slist(X)→ slist(X), a term

triple′x,y,z, f ∶ swap
′

x,y,cons′(z, f) ⋅ [cons′(y)](swap′x,z, f) ⋅ swap′y,z,cons′(x, f)

= [cons′(x)](swap′y,z, f) ⋅ swap′x,z,cons′(y, f) ⋅ [cons′(z)](swap′x,y, f)
is obtained first by noticing that there is a 2-path

[cons′(a)](swap′b,c,g) = fxt(l ↦ [a ∶ ∶ −](swapb,c,g(l))),
for every a, b, c ∶ X and g ∶ slist(X) → slist(X) (by Lemma 2.118), and then using

Lemma 2.117 and [fxt](fxt(l ↦ triplex,y,z, f(l))) similarly to the case for double′.

• the type of functions slist(X)→ slist(X) is a 1-type, since the target type slist(X)
is (Remark 2.75).

Some of the computation rules of −++− state that, for every x, y ∶ X and l ∶ slist(X):
(nil++−) ≡ idslist(X); (4.15)

((x ∶ ∶ l)++−) ≡ cons(x) ○ (l ++−); (4.16)

[k ↦ (k++−)](swapx,y,l) = fxt(l′ ↦ swapx,y,l ++ l′); (4.17)

the latter identity is between terms in the type of identities between functions:

(l′ ↦ x ∶ ∶ y ∶ ∶ l ++ l′) =(slist(X)→slist(X)) (l′ ↦ y ∶ ∶ x ∶ ∶ l ++ l′).

134 4. COHERENCE FOR SYMMETRIC MONOIDAL GROUPOIDS

Remark 4.18 (Notation). We use for ++ in slist(X) the same notational conventions

as in list(X): the operation associates to the right, and we will omit parentheses in

expressions such as x ∶ ∶ l1 ++ l2 (see Remark 2.35).

Lemma 4.19. For every x, y ∶ X and l1, l2 ∶ slist(X), there is a 2-path

[−++ l2](swapx,y,l1
) = swapx,y,l1 ++ l2

. (4.20)

For every x ∶ X and paths p ∶ l1 =slist(X) l2, p ∶ l3 =slist(X) l4, there is a 2-path

[x ∶ ∶ −](p)++ q = [x ∶ ∶ −](p++ q). (4.21)

Proof. We have:

[−++ l2](swapx,y,l1
) = [(−)(l2)]([l ↦ (l ++−)](swapx,y,l1

)) by path algebra

= [(−)(l2)](fxt(l′ ↦ swapx,y,l1 ++ l′)) via (4.17)

= swapx,y,l1 ++ l2
by (2.115),

proving (4.20) for every x, y, l1 and l2. A term in (4.21) is obtained by induction on

p and q.

We can now prove that the operation ++ is a symmetric monoidal product for

slist(X).
Lemma 4.22. The operation ++ is associative, i.e., we construct a term:

αslist ∶ Π (l1, l2, l3 ∶ slist(X)) . (l1 ++ l2)++ l3 = l1 ++ l2 ++ l3.

Proof. We proceed by induction on l1, following the scheme for elimination in fam-

ilies of paths in a 1-type (which are 0-types):

• given l2, l3 ∶ slist(X), we need a term

nil′(l2, l3) ∶ (nil++ l2)++ l3 = nil++ l2 ++ l3.

Since both sides of the identity are judgmentally equal to l2 ++ l3, we can define

nil′(l2, l3) ∶≡ refll2 ++ l3 ;

• given x ∶ X and l1, l2, l3 ∶ slist(X), and assuming the inductive hypothesis

h ∶ (l1 ++ l2)++ l3 = l1 ++ l2 ++ l3, (4.23)

we need a term

cons′(x, l1, l2, l3, h) ∶ (x ∶ ∶ l1 ++ l2)++ l3 = x ∶ ∶ l1 ++ l2 ++ l3.

SYMMETRIC LISTS 135

As the left-hand side is judgmentally equal to x ∶ ∶ (l1 ++ l2)++ l3, we can define

cons′(x, l1, l2, l3, h) ∶≡ [x ∶ ∶ −](h);

• given x, y ∶ X, l1, l2, l3 ∶ slist(X) and an inductive hypothesis h as in (4.23),

we need a term swap′(x, y, l1, l2, l3, h) filling the outer diagram in Fig. 4.14; its

construction is displayed in the same figure.

All other requirements are trivially fulfilled by the truncation level of the target

types. The definition above makes αslist compute as follows, for every x ∶ X and l1,

l2, l3 ∶ slist(X):
αslist(nil, l2, l3) ≡ refll2 ++ l3 ,

αslist(x ∶ ∶ l1, l2, l3) ≡ [x ∶ ∶ −](αslist(l1, l2, l3)).
Lemma 4.24. The operation ++ satisfies left and right unitality, i.e., we construct terms:

λslist ∶ Π (l ∶ slist(X)) .nil++ l = l,

ρslist ∶ Π (l ∶ slist(X)) . l ++nil = l.

Proof. Left unitality is trivial: since nil++ l ≡ l for every l ∶ slist(X), we can define

λslist(l) ∶≡ refll . For right unitality, we proceed by induction on l, similarly to the

proof of associativity in Lemma 4.22:

• we need a term nil′ ∶ nil++nil = nil, which can be defined as nil′ ∶≡ reflnil;

• given x ∶ X, l ∶ slist(X) and assuming the inductive hypothesis h ∶ l ++nil = l, we

need a term

cons′(x, l, h) ∶ x ∶ ∶ l ++nil = x ∶ ∶ l;

this can be defined as cons′(x, l, h) ∶≡ [x ∶ ∶ −](h);
• given x, y ∶ X, l ∶ slist(X) and the inductive hypothesis h ∶ l ++nil = l, we need

a term swap′(x, y, l, h) filling the outer diagram in Fig. 4.15; its construction is

displayed in the same figure.

The definition above makes ρslist compute as follows, for every x ∶ X and l ∶ slist(X):
ρslist(nil) ≡ reflnil,

ρslist(x ∶ ∶ l) ≡ [x ∶ ∶ −](ρslist(l)).

Symmetry of ++ is less straightforward, and we will need a few preliminary

results.

136 4. COHERENCE FOR SYMMETRIC MONOIDAL GROUPOIDS

Lemma 4.25. For every x ∶ X and l2 ∶ slist(X), there is a term

Qx,l2 ∶ Π (l1 ∶ slist(X)) . x ∶ ∶ l1 ++ l2 = l1 ++ x ∶ ∶ l2. (4.26)

Proof. By induction on l1:

• we need a term nil′x,l2
∶ x ∶ ∶ nil++ l2 = nil++ x ∶ ∶ l2. Both sides of the identity are

judgmentally equal to x ∶ ∶ l2, so we can define nil′ ∶≡ reflx ∶∶ l2 ;

• given y ∶ X, l1 ∶ slist(X) and the inductive hypothesis

h ∶ x ∶ ∶ l1 ++ l2 = l1 ++ x ∶ ∶ l2, (4.27)

we need a term

cons′x,l2
(y, l1, h) ∶ x ∶ ∶ y ∶ ∶ l1 ++ l2 = y ∶ ∶ l1 ++ x ∶ ∶ l2.

This can be given by the following concatenation:

x ∶ ∶ y ∶ ∶ l1 ++ l2 = y ∶ ∶ x ∶ ∶ l1 ++ l2 by swapx,y,l1 ++ l2

= y ∶ ∶ l1 ++ x ∶ ∶ l2 by [y ∶ ∶ −](h);

• given y, z ∶ X, l1 ∶ slist(X) and an inductive hypothesis h as in (4.27), we need

a term swap′x,l2
(y, z, l1, h) filling the outer diagram in Fig. 4.16; the proof is dis-

played in the same figure.

The given definition makes Qx,l2 compute as follows, for every y ∶ X and l2 ∶ slist(X):

Qx,l2(nil) ≡ reflx ∶∶ l2 ,

Qx,l2(y ∶ ∶ l1) ≡ swapx,y,l1 ++ l2
⋅ [y ∶ ∶ −](Qx,l2(l1)).

Lemma 4.28. For every x, y ∶ X and l1 ∶ slist(X), there is a family of 2-paths Rx,y,l1(l2),
for l2 ∶ slist(X), filling the diagram in Fig. 4.8.

Proof. We proceed by induction on l2, following the scheme for elimination into a

family of 2-paths in a groupoid (which are (−1)-types). We need:

• a 2-path nil′x,y,l1
, corresponding to the diagram in Fig. 4.8 for l2 ≡ nil; this is

trivially given, as the vertical paths compute to identity paths (unfolding the

definition of Q), while the definition of ++ makes the path on the bottom judg-

mentally equal to [idslist(X)](swapx,y,l1
), which is equal by path algebra to the

path swapx,y,l1
on the top;

SYMMETRIC LISTS 137

x ∶ ∶ y ∶ ∶ l2 ++ l1 y ∶ ∶ x ∶ ∶ l2 ++ l1

x ∶ ∶ l2 ++ y ∶ ∶ l1 y ∶ ∶ l2 ++ x ∶ ∶ l1

l2 ++ x ∶ ∶ y ∶ ∶ l1 l2 ++ y ∶ ∶ x ∶ ∶ l1

swapx,y,l2 ++ l1

[y ∶ ∶ −](Qx,l1(l2))

Qy,x ∶∶ l1(l2)

[x ∶ ∶ −](Qy,l1(l2))

Qx,y ∶∶ l1(l2)

[l2 ++−](swapx,y,l1
)

Figure 4.8: The 2-path Rx,y,l1(l2).

• given z ∶ X, l1 ∶ slist(X) and an inductive hypothesis h corresponding to the 2-

path shown in Fig. 4.8, we need a term cons′x,y,l1
(z, l1, h) filling the outer diagram

in Fig. 4.18; the proof is displayed in the same figure.

Lemma 4.29. The operation ++ is symmetric, i.e., we construct a term:

τslist ∶ Π (l1, l2 ∶ slist(X)) . l1 ++ l2 = l2 ++ l1.

Proof. Finding such a term requires nested HIT-elimination (that is, induction on l1

and, for each of the requirements, induction on l2). The lemmata proved above help

keeping this proof organized; induction on l1 requires us to provide:

• a term nil′ ∶ Π (l2 ∶ slist(X)) .nil++ l2 = l2 ++nil, which can be defined in the same

way as ρslist;

• given x ∶ X, l1 ∶ slist(X) and assuming the inductive hypothesis

h ∶ Π (l2 ∶ slist(X)) . l1 ++ l2 = l2 ++ l1; (4.30)

a term

cons′(x, l1, h) ∶ Π (l2 ∶ slist(X)) . x ∶ ∶ l1 ++ l2 = l2 ++ x ∶ ∶ l1.

This can be given, for every l2 ∶ slist(X), by the following chain of identities:

x ∶ ∶ l1 ++ l2 = x ∶ ∶ l2 ++ l1 by [x ∶ ∶ −](h(l2))
= l2 ++ x ∶ ∶ l1 by Qx,l1(l2),

with Q defined in Lemma 4.25;

• given x, y ∶ X, l1 ∶ slist(X) and an inductive hypothesis h as in (4.30), a family

of 2-paths swap′(x, y, l1, h, l2) filling the outer diagram in Fig. 4.17 for every l2 ∶

slist(X); the figure displays the construction, which makes use of the definition

of R given in Lemma 4.28.

138 4. COHERENCE FOR SYMMETRIC MONOIDAL GROUPOIDS

From the definition, τslist computes as follows, for x, y ∶ X and l1, l2 ∶ slist(X):
τslist(nil,nil) ≡ reflnil,

τslist(nil, y ∶ ∶ l2) ≡ [y ∶ ∶ −](τslist(nil, l2)),
τslist(x ∶ ∶ l1,nil) ≡ [x ∶ ∶ −](τslist(l1,nil)) ⋅ reflx ∶∶ l1 ,

τslist(x ∶ ∶ l1, y ∶ ∶ l2) ≡ [x ∶ ∶ −](τslist(l1, y ∶ ∶ l2))
⋅ swapx,y,l2 ++ l1

⋅ [y ∶ ∶ −](Qx,l1(l2)).

All is left to do is to verify the coherence diagrams.

Lemma 4.31. Associativity and unitality of ++, defined as αslist, λslist and ρslist in Lem-

mata 4.22 and 4.24, satisfy the coherence pentagon and triangle (Definition 3.11); these will

be named Dslist and▽slist.

Proof. Both claims are proved by elimination on the leftmost list. The scheme for

elimination into families of 2-paths in a 1-type only requires to provide 2-paths

when the leftmost list is nil and when it is x ∶ ∶ l for some x ∶ X and l ∶ slist(X),
provided recursively a 2-path for when it is l. The proof follows the one given in

Remark 3.32 (Fig. 3.13) for list append.

For the diagrams involving symmetry, we will make use, again, of a preliminary

result.

Lemma 4.32. For every x ∶ X and l1, l3 ∶ slist(X), there is a family of 2-paths Hx,l1,l3(l2)
for l2 ∶ slist(X), filling the diagram in Fig. 4.9, for αslist, Q and τslist constructed in Lem-

mata 4.22, 4.25 and 4.29.

Proof. We again use the elimination principle of slist(X) for families of 2-paths in a

groupoid, where induction is performed on l2:

• the derivation of a 2-path nil′x,l1,l3
is shown in Fig. 4.19a;

• the derivation of a 2-path cons′x,l1,l3
(y, l2, h), for y ∶ X, l2 ∶ slist(X) and the in-

ductive hypothesis h corresponding to the 2-path shown in Fig. 4.9, is shown in

Fig. 4.19b.

Lemma 4.33. Associativity and symmetry of ++, defined as αslist and τslist in Lemmata 4.22

and 4.29, satisfy the coherence hexagon (Definition 4.1), i.e., there is a term

7slist ∶ Π (l1, l2, l3 ∶ slist(X)) .

αslist(l1, l2, l3) ⋅ τslist(l1, l2 ++ l3) ⋅ αslist(l2, l3, l1)
= (τslist(l1, l2)++ refll3) ⋅ αslist(l2, l1, l3) ⋅ (refll2 ++ τslist(l1, l3)).

SYMMETRIC LISTS 139

x ∶ ∶ (l2 ++ l1)++ l3

x ∶ ∶ l2 ++ l1 ++ l3

x ∶ ∶ l2 ++ l3 ++ l1

x ∶ ∶ (l2 ++ l3)++ l1

(l2 ++ x ∶ ∶ l1)++ l3

(l2 ++ l3)++ x ∶ ∶ l1

l2 ++ x ∶ ∶ l1 ++ l3

l2 ++ x ∶ ∶ l3 ++ l1

l2 ++ l3 ++ x ∶ ∶ l1

[x ∶ ∶ −](αslist)

[x ∶ ∶ −](1++ τslist)

[x ∶ ∶ −](αslist)

Qx,l1(l2 ++ l3)

αslist

Qx,l1(l2)++1

αslist

1++[x ∶ ∶ −](τslist)

1++Qx,l1(l3)

Figure 4.9: The 2-path Hx,l1,l3(l2).

Proof. We prove the claim by induction on l1 and l2, using nested instances of the

elimination principle of slist(X), for which we only need to provide terms corre-

sponding to the 0-constructors nil and cons:

• the 2-path 7slist(nil,nil, l3) is shown in Fig. 4.20a for every l3 ∶ slist(X);
• given y ∶ X, l2 and, as inductive hypothesis, 7slist(nil, l2, l3) for every l3 ∶ slist(X),

the 2-path 7slist(nil, y ∶ ∶ l2, l3) is derived for every l3 ∶ slist(X) as in Fig. 4.20b;

• given x ∶ X, l1 ∶ slist(X) and, as inductive hypothesis, 7slist(l1, l2, l3) for every l2,

l3 ∶ slist(X), the 2-path 7slist(x ∶ ∶ l1, l2, l3) is derived for every l3 ∶ slist(X) as in

Fig. 4.20c (which uses the 2-path of H defined in Lemma 4.32 by induction on

l2).

Lemma 4.34. Symmetry of ++, defined as τslist in Lemma 4.29, satisfies the coherence bigon

(Definition 4.1), i.e., there is a term

slist ∶ Π (l1, l2 ∶ slist(X)) . τslist(l1, l2) ⋅ τslist(l2, l1) = refll1 ++ l2 .

Proof. Once again, we prove the claim by induction on l1 and l2, using nested in-

stances of the elimination principle of slist(X), for which we only need to provide

terms corresponding to the 0-constructors (nil and cons):

140 4. COHERENCE FOR SYMMETRIC MONOIDAL GROUPOIDS

• the 2-path slist(nil,nil) is trivial, as τslist(nil,nil) ≡ reflnil;
• given y ∶ X, l2 ∶ slist(X) and assuming as inductive hypothesis a term

slist(nil, l2) ∶ τslist(nil, l2) ⋅ τslist(l2,nil) = refll2 ,

a term slist(nil, y ∶ ∶ l2) can be obtained from [[y ∶ ∶ −]](slist(nil, l2)), since

τslist(nil, y ∶ ∶ l2) ≡ [y ∶ ∶ −](τslist(nil, l2)) and τslist(y ∶ ∶ l2,nil) ≡ [y ∶ ∶ −](l2,nil) ⋅
refly ∶∶ l ;

• given x ∶ X, l1 ∶ slist(X), and assuming as inductive hypothesis a term

slist(l1, l2) ∶ τslist(l1, l2) ⋅ τslist(l2, l1) = refll1 ++ l2 (4.35)

for every l2 ∶ slist(X), a term slist(x ∶ ∶ l1,nil) can be obtained, similarly to the

previous case, from [[x ∶ ∶ −]](slist(l1,nil));
• given x, y ∶ X, l1, l2 ∶ slist(X), and assuming the inductive hypothesis as in (4.35)

and a further inductive hypothesis

slist(x ∶ ∶ l1, l2) ∶ τslist(x ∶ ∶ l1, l2) ⋅ τslist(l2, x ∶ ∶ l1) = reflx ∶∶ l1 ++ l2 ,

a term slist(x ∶ ∶ l1, y ∶ ∶ l2) can be obtained as shown in Fig. 4.21.

Corollary 4.36. The operation ++ is a symmetric monoidal product for slist(X).
Proof. Follows from the lemmata in this section.

4.3 Coherence for Symmetric Monoidal Groupoids

Similarly to the construction of FMG(X) in Chapter 3, we will define, for a type X,

a free symmetric monoidal groupoid FSMG(X) as a HIT with constructors typed

according to the definition of a free symmetric monoidal structure. Coherence for

symmetric monoidal groupoids will entail showing that, for every 0-type X, there

is a symmetric monoidal equivalence

FSMG(X) ≃ slist(X) (4.37)

between FSMG(X) and the “simpler” symmetric monoidal groupoid slist(X), which

does not impose associativity and unitality of its product as constructors (these

have been proved in Lemma 4.22 and Lemma 4.24 instead).

COHERENCE FOR SYMMETRIC MONOIDAL GROUPOIDS 141

Definition 4.38 (FSMG). Given a type X ∶ U , we define the ap-recursive, 1-truncated

HIT FSMG(X)with the following constructors:

FSMG(X) ∶ ∶= e ∶ FSMG(X) ∣ ι ∶ X → FSMG(X)
∣ ⊗ ∶ FSMG(X)→ FSMG(X)→ FSMG(X)
∣ α ∶ Π (a, b, c ∶ FSMG(X)) . (a⊗ b)⊗ c = a⊗ (b⊗ c)
∣ λ ∶ Π (b ∶ FSMG(X)) . e⊗ b = b ∣ ρ ∶ Π (a ∶ FSMG(X)) . a⊗ e = a

∣ τ ∶ Π (a, b ∶ FSMG(X)) . a⊗ b = b⊗ a

∣ D ∶ . . . ∣ ▽ ∶ . . . ∣ 7 ∶ . . . ∣ ∶ . . .

∣ T ∶ IsHGpd(FSMG(X)),

where D, ▽, 7 and are families of 2-path constructors corresponding to the co-

herence diagrams of a symmetric monoidal groupoid. The elimination principle

follows the scheme given in Section 2.6.

The construction of FSMG is functorial: the function

FSMG ∶≡ (X ↦ ⟨⟨FSMG(X), T⟩, e,⊗, α, λ, ρ, τ, D,▽, 7, ⟩) (4.39)

is a functor, as seen for FMG in Lemma 3.38. Moreover, FSMG(X) is freely generated

by X.

Lemma 4.40. The functor FSMG in (4.39) is free.

Proof. The proof follows closely that of Corollary 3.47.

The construction of the equivalence in (4.37) will result in the normalisation of

symmetric monoidal expressions into (symmetric) list expressions. As the under-

lying higher inductive types FSMG(X) and slist(X) are built upon the same con-

structors as those of FMG(X) and list(X), with additional constructors allowing

the respective monoidal structures to be symmetric, normalisation of symmetric

monoidal expressions will agree with normalisation of monoidal expressions in all

definition and proofs involving the common constructors. Informally, this can be

interpreted as the fact that the “strictification” of associativity and unitality in a

monoidal groupoid is compatible with the addition of an auxiliary symmetric struc-

ture, and thus the diagram in Fig. 4.10 will commute.

Throughout the rest of this section, X is a 0-type.

142 4. COHERENCE FOR SYMMETRIC MONOIDAL GROUPOIDS

FMG(X) FSMG(X)

list(X) slist(X)

inclFMG

≃≃

incllist

Figure 4.10: The inclusions inclFMG ∶ FMG(X) → FSMG(X) and incllist ∶ list(X) → slist(X),

as monoidal functors, are compatible with the equivalences determining coherence for mo-

noidal and symmetric monoidal groupoids: the diagram above commutes. The equivalence

on the left is given in Corollary 3.56; the one on the right will be constructed in this section

(Corollary 4.49).

Definition 4.41. We define a symmetric monoidal functor

K ∶ SymMonGpd(FSMG(X), slist(X)).
The definition goes along the construction of the monoidal functor K in the previous

chapter (Definition 3.49). The underlying function K ∶ FSMG(X)→ slist(X) between

groupoids can be given by the elimination principle of FSMG(X), sending the mo-

noidal structure of FSMG(X) to the one of slist(X), described in the previous section,

and ι(x) to x ∶ ∶ nil. The paths K0 ∶ nil = K(e) and K2(a, b) ∶ K(a)++K(b) = K(a⊗ b)
for a, b ∶ FSMG(X) are identity paths; the computation rules of K provide 2-paths

Kα, Kλ, Kρ and Kτ witnessing the following identities:

αslist = [K](α), λslist = [K](λ), ρslist = [K](ρ), τslist = [K](τ). (4.42)

Definition 4.43. We define a symmetric monoidal functor

J ∶ SymMonGpd(slist(X),FSMG(X)).
The underlying function J ∶ slist(X) → FSMG(X) is defined using the elimination

principle of slist(X); on 0-constructors, its behaviour will be akin to the one of the

monoidal functor J in the previous chapter. We need:

• a term nil′ ∶ FSMG(X), which will be the image of nil; this is given by e;

• for every x ∶ X and a ∶ FSMG(X), a term cons′(x, a), given by ι(x)⊗ a;

• for every x, y ∶ X and a ∶ FSMG(X), a term swap′x,y,a ∶ cons
′(x, cons′(y, a)) =

cons′(y, cons′(x, a)); this is obtained along the following chain of identities:

cons′(x, cons′(y, a)) ≡ ι(x)⊗ (ι(y)⊗ a)
= (ι(x)⊗ ι(y))⊗ a by α−1

COHERENCE FOR SYMMETRIC MONOIDAL GROUPOIDS 143

= (ι(y)⊗ ι(x))⊗ a by τ⊗ refla

= ι(y)⊗ (ι(x)⊗ a) by α

≡ cons′(y, cons′(x, a));
• for every x, y ∶ X and a ∶ FSMG(X), a 2-path double′x,y,a given as the outer dia-

gram in Fig. 4.22;

• for every x, y, z ∶ X and a ∶ FSMG(X), a 2-path triple′x,y,z,a given as the outer

diagram in Fig. 4.23.

The requirement about FSMG(X) being a 1-type is fulfilled by the constructor T.

The computation rules of J state:

J(nil) ≡ e,

J(x ∶ ∶ l) ≡ ι(x)⊗ J(l),
[J](swapx,y,l) = α−1

⋅ (τ⊗ refl) ⋅ α, (4.44)

for every x, y ∶ X and l ∶ slist(X).
The remaining data for a symmetric monoidal functor is then given by “complet-

ing” the definition given for the analogue in Definition 3.50. A path J0 ∶ e = J(nil) is

defined to be the identity path. A family of paths

J2 ∶ Π (l1, l2 ∶ slist(X)) . J(l1)⊗ J(l2) = J(l1 ++ l2)
is defined by induction on l1, where the requirements for 0-constructors are pro-

vided in the same way as in Definition 3.50:

• a term nil′(l2) ∶ J(nil)⊗ J(l2) = J(nil++ l2) for every l2 ∶ slist(X) is given by λJ(l2),

as the left-hand side computes to e⊗ J(l2) and the right-hand side computes to

J(l2);
• for x ∶ X, l1 ∶ slist(X) and the inductive hypothesis

h ∶ Π (l2 ∶ slist(X)) . J(l1)⊗ J(l2) = J(l1 ++ l2), (4.45)

a term

cons′(x, l1, h, l2) ∶ J(x ∶ ∶ l1)⊗ J(l2) = J(x ∶ ∶ l1 ++ l2)
is constructed for every l2 ∶ slist(X), once unfolding the definition of J, by

α ⋅ (reflι(x) ⊗ h(l2));
• given x, y ∶ X, l1 ∶ slist(X) and an induction hypothesis h as in (4.45), a 2-path

swap′(x, y, l1, h, l2) for every l2 ∶ slist(X), filling the outer diagram in Fig. 4.24 is

provided as shown in the figure.

144 4. COHERENCE FOR SYMMETRIC MONOIDAL GROUPOIDS

The 2-paths Jα, Jλ and Jρ are obtained exactly as in Definition 3.50, since the elimina-

tion principle of slist(X) to families of 2-paths in groupoids only concerns 2-paths

corresponding to the 0-constructors nil and cons, and J0 and J2 compute in the same

way on terms constructed in such a way. Finally, a 2-path Jτ(l1, l2) corresponding

to the diagram in Fig. 4.11 for every l1, l2 ∶ slist(X) is given by induction on l1 and

l2:

• Jτ(nil,nil) is displayed in Fig. 4.25a;

• Jτ(nil, y ∶ ∶ l2), for y ∶ X and l2 ∶ slist(X) and assuming Jτ(nil, l2) given, is dis-

played in Fig. 4.25b;

• for x ∶ X, l1, l2 ∶ slist(X) and assuming Jτ(l1, l2) given, the construction of the 2-

path Jτ(x ∶ ∶ l1, l2) is displayed in Fig. 4.25c. Induction on l2 affects only one part

of the diagram; this is signalled in the same figure as a 2-path Vx,l1(l2), which

is filled by induction on l2 in the ways depicted in Fig. 4.26a and Fig. 4.26b

(respectively, for Vx,l1(nil) and Vx,l1(y ∶ ∶ l2), for every y ∶ X).

J(l1)⊗ J(l2) J(l2)⊗ J(l1)

J(l1 ++ l2) J(l2 ++ l1)

τ

J2(l2, l1)J2(l1, l2)

[J](τslist)
Figure 4.11: The 2-path Jτ .

Lemma 4.46. There is a symmetric monoidal natural isomorphism

η ∶ SymMonFunFSMG(X),FSMG(X)(id, J ○K).
Proof. The proof is identical to that of Lemma 3.52, save for the missing requirement

τ′ in the definition of the underlying homotopy η ∶ id ∼ J ○ K; this is illustrated in

Fig. 4.27.

Lemma 4.47. There is a symmetric monoidal natural isomorphism

ϵ ∶ SymMonFunslist(X),slist(X)(K ○ J, id).
Proof. Once again, we can adapt the proof given for FMG(X) and list(X) in the

previous chapter (Lemma 3.54). The underlying homotopy ϵ ∶ K ○ J ∼ id can be

obtained by the elimination principle of slist(X), where:

• a path nil′ ∶ K(J(nil)) = nil is given by the identity path;

DISCUSSION 145

• for x ∶ X, l ∶ slist(X) and an inductive hypothesis h ∶ K(J(l)) = l, a path

cons′x,l,h ∶ K(J(x ∶ ∶ l)) = x ∶ ∶ l

is given by [x ∶ ∶ −](h), since the left-hand side of the identity computes to

x ∶ ∶ K(J(l));
• for x, y ∶ X, l ∶ slist(X) and an inductive hypothesis h as above, a 2-path swap′x,y,l,h

corresponding to the diagram in Fig. 4.28 is provided in the figure itself, using

the following chain of identities:

[K ○ J](swapx,y,l) = [K]([J](swapx,y,l))
= [K](α−1

⋅ (τ⊗ reflJ(l)) ⋅ α) by (4.44)

= ([K](α))−1
⋅ [K](τ⊗ reflJ(l)) ⋅ [K](α)

= α−1
slist ⋅ [K](τ⊗ reflJ(l)) ⋅ αslist comp. rule of K

≡ reflx ∶∶ y ∶∶ J(l) ⋅ [K](τ⊗ reflJ(l)) ⋅ refly ∶∶ x ∶∶ J(l)

= [K](τ⊗ reflJ(l)) = [K](τ)++ reflK(J(k))

= [−++K(J(l))]([K](τ)) = [−++K(J(l))](τslist) comp. rule of J

≡ [−++K(J(l))](reflx ∶∶ y ∶∶ nil ⋅ swapx,y,nil ⋅ refly ∶∶ x ∶∶ nil)
= [−++K(J(l))](swapx,y,nil) = swapx,y,nil++K(J(l)) by (4.20)

≡ swapx,y,K(J(l)). (4.48)

The diagrams ϵ0 and ϵ2 are as in Lemma 3.54.

Corollary 4.49 (Coherence for symmetric monoidal groupoids). There is a symmetric

monoidal equivalence FSMG(X) ≃ slist(X).
Proof. Follows from the lemmata in this section.

4.4 Discussion

Before proceeding to Chapter 5 with a further analysis of free symmetric monoidal

groupoids, we summarize the results achieved with Corollary 4.49:

• we presented a description of the HIT FSMG(X) of free symmetric monoidal

expressions in terms of a simpler type slist(X) of “lists with added paths”, with

considerably fewer constructors. The equivalence FSMG(X) ≃ slist(X) is accom-

plished by a process of normalisation, which is done by means of a function

preserving the symmetric monoidal structure (a symmetric monoidal functor);

146 4. COHERENCE FOR SYMMETRIC MONOIDAL GROUPOIDS

• conversely, we showed that the families of constructors that we added to list(X)
to define the type slist(X) (namely, swap, double, triple and Tslist of slist(X)) are

sufficient to make the latter a free symmetric monoidal groupoid;

• moreover, the symmetric monoidal equivalence FSMG(X) ≃ slist(X) shows that

the presence of symmetry axioms in FSMG(X) – as additional constructors to

FMG(X) – does not impair the possibility of normalising associativity (i.e. forc-

ing a right-leaning bracketing for expressions) and unitality (cancelling of the

unit), while retaining symmetry; the example in Fig. 3.8 for FMG(X) then still

applies when symmetry is present.

We reiterate that, while function extensionality was not needed in order to prove

coherence for monoidal groupoids, we had to assume it for coherence for symmet-

ric monoidal groupoids. Indeed, the operation ++ ∶ slist(X) → slist(X) → slist(X) is

defined by means of the elimination principle of slist(X), which asks, because of its

1-constructor swap, to provide a path between two functions in slist(X) → slist(X)
(Definition 4.13).

An important meta-theoretical observation is that, while αslist, λslist and ρslist all

compute to reflexivity paths when instantiated to explicit terms (as their counter-

parts for list(X) do), τslist obviously does not. This is due to the fact that slist(X)
is not a 0-type; the normal form of a symmetric monoidal expression can only be

given up to permutation of elements, which mirrors the symmetry of the product.

This agrees with the classical formulation of coherence for symmetric monoidal cat-

egories, which states that it is possible to strictify associativity and unitality, but not

symmetry.

The observation above is not immediately evident when the type X of genera-

tors is a (−1)-type: the monoidal product ++ in lists is not symmetric, but, as men-

tioned in Section 3.7, list(1) is equivalent to N, whose monoidal product (addi-

tion of natural numbers) happens to be symmetric. Indeed, it is easy to produce an

equivalence

∥slist(1)∥0 ≃N,

showing that the “permutative” character of slist(1) is not detected at a set level.

Indeed, one could prove that slist(1) is not equivalent to N: this can be done by

showing that slist(1) is not a 0-type, while we saw in Lemma 3.27 that list(1) is a

0-type.

The proof that slist(1) is not a 0-type is given, indirectly, in the next chapter, as a

consequence of Theorem 5.35 and Lemma 5.46. Such a proof uses univalence and is

similar to the one presented in [Uni13, Lemma 6.4.1] to show that S1 is not a 0-type.

DISCUSSION 147

Roughly, the argument is as follows: a function

f ∶ slist(1)→ U
is defined in some way, so that f (∗ ∶ ∶ ∗ ∶ ∶ nil) ≡ 2 and such that there is a path

p ∶ [f](swap∗,∗,nil) =(2=2) ua(ω),
where ω ∶ 2 ≃ 2 is the non-identity equivalence, so (ω = id2)→ 0. Since we also have

a path

p′ ∶ [f](refl∗ ∶∶ ∗ ∶∶ nil) =(2=2) ua(id2),
if we assume that slist(1) is a 0-type, we obtain a path r ∶ swap∗,∗,nil = refl∗ ∶∶ ∗ ∶∶ nil,

and therefore a proof that ω = id2, which results in a contradiction. This matches

our understanding that swap∗,∗,nil ought not to be identified with the trivial path.

There is a complication in the argument above with respect to the proof in

[Uni13, Lemma 6.4.1] for S1. The type S1 is a 1-HIT with one 0-constructor (base ∶ S1)

and one 1-constructor (loop ∶ base = base), so a function f ∶ S1 → U making the ar-

gument work can be defined rather easily by the elimination principle of S1. In

contrast, slist(1) is a 1-truncated 2-HIT. This means that not only we need to make

sure that [f](swap∗,∗,nil) is “compatible” with the higher constructors of slist(1), but

also – crucially – we cannot eliminate directly into U , because U is not a 1-type. A so-

lution is to eliminate into a subuniverse Σ (X ∶ U) . P(X)which is provably a 1-type,

and then take the first projection pr1 ∶ (Σ (X ∶ U) . P(X))→ U .

We will discuss the truncation level of a type equivalent to slist(1) in the next

chapter, where we will be concerned with establishing a relationship between free

symmetric monoidal groupoids and the classifying spaces of symmetric groups.

148 4. COHERENCE FOR SYMMETRIC MONOIDAL GROUPOIDS

4.5 Figures in Proofs

e⊗ (a⊗ e) e⊗ (e⊗ a)

(e⊗ a)⊗ e (e⊗ e)⊗ a

(a⊗ e)⊗ e a⊗ (e⊗ e)

a⊗ e e⊗ a

a

e⊗ a

a⊗ e

τ⊗ 1

α

1⊗ τ

α

τ

α

τ

ρ λ

λ λ

λ

1⊗ ρ 1⊗ λ

ρ ρ⊗ 1

τ

ρ

ρ⊗ 1

1⊗ ρ

1⊗ λ

1

2 3

4 5

6 7

8 9
10

11

Figure 4.12: Commutativity of the diagram in Fig. 4.4a, here appearing as the unmarked

triangle; the −M is omitted from terms for readability. The 2-paths (1), (2) and (3) are instances

of naturality of λM; (4), (8) and (9) are instances of the diagrams in Fig. 3.4b, Fig. 3.4e and

Fig. 3.4c respectively; (5) and (10) are instances of ▽M; (6) and (7) are instances of naturality

of ρM and τM respectively; the outer hexagon (11) is an instance of 7M.

G(F(a))⊗P G(F(b)) G(F(b))⊗P G(F(a))

G(F(a)⊗N F(b)) G(F(b)⊗N F(a))

G(F(a⊗M b)) G(F(b⊗M a))

τP

G2

[G](F2)

G2

[G](F2)

[G ○ F](τM)

[G]([F](τM))

[G](τN)
1

2

3

Figure 4.13: Derivation of the 2-path (G ○ F)τ , after unfolding the definition of (G ○ F)2. The

2-paths (1) and (2) follow from Gτ and [[G]](Fτ) respectively; (3) is given by path algebra.

FIGURES IN PROOFS 149

x ∶ ∶ y ∶ ∶ (l1 ++ l2)++ l3 x ∶ ∶ y ∶ ∶ l1 ++ l2 ++ l3

y ∶ ∶ x ∶ ∶ (l1 ++ l2)++ l3 y ∶ ∶ x ∶ ∶ l1 ++ l2 ++ l3

[x ∶ ∶ −]([y ∶ ∶ −](h))

[−
+
+

l 2
+
+

l 3
](s

w
a
p

x
,y

,l
1
)

sw
a
p

x
,y

,l
1
+
+

l 2
+
+

l 3

[(−
+
+

l 2
)++

l 3
](s

w
a
p

x
,y

,l
1
)

sw
a
p

x
,y

,(
l 1
+
+

l 2
)
+
+

l 3

[y ∶ ∶ −]([x ∶ ∶ −](h))

1 2 3

Figure 4.14: The term swap′(x, y, l1, l2, l3, h) in the inductive definition of αslist, after unfolding

the definition of cons′. The 2-paths in (1) and (3) are obtained via (4.20); (2) is an instance of

naturality of swap.

x ∶ ∶ y ∶ ∶ l ++nil x ∶ ∶ y ∶ ∶ l

y ∶ ∶ x ∶ ∶ l ++nil y ∶ ∶ x ∶ ∶ l

[x ∶ ∶ −]([y ∶ ∶ −](h))

[id
sl
is
t(

X
)](

sw
a
p

x
,y

,l
)

sw
a
p

x
,y

,l

[−
+
+
n
il
](s

w
a
p

x
,y

,l
)

sw
a
p

x
,y

,l
+
+
n
il

[y ∶ ∶ −]([x ∶ ∶ −](h))

1 2 3

Figure 4.15: The term swap′(x, y, l, h) in the inductive definition of ρslist, after unfolding the

definition of cons′. The 2-path in (1) is given by path algebra; (2) is an instance of naturality

of swap; (3) is obtained via (4.20).

150 4. COHERENCE FOR SYMMETRIC MONOIDAL GROUPOIDS

x ∶ ∶ y ∶ ∶ z ∶ ∶ l1 ++ l2

y ∶ ∶ x ∶ ∶ z ∶ ∶ l1 ++ l2

y ∶ ∶ z ∶ ∶ x ∶ ∶ l1 ++ l2

y ∶ ∶ z ∶ ∶ l1 ++ x ∶ ∶ l2

x ∶ ∶ z ∶ ∶ y ∶ ∶ l1 ++ l2

z ∶ ∶ x ∶ ∶ y ∶ ∶ l1 ++ l2

z ∶ ∶ y ∶ ∶ x ∶ ∶ l1 ++ l2

z ∶ ∶ y ∶ ∶ l1 ++ x ∶ ∶ l2

swapx,y,z ∶∶ l1 ++ l2

[y ∶ ∶ −](swapx,z,l1 ++ l2
)

[y ∶ ∶ −]([z ∶ ∶ −](h))

[−
+
+

x
∶∶

l 2
](s

w
a
p

y
,z

,l
1
)

sw
a
p

y
,z

,l
1
+
+

x
∶∶

l 2

swapz,x,y ∶∶ l1 ++ l2

[z ∶ ∶ −](swapx,y,l1 ++ l2
)

[z ∶ ∶ −]([y ∶ ∶ −](h))

[x
∶∶
−
+
+

l 2
](s

w
a
p

y
,z

,l
1
)

[x
∶∶
−
](s

w
a
p

y
,z

,l
1
+
+

l 2
)

sw
a
p

y
,z

,x
∶∶

l 1
+
+

l 2

1

2

3

4

Figure 4.16: The term swap′x,l2
(y, z, l1, h) in the inductive definition of Qx,l2 , after unfolding

the definition of cons′. The 2-paths in (1) and (4) are filled by (4.20) and path algebra (for (1)

we use [x ∶ ∶ −++ l2](swapy,z,l1) = [x ∶ ∶ −]([−++ l2](swapy,z,l1))); (2) is an instance of triple; (3)

is an instance of naturality of swap.

FIGURES IN PROOFS 151

x ∶ ∶ y ∶ ∶ l1 ++ l2

x ∶ ∶ y ∶ ∶ l2 ++ l1

x ∶ ∶ l2 ++ y ∶ ∶ l1

l2 ++ x ∶ ∶ y ∶ ∶ l1

y ∶ ∶ x ∶ ∶ l1 ++ l2

y ∶ ∶ x ∶ ∶ l2 ++ l1

y ∶ ∶ l2 ++ x ∶ ∶ l1

l2 ++ y ∶ ∶ x ∶ ∶ l1

[x ∶ ∶ −]([y ∶ ∶ −](h(l2)))

[x ∶ ∶ −](Qy,l1(l2))

Qx,y ∶∶ l1(l2)

[l 2
+
+
−
](s

w
a
p

x
,y

,l
1
)

[−
+
+

l 2
](s

w
a
p

x
,y

,l
1
)

sw
a
p

x
,y

,l
1
+
+

l 2

[y ∶ ∶ −]([x ∶ ∶ −](h(l2)))

[y ∶ ∶ −](Qx,l1(l2))

Qy,x ∶∶ l1(l2)

sw
a
p

x
,y

,l
2
+
+

l 1

1

2

3

Figure 4.17: The 2-path swap′(x, y, l1, h, l2) in the inductive definition of τslist, after unfolding

the definition of cons′. The 2-path (1) is obtained via (4.20); (2) is an instance of naturality of

swap; (3) is given by Rx,y,l1(l2) defined in Lemma 4.28.

152 4. COHERENCE FOR SYMMETRIC MONOIDAL GROUPOIDS

x ∶ ∶ y ∶ ∶ z ∶ ∶ l2 ++ l1

x ∶ ∶ z ∶ ∶ y ∶ ∶ l2 ++ l1

x ∶ ∶ z ∶ ∶ l2 ++ y ∶ ∶ l1 z ∶ ∶ x ∶ ∶ y ∶ ∶ l2 ++ l1

z ∶ ∶ x ∶ ∶ l2 ++ y ∶ ∶ l1

z ∶ ∶ l2 ++ x ∶ ∶ y ∶ ∶ l1

swapx,y,z ∶∶ l2 ++ l1

[x ∶ ∶ −](swapy,z,l2 ++ l1
)

[x ∶ ∶ −]([z ∶ ∶ −](Qy,l1(l2)))

swapx,z,l2 ++ y ∶∶ l1

[z ∶ ∶ −](Qx,y ∶∶ l1(l2))

[z ∶ ∶ l2 ++−](swapx,y,l1
)

≡ [z ∶ ∶ −]([l2 ++−](swapx,y,l1
))

swapx,z,y ∶∶ l2 ++ l1

[z ∶ ∶ −]([x ∶ ∶ −](Qy,l1(l2)))

[z ∶ ∶ −](swapx,y,l2 ++ l1
)

1

2

4

Figure 4.18: The 2-path cons′x,y,l1
(z, l1, h) in the inductive definition of Rx,y,l1 . The 2-path

(1) is an instance of triple; (2) and (3) are instances of naturality of swap; (4) follows from

[[z ∶ ∶ −]](h).

FIGURES IN PROOFS 153

y ∶ ∶ x ∶ ∶ z ∶ ∶ l2 ++ l1

y ∶ ∶ z ∶ ∶ x ∶ ∶ l2 ++ l1

z ∶ ∶ y ∶ ∶ x ∶ ∶ l2 ++ l1 y ∶ ∶ z ∶ ∶ l2 ++ x ∶ ∶ l1

z ∶ ∶ y ∶ ∶ l2 ++ x ∶ ∶ l1

z ∶ ∶ l2 ++ y ∶ ∶ x ∶ ∶ l1

[y ∶ ∶ −](swapx,z,l2 ++ l1
)

[y ∶ ∶ −]([z ∶ ∶ −](Qx,l1(l2)))

swapy,z,l2 ++ x ∶∶ l1

[z ∶ ∶ −](Qy,x ∶∶ l1(l2))

swapy,z,x ∶∶ l2 ++ l1

[z ∶ ∶ −]([y ∶ ∶ −](Qx,l1(l2)))

3

154 4. COHERENCE FOR SYMMETRIC MONOIDAL GROUPOIDS

x ∶ ∶ l1 ++ l3 x ∶ ∶ l1 ++ l3 x ∶ ∶ l3 ++ l1 x ∶ ∶ l3 ++ l1

x ∶ ∶ l1 ++ l3 l3 ++ x ∶ ∶ l1

x ∶ ∶ l1 ++ l3 x ∶ ∶ l3 ++ l1 l3 ++ x ∶ ∶ l1

1 [x ∶ ∶ −](τslist) 1

Qx,l1(l3)

1

1++1

1

[x ∶ ∶ −](τslist) Qx,l1(l3)
(a) The 2-path Hx,l1 ,l3(nil) ≡ nil′x,l1 ,l3

is trivially obtained, after unfolding the definition of αslist and Q,

and using (reflnil ++ p) ≡ [idslist(X)](p) = p for every suitable p as in (4.16).

x ∶ ∶ y ∶ ∶ (l2 ++ l1)++ l3 ● ● x ∶ ∶ y ∶ ∶ (l2 ++ l3)++ l1

y ∶ ∶ x ∶ ∶ (l2 ++ l1)++ l3 ● ● y ∶ ∶ x ∶ ∶ (l2 ++ l3)++ l1

y ∶ ∶ (l2 ++ x ∶ ∶ l1)++ l3 y ∶ ∶ (l2 ++ l3)++ x ∶ ∶ l1

y ∶ ∶ l2 ++ x ∶ ∶ l1 ++ l3 ● y ∶ ∶ l2 ++ l3 ++ x ∶ ∶ l1

.

[x ∶ ∶ −]([y ∶ ∶ −](αslist ⋅ (1++ τslist) ⋅ α−1
slist))

.

[y ∶ ∶ −]([x ∶ ∶ −](αslist ⋅ (1++ τslist) ⋅ α−1
slist))

swapx,y,(l2 ++ l3)++ l1swapx,y,(l2 ++ l1) ++1

[y ∶ ∶ −](Qx,l1(l2 ++ l3))

[y ∶ ∶ −](αslist)

[y ∶ ∶ −](Qx,l1(l2))++1

[y ∶ ∶ −](αslist)
.

[y ∶ ∶ −]((1++[x ∶ ∶ −](τslist)) ⋅ (1++Qx,l1(l3)))

1

2

(b) The 2-path cons′x,l1 ,l3
(y, l2, h), after unfolding the definitions of αlist and Q, with some vertices

omitted for readability. The 2-path (1) is obtained via naturality of swap, as swapx,y,(l2 ++ l1)
++ refll3 =

swapx,y,(l2 ++ l1)++ l3
; (2) is derived (recursively) from [[y ∶ ∶ −]](h), using (4.21).

Figure 4.19: Derivation of Hx,l1,l3(l2).

FIGURES IN PROOFS 155

l3 l3

l3 l3 ++nil

l3 l3 ++nil

1

τslist

1

1++1

1

[idslist](τslist)

τslist

1

2

(a) Derivation of the 2-path 7slist(nil,nil, l3), after unfolding the definitions of αslist and τslist; both in-

stances of the latter are applied to nil and l3. The 2-path (1) is trivial; (2) is obtained by path algebra.

y ∶ ∶ l2 ++ l3 y ∶ ∶ l2 ++ l3

y ∶ ∶ (l2 ++nil)++ l3 y ∶ ∶ (l2 ++ l3)++nil

y ∶ ∶ l2 ++ l3 y ∶ ∶ l2 ++(l3 ++nil)

1

[y ∶ ∶ −](τslist)

[y ∶ ∶ −](αslist)

[y ∶ ∶ −](τslist)++1

[y ∶ ∶ −](αslist)

1++ τslist

[y ∶ ∶ −](1++ τslist)

[y ∶ ∶ −](τslist ++1)

1

2

3

(b) Derivation of the 2-path 7slist(nil, y ∶ ∶ l2, l3), after unfolding the definitions of αslist and τslist; the latter

is applied to nil and l2 ++ l3 in the path on the top right, and to nil and l3 in the path on the bottom of

the diagram. The 2-path (1) is given recursively by [[y ∶ ∶ −]](7slist(nil, l2, l3)); (2) and (3) are obtained

by path algebra.

Figure 4.20: Derivation of 7slist.

156 4. COHERENCE FOR SYMMETRIC MONOIDAL GROUPOIDS

x ∶ ∶ (l1 ++ l2)++ l3

x ∶ ∶ (l2 ++ l1)++ l3

x ∶ ∶ l2 ++ l1 ++ l3(l2 ++ x ∶ ∶ l1)++ l3

l2 ++ x ∶ ∶ l1 ++ l3 l2 ++ x ∶ ∶ l3 ++ l1

[x ∶ ∶ −](αslist)

[x ∶ ∶ −](τslist)++1

Qx,l1(l2)++1

αslist

1++[x ∶ ∶ −](τslist)

[x ∶ ∶ −](αslist)

[x ∶ ∶ −](1++ τslist)

[x ∶ ∶ −](τslist ++1)

1

2

3

(c) Derivation of the 2-path 7slist(x ∶ ∶ l1, l2, l3), after unfolding the definitions of αslist and τslist. The 2-

path (1) is given recursively by [[x ∶ ∶ −]](7slist(l1, l2, l3)); (2) is obtained by path algebra; (3) is Hx,l1 ,l3(l2)

from Lemma 4.32.

Figure 4.20: Continued.

FIGURES IN PROOFS 157

x ∶ ∶ l1 ++ l2 ++ l3

x ∶ ∶ l2 ++ l3 ++ l1

x ∶ ∶ (l2 ++ l3)++ l1

(l2 ++ l3)++ x ∶ ∶ l1

l2 ++ l3 ++ x ∶ ∶ l1

[x ∶ ∶ −](τslist)

Qx,l1(l2 ++ l3)

αslist

1++Qx,l1(l3)

[x ∶ ∶ −](αslist)

158 4. COHERENCE FOR SYMMETRIC MONOIDAL GROUPOIDS

x ∶ ∶ y ∶ ∶ l2 ++ l1 y ∶ ∶ x ∶ ∶ l2 ++ l1

x ∶ ∶ l1 ++ y ∶ ∶ l2 y ∶ ∶ l2 ++ x ∶ ∶ l1

x ∶ ∶ y ∶ ∶ l1 ++ l2 y ∶ ∶ x ∶ ∶ l1 ++ l2

[x
∶∶
−
](τ

sl
is
t)

swapx,y,l2 ++ l1

[y
∶∶
−
](Q

x
,l

1
(l 2
))

[y
∶∶
−
](τ

sl
is
t)

swapy,x,l1 ++ l2

[x
∶∶
−
](Q

y
,l

2
(l 1
))

[x
∶∶
−
](τ

sl
is
t)

[x
∶∶
−
]([

y
∶∶
−
](τ

sl
is
t))

[x
∶∶
−
]([

y
∶∶
−
](τ

sl
is
t))

[y
∶∶
−
](τ

sl
is
t)

[y
∶∶
−
]([

x
∶∶
−
](τ

sl
is
t))

swapx,y,l1 ++ l2

1

2

3 4

5

6

7

Figure 4.21: Derivation of the 2-path slist(x ∶ ∶ l1, y ∶ ∶ l2), after unfolding the definition

of τslist. The 2-path (1) is obtained recursively by [[x ∶ ∶ −]](slist(l1, y ∶ ∶ l2)); (2) and (6)

are derived from the definition of τslist; (3) is given recursively using slist(l1, l2); (4) is an

instance of naturality of swap; (5) is an instance of double; (7) is obtained recursively from

[[y ∶ ∶ −]](slist(x ∶ ∶ l1, l2)).

FIGURES IN PROOFS 159

(ι(x)⊗ ι(y))⊗ a (ι(y)⊗ ι(x))⊗ a

ι(x)⊗ (ι(y)⊗ a) ι(y)⊗ (ι(x)⊗ a)

(ι(x)⊗ ι(y))⊗ a (ι(y)⊗ ι(x))⊗ a

α−1

τ⊗ 1

α

α−1

τ⊗ 1

α

1 2 3

Figure 4.22: The 2-path double′x,y,a in the inductive definition of J, after unfolding the defini-

tion of swap′. The 2-paths (1) and (3) are trivial; (2) is derived from ⊗ refla.

160 4. COHERENCE FOR SYMMETRIC MONOIDAL GROUPOIDS

ι(x)⊗ (ι(y)⊗ (ι(z)⊗ a)) (ι(x)⊗ ι(y))⊗ (ι(z)⊗ a)

((ι(x)⊗ ι(y))⊗ ι(z))⊗ a

ι(x)⊗ ((ι(y)⊗ ι(z))⊗ a)
(ι(x)⊗ (ι(y)⊗ ι(z)))⊗ a

ι(x)⊗ ((ι(z)⊗ ι(y))⊗ a)
(ι(x)⊗ (ι(z)⊗ ι(y)))⊗ a

ι(x)⊗ (ι(z)⊗ (ι(y)⊗ a))

(ι(x)⊗ ι(z))⊗ (ι(y)⊗ a)
((ι(x)⊗ ι(z))⊗ ι(y))⊗ a

(ι(z)⊗ ι(x))⊗ (ι(y)⊗ a)
((ι(z)⊗ ι(x))⊗ ι(y))⊗ a

(ι(z)⊗ (ι(x)⊗ ι(y)))⊗ a

ι(z)⊗ (ι(x)⊗ (ι(y)⊗ a)) ι(z)⊗ ((ι(x)⊗ ι(y))⊗ a)

α−1 τ⊗ (1⊗ 1)

1⊗ α−1

1⊗ (τ⊗ 1)

1⊗ α

α−1

τ⊗ (1⊗ 1)

α

1⊗ α−1

(τ⊗ 1)⊗ 1

α⊗ 1

(1⊗ τ)⊗ 1

α⊗ 1

(τ⊗ 1)⊗ 1

α⊗ 1

α

α

α

α

α

α

τ⊗ 1

7

9

11

8

10

12

13

14

Figure 4.23: The 2-path triple′x,y,z,a in the inductive definition of J, after unfolding the def-

initions of swap′ and cons′. Outer ring: the odd-numbered 2-paths are instances of D; the

even-numbered 2-paths are instances of naturality of α. Center: (13) and (15) are derived

from 7⊗ refla; (14) is obtained by naturality of τ.

FIGURES IN PROOFS 161

(ι(y)⊗ ι(x))⊗ (ι(z)⊗ a) ι(y)⊗ (ι(x)⊗ (ι(z)⊗ a))

((ι(y)⊗ ι(x))⊗ ι(z))⊗ a

(ι(y)⊗ (ι(x)⊗ ι(z)))⊗ a

ι(y)⊗ ((ι(x)⊗ ι(z))⊗ a)

(ι(y)⊗ (ι(z)⊗ ι(x)))⊗ a

ι(y)⊗ ((ι(z)⊗ ι(x))⊗ a)

ι(y)⊗ (ι(z)⊗ (ι(x)⊗ a))

((ι(y)⊗ ι(z))⊗ ι(x))⊗ a

(ι(y)⊗ ι(z))⊗ (ι(x)⊗ a)

((ι(z)⊗ ι(y))⊗ ι(x))⊗ a

(ι(z)⊗ ι(y))⊗ (ι(x)⊗ a)

(ι(z)⊗ (ι(y)⊗ ι(x)))⊗ a

ι(z)⊗ ((ι(y)⊗ ι(x))⊗ a) ι(z)⊗ (ι(y)⊗ (ι(x)⊗ a))

α

1⊗ α−1

1⊗ (τ⊗ 1)

1⊗ α

α−1

τ⊗ (1⊗ 1)

α

1⊗ (τ⊗ 1) 1⊗ α

α⊗ 1

(1⊗ τ)⊗ 1

α⊗ 1

(τ⊗ 1)⊗ 1

α⊗ 1

(1⊗ τ)⊗ 1

α

α

α

α

α

α

τ⊗ 1

1

3

5

2

4

6

15

162 4. COHERENCE FOR SYMMETRIC MONOIDAL GROUPOIDS

(ι(x)⊗ (ι(y)⊗ J(l1)))⊗ J(l2) ι(x)⊗ ((ι(y)⊗ J(l1))⊗ J(l2))

((ι(x)⊗ ι(y))⊗ J(l1))⊗ J(l2) (ι(x)⊗ ι(y))⊗ (J(l1)⊗ J(l2))

((ι(y)⊗ ι(x))⊗ J(l1))⊗ J(l2) (ι(y)⊗ ι(x))⊗ (J(l1)⊗ J(l2))

(ι(y)⊗ (ι(x)⊗ J(l1)))⊗ J(l2) ι(y)⊗ ((ι(x)⊗ J(l1))⊗ J(l2))

J(x ∶ ∶ y ∶ ∶ l1)⊗ J(l2)

J(y ∶ ∶ x ∶ ∶ l1)⊗ J(l2)

α 1⊗ α

α

α

α 1⊗ α

[J(
−
)⊗

J(l
2
)](

sw
a
p

x
,y

,l
1
)

[J]
(sw

a
p

x
,y

,l
1
)⊗

1

α−1 ⊗ 1

α⊗ 1

(τ⊗ 1)⊗ 1 τ⊗ (1⊗ 1)1 2

3

5

7

Figure 4.24: The 2-path swap′x,y,l1,h,l2
in the inductive definition of J2, after unfolding the

definition of cons′. The 2-paths (1) is obtained by path algebra; (2) and (9) are filled by the

computation rule (4.44) of J; (3) and (7) are instances of D; (4), (5) and (8) are instances of

naturality of α; (6) is given by the interchange law (2.64); (10) is given by path algebra and

(4.20).

FIGURES IN PROOFS 163

ι(x)⊗ (ι(y)⊗ (J(l1)⊗ J(l2))) ι(x)⊗ (ι(y)⊗ J(l1 ++ l2))

(ι(x)⊗ ι(y))⊗ J(l1 ++ l2)

(ι(y)⊗ ι(x))⊗ J(l1 ++ l2)

ι(y)⊗ (ι(x)⊗ (J(l1)⊗ J(l2))) ι(y)⊗ (ι(x)⊗ J(l1 ++ l2))

J(x ∶ ∶ y ∶ ∶ l1 ++ l2)

J(y ∶ ∶ x ∶ ∶ l1 ++ l2)

1⊗ (1⊗ h(l2))

(1⊗ 1)⊗ h(l2)

(1⊗ 1)⊗ h(l2)

1⊗ (1⊗ h(l2))

[J(
−
+
+

l 2
)](

sw
a
p

x
,y

,l
1
)

[J]
(sw

a
p

x
,y

,l
1
+
+

l 2
)

α
α−1

α
α

τ⊗ 1

4

6

8

9 10

164 4. COHERENCE FOR SYMMETRIC MONOIDAL GROUPOIDS

e⊗ e e⊗ e

e e

J(nil)⊗ J(nil)

J(nil++nil)

τ

λλ

1

ρ

1

2

(a) Derivation of the 2-path Jτ(nil,nil). The 2-path (1) is an instance of the diagram in Fig. 4.4b

(Lemma 4.6); (2) is the diagram in Fig. 3.4c (Remark 4.4).

e⊗ (ι(y)⊗ J(l2)) (ι(y)⊗ J(l2))⊗ e

ι(y)⊗ J(l2) ι(y)⊗ J(l2 ++nil)

(e⊗ ι(y))⊗ J(l2)

(ι(y)⊗ e)⊗ J(l2)

ι(y)⊗ (e⊗ J(l2)) ι(y)⊗ (J(l2)⊗ e)

J(nil)⊗ J(y ∶ ∶ l2) J(y ∶ ∶ l2)⊗ J(nil)

J(y ∶ ∶ l2)

J(nil++ y ∶ ∶ l2)

J(y ∶ ∶ nil++ l2)

ι(y)⊗ J(nil++ l2)

J(y ∶ ∶ l2 ++nil)

τ

α

1⊗ J2(l2,nil)

λ

[J]([y ∶ ∶ −](τslist))

α

τ⊗ 1

α

1⊗ τ

λ⊗ 1

ρ⊗ 1

1⊗ λ

1⊗ [J](τslist)

1

2

3

4

5

6

(b) Derivation of the 2-path Jτ(nil, y ∶ ∶ l2), after unfolding the definitions of J, J2 and τslist. The 2-path

(1) is an instance of the diagram in Fig. 3.4a (Remark 4.4); (2) is obtained via the diagram in Fig. 4.4b

(Lemma 4.6); (3) is an instance of▽; (4) is an instance of 7; (5) is obtained, recursively, by 1⊗ Jτ(nil, l2);

(6) is obtained by path algebra.

Figure 4.25: Derivation of the 2-path Jτ(l1, l2), by induction on l1 and l2.

FIGURES IN PROOFS 165

(ι(x)⊗ J(l1))⊗ J(l2) J(l2)⊗ (ι(x)⊗ J(l1))

(J(l2)⊗ ι(x))⊗ J(l1)

(ι(x)⊗ J(l2))⊗ J(l1)

ι(x)⊗ (J(l2)⊗ J(l1))ι(x)⊗ (J(l1)⊗ J(l2))

ι(x)⊗ J(l1 ++ l2)

J(x ∶ ∶ l1 ++ l2)

ι(x)⊗ J(l2 ++ l1)

J(x ∶ ∶ l2 ++ l1) J(l2 ++ x ∶ ∶ l1)

J(x ∶ ∶ l1)⊗ J(l2) J(l2)⊗ J(x ∶ ∶ l1)
τ

J2(l2, x ∶ ∶ l1)

α

1⊗ J2(l1, l2)
1⊗ [J](τslist)

[J]([x ∶ ∶ −](τslist)) [J](Qx,l1(l2))

α

τ⊗ 1

α

1⊗ J2(l2, l1)
1⊗ τ

1⊗ τ

τ

1

2

3

4

5

6

(c) Derivation of the 2-path Jτ(x ∶ ∶ l1, l2), after unfolding the definitions of J, J2 and τslist. The 2-paths (1)

and (3) are derived from ; (2) is an instance of 7; (4) is obtained, recursively, from 1⊗ Jτ(l1, l2); (5) is

path algebra; (6) is given by Vx,l1
(l2), filled by induction on l2 (Fig. 4.26).

Figure 4.25: Continued.

(ι(x)⊗ e)⊗ J(l1) (e⊗ ι(x))⊗ J(l1) e⊗ (ι(x)⊗ J(l1))

ι(x)⊗ (e⊗ J(l1)) ι(x)⊗ J(l1) ι(x)⊗ J(l1)

J(x ∶ ∶ nil++ l1)J(x ∶ ∶ l1) J(nil++ x ∶ ∶ l1)

τ⊗ 1 α

α
ρ⊗ 1

λ⊗ 1 λ

1⊗ λ

1

1
2

3

(a) Derivation of the 2-path Vx,l1
(nil), after unfolding the definitions of J, J2 and Q. The 2-path (1) is an

instance of▽; (2) is derived from the diagram in Fig. 4.4b (Lemma 4.6); (3) is an instance of the diagram

in Fig. 3.4a (Remark 4.4).

Figure 4.26: Derivation of the 2-path Vx,l1(l2) by induction on l2.

166 4. COHERENCE FOR SYMMETRIC MONOIDAL GROUPOIDS

(J(y ∶ ∶ l2)⊗ ι(x))⊗ J(l1)

(ι(x)⊗ (ι(y)⊗ J(l2)))⊗ J(l1)

ι(x)⊗ ((ι(y)⊗ J(l2))⊗ J(l1))

ι(x)⊗ (ι(y)⊗ (J(l2)⊗ J(l1)))

ι(x)⊗ (ι(y)⊗ J(l2 ++ l1))

J(x ∶ ∶ y ∶ ∶ l2 ++ l1)

((ι(x)⊗ ι(y))⊗ J(l2))⊗ J(l1)

(ι(x)⊗ ι(y))⊗ (J(l2)⊗ J(l1))

(ι(x)⊗ ι(y))⊗ J(l2 ++ l1)

((ι(y)⊗ J(l2))⊗ ι(x))⊗ J(l1)

(ι(y)⊗ (J(l2)⊗ ι(x)))⊗ J(l1)

(ι(y)⊗ (ι(x)⊗ J(l2)))⊗ J(l1)

((ι(y)⊗ ι(x))⊗ J(l2))⊗ J(l1)

(ι(y)⊗ ι(x))⊗ (J(l2)⊗ J(l1))

(ι(y)⊗ ι(x))⊗ J(l2 ++ l1)

τ⊗ 1

τ⊗ 1

α

1⊗ α

1
⊗
(1
⊗

J 2
(l 2

,l
1
))

[J](swapx,y,l2 ++ l1
)

α⊗ 1

(1⊗ τ)⊗ 1(1⊗ τ)⊗ 1

α⊗ 1

(τ⊗ 1)⊗ 1

α⊗ 1

α

α

τ⊗ (1⊗ 1)

α

(1
⊗

1)
⊗

J 2
(l 2

,l
1
)

(1
⊗

1)
⊗

J 2
(l 2

,l
1
)

τ⊗ 1

α−1

1

3 4

6

7

9

10

13

(b) Derivation of the 2-path Vx,l1
(y ∶ ∶ l2), after unfolding the definitions of J, J2 and Q. The 2-paths (1)

and (4) are obtained from ; (2), (6) and (8) from D; (3) from 7; (5), (7), (9) and (11) from naturality of α;

(10) from (2.64); (12) from 1⊗Vx,l1
(l2); (13) by computation rule of J; (14) by path algebra.

Figure 4.26: Continued.

FIGURES IN PROOFS 167

ι(y)⊗ ((J(l2)⊗ ι(x))⊗ J(l1))

ι(y)⊗ ((ι(x)⊗ J(l2))⊗ J(l1))

ι(y)⊗ (ι(x)⊗ (J(l2)⊗ J(l1)))

ι(y)⊗ (ι(x)⊗ J(l2 ++ l1))

J(y ∶ ∶ x ∶ ∶ l2 ++ l1)

J(y ∶ ∶ l2)⊗ J(x ∶ ∶ l1)

(ι(y)⊗ J(l2))⊗ (ι(x)⊗ J(l1))

ι(y)⊗ (J(l2)⊗ (ι(x)⊗ J(l1)))

ι(y)⊗ J(l2 ++ x ∶ ∶ l1)

J(y ∶ ∶ l2 ++ x ∶ ∶ l1)

α

α

1⊗ J2(l2, x ∶ ∶ l1)

1⊗ [J](Qx,l1(l2))

[J]([y ∶ ∶ −](Qx,l1(l2)))

α

1⊗ α

1⊗ (τ⊗ 1)

α

α

1⊗ α

α

1⊗ (1⊗ J2(l2, l1))

2

5

8

11

12

14

168 4. COHERENCE FOR SYMMETRIC MONOIDAL GROUPOIDS

a⊗ b b⊗ a

J(K(a))⊗ J(K(b)) J(K(b))⊗ J(K(a))

J(K(a)++K(b)) J(K(b)++K(a))

J(K(a⊗ b)) J(K(b⊗ a))

[id](τ)

τ
η(b)⊗ η(a)

J2

η(a)⊗ η(b)

τ

J2

[J](τlist)

[J]([K](τ))

[J ○K](τ)

1

2

3

4

5

Figure 4.27: The diagram corresponding to τ′ in the inductive definition of η. The 2-paths (1)

and (5) are given by path algebra; (2) is an instance of naturality of τ; (3) is an instance of Jτ ;

(4) is given by a computation rule of K.

K(J(x ∶ ∶ y ∶ ∶ l))

x ∶ ∶ y ∶ ∶ K(J(l)) x ∶ ∶ y ∶ ∶ l

y ∶ ∶ x ∶ ∶ K(J(l))

K(J(y ∶ ∶ x ∶ ∶ l))

y ∶ ∶ x ∶ ∶ l

[x ∶ ∶ −]([y ∶ ∶ −](h))

[id](swapx,y,l)[K ○ J](swapx,y,l)

[y ∶ ∶ −]([x ∶ ∶ −](h))

swapx,y,lswapx,y,K(J(l))1

2

3

Figure 4.28: The 2-path swap′x,y,l,h in the inductive definition of ϵ. The 2-path (1) is given in

(4.48); (2) is an instance of naturality of swap; (3) is obtained by path algebra.

Chapter 5

Finite Types and Symmetric

Monoidal Structures

The definition of the HIT construction slist in Chapter 4 was motivated by the re-

lationship between symmetric monoidal structures and symmetric groups. Infor-

mally, given a list of n elements chosen from a set X, we can let any element of the

symmetric group Sn act on it and obtain another list, which is then identified with

the original one.

Groups can be defined as HITs in HoTT. For instance, the free group over a

0-type X can be defined similarly to the type FM(X) in Section 3.1, by adding a

0-constructor for the inverse operation, 1-constructors for the inverse laws, and a 0-

truncation [see Uni13, Chapter 6]. In general, the presentation of a group suggests

which 0- and 1-constructors are to be included in its definition as a HIT: the for-

mer should correspond to the generators, while the latter to the relations that the

generators should satisfy. Indeed, the symmetric groups Sn could be constructed as

a family of (0-truncated) 1-HITs in this way, according to their presentation given

in (4.10); one could specify their action on lists and then construct the quotient of

list(X) by the group action, also as a 1-HIT, with 1-constructors identifying lists in

the same orbit. This process is unnecessarily convoluted; the constructors we gave

for slist(X) bypass this intermediate step and make all the required identifications

hardwired in its definition. The only price to pay is that slist(X) is a 2-HIT, where

the 2-constructors account for the identifications of the elements in the group.

In principle, the shortcut we just described holds for the quotient of any set by

the action of any group. Symmetric groups, however, have an alternative descrip-

tion: their elements correspond to automorphisms σ ∶ [n] ≃ [n] of canonical finite

types. We saw in Section 3.7 how a list with elements in a 0-type X can be described

as a vector v ∶ [n] → X for some n ∶ N, i.e., as an ordered choice of finitely many

(and possibly repeating) terms in X. The symmetric group acts on vectors by pre-

composition; accordingly, a symmetric list of elements in X ought to be determined

169

170 5. FINITE TYPES AND SYMMETRIC MONOIDAL STRUCTURES

by a choice of finitely many terms in X in a strictly non-specified order, i.e., as a term

in the quotient of the function type [n]→ X by a relation identifying any v ∶ [n]→ X

with v ○ σ, for any σ ∶ [n] ≃ [n], for some n ∶N.

A way to circumvent the employment of quotients is to describe symmetric lists

as functions v ∶ A → X, where A is a type belonging to the classifying space BSn of the

symmetric group Sn, for some n ∶N. Such a type A is a finite type whose terms are

not labelled in any order, and hence a function v ∶ A → X incorporates in its source

the features of the sought quotient: instead of identifying all the ways of arranging

the elements in a list, it removes the ordering altogether from the picture.

Following the discussion above, and parallel to the chain of monoidal equiva-

lences

FMG(X) ≃ list(X) ≃ Σ (n ∶N) . ([n]→ X)
in (3.59), what we would like to show is a chain of symmetric monoidal equiva-

lences between the type of free symmetric monoidal expressions with elements in

a 0-type X and the type of unordered, finite vectors with entries in X, via the type

of symmetric lists in X; that is,

FSMG(X) ≃ slist(X) ≃ Σ (A ∶ BS●) . (A → X) (5.1)

where BS● is the subuniverse of finite types, which we will describe in Section 5.1.

The chain of equivalences in (5.1) (of which the leftmost equivalence has already

been achieved in Corollary 4.49, while the rightmost will be presented in Corol-

lary 5.103) would give us an elementary way to characterize a class of commut-

ing diagrams in FSMG(X) – namely, the diagrams involving symmetric monoidal

expressions with no repetitions. While these expressions are hard to pin down in

FSMG(X), they simply correspond to vectors in Σ (A ∶ BS●) . (A → X) which are

embeddings (Theorem 5.104).

We will start by turning our attention to the simple case where X ∶≡ 1 in (5.1),

and work our way through a symmetric monoidal equivalence

slist(1) ≃ BS●. (5.2)

The formalization of the equivalence in (5.2), discussed in this chapter, is not com-

plete. This is due to the fact that, in order to construct an equivalence slist(1) ≃ BS●,
we need to delve into the combinatorics of finite types, essentially equating the two

mentioned descriptions of the symmetric groups (as automorphisms of finite types,

or in their presentation with generators and relations); such a task revealed itself

FINITE TYPES 171

to be, in our framework, rather complex. However, the equivalence in (5.2) holds

under a very limited amount of unformalized results, which we collect in Assump-

tion 5.91; the nature of these deficiencies will be discussed there. In addition, we

reach a number of interesting results; particularly, we define an indexed HIT del●

of deloopings of symmetric groups, which acts as a bridge between symmetric lists

and finite types in the equivalence.

Univalence is assumed throughout this chapter. Selected parts of the formaliza-

tion are featured in Appendix A.3.

5.1 Finite Types

This section discusses the subuniverse of finite types, which is an already estab-

lished notion in HoTT. We will start from its definition.

Definition 5.3 (Finite types). A type A ∶ U together with a term t ∶ ∥A ≃ [n]∥ for

some n ∶N is called a finite type and the term n its cardinality. We define the type

family BS ∶N → U by declaring

BSn ∶≡ Σ (A ∶ U) . ∥A ≃ [n]∥
for every n ∶ N, i.e., BSn is the subuniverse of finite types of cardinality n. The

subuniverse1 of finite types of any cardinality will be denoted by

BS● ∶≡ Σ (n ∶N) .BSn.

The chosen notation “BSn” borrows the character B from the usual notation for

the classifying space of a group, which in this case is the group Sn ∶≡ Aut([n]) of

automorphisms of the (canonical) finite type [n]; we use this notation to emphasize

a view of the subuniverse of finite types of cardinality n as a classifying type of

Aut([n]), which is, indeed, the subuniverse of those types which are anonymously

equivalent to [n]. A discussion and examples on classifying types in HoTT can be

found in [Shu15] and [BvDR18].

As hinted in the introduction to this chapter, an important difference runs be-

tween finite types BSn and canonical finite types [n]. Induction on the terms of a

coproduct allows to count the terms in a canonical finite type: for example, one can

1To keep true to Definition 2.73, the subuniverse BS● of finite types should be given by

Σ (A ∶ U) . Σ (n ∶N) . ∥A ≃ [n]∥, where the inner Σ-type is provably a (−1)-type. The two definitions

are equivalent.

172 5. FINITE TYPES AND SYMMETRIC MONOIDAL STRUCTURES

prove that no more than three “distinct” terms inhabit the type [3] ≡ 0+ 1+ 1+ 1, i.e.,

given terms a1, a2, a3, a4 ∶ [3] and functions (a1 = a2)→ 0, (a1 = a3)→ 0, ..., a term in

0 can be obtained. The inductive definition of [n+1] as [n]+1 determines a “system

of coordinates” on its terms: in the example above, the (only) terms inhabiting [3]
are inr(∗), inl(inr(∗)) and inl(inl(inr(∗)).

Finite types diverge from canonical finite types in that we do not have access to

their elements: given a term X ∶ BS3, it is still possible to prove that pr1(X) ∶ U is

inhabited by no more than three different terms, but no coordinate system is given

– by design, it cannot be inherited by the term pr2(X) ∶ ∥pr1(X) ≃ [3]∥. However, all

properties (in the sense of Definition 2.73) of canonical finite types can be transported

to finite types, in the following sense.

Lemma 5.4. Given a family P ∶ U → U of types, a term in Π (X ∶ U) . IsHProp(P(X))
and a term n ∶N, there is a function

Π (X ∶ BSn) . (P(pr1(X)) ≃ P([n])).

Proof. By the elimination principle of Σ-types, it is enough to provide, for every

A ∶ U , a function ∥A ≃ [n]∥ → (P(A) ≃ P([n])). As the target type is a (−1)-type,

it is enough to exhibit a function (A ≃ [n]) → (P(A) ≃ P([n])), which is given by

(e ↦ (ua(e))P
∗
).

Corollary 5.5. Let n ∶N and X ∶ BSn. The type pr1(X) ∶ U is a 0-type; i.e., any finite type

is a 0-type.

Proof. Any canonical finite type [n] is a 0-type, as one can prove by induction on

n, since 0, 1 and coproducts of 0-types are 0-types (Remark 2.75). The result then

follows from Lemma 5.4, because IsHSet ∶ U → U is a property (Lemma 2.77).

More considerations can be made about the truncation level of the subuniverse

of finite types itself.

Lemma 5.6. Let n ∶N, and let A and B be finite types of cardinality n. The identity type

(A =U B) is a 0-type.

Proof. By univalence, the types A = B and A ≃ B are equivalent, so we can instead

show that A ≃ B is a 0-type. By Lemma 2.120, the type of paths between equiva-

lences A ≃ B is equivalent to the type of paths between the underlying functions

A → B; hence, if A → B is a 0-type, so is A ≃ B. Since B is a finite type, it is a 0-type

(Corollary 5.5), and hence A → B is also (Remark 2.75).

FINITE TYPES 173

Corollary 5.7. For every n ∶N, the type BSn is a 1-type. Hence, BS● is a 1-type.

Proof. Let n ∶N. By Lemma 2.79, it is enough to show the following:

1. for every A ∶ U , the type ∥A ≃ [n]∥ is a 1-type; and

2. for every ⟨A, tA⟩, ⟨B, tB⟩ ∶ BSn, the identity type (A = B) is a 0-type.

The first condition is trivially met: ∥A ≃ [n]∥ is a (−1)-type, and hence a 1-type. The

second condition is proved in Lemma 5.6.

We can immediately prove the following results about finite types.

Lemma 5.8. BS0 and BS1 are contractible.

Proof. The center of contraction of BS0 is ⟨[0], ∣id[0]∣⟩. We then need to find a term in

Π (X ∶ BS0) . ⟨[0], ∣id[0]∣⟩ = X,

which (by the elimination principle of Σ-types) is obtained once found a term in

Π (A ∶ U) . Π (t ∶ ∥A ≃ [0]∥) . ⟨[0], ∣id[0]∣⟩ = ⟨A, t⟩.
By Remark 2.78, it is enough to provide a path [0] = A in the base, under the as-

sumption t ∶ ∥A ≃ [0]∥. Since [0] is a (−1)-type (Remark 2.75), by Lemma 2.130 the

type [0] = A is also a (−1)-type, so by the elimination principle of the truncation

we can work under the assumption t′ ∶ A ≃ [0]. Then (ua(t′))−1 ∶ [0] = A, so BS0 is

contractible. Contractibility of BS1 is proved in the same way.

Lemma 5.9. For every n ∶N, BSn is connected.

Proof. We want to show that ∥BSn∥0 is contractible for every n. The obvious choice

for the center of the contraction is ∣⟨[n], ∣id[n]∣⟩∣. Then, in order to show that

Π (X ∶ ∥BSn∥0) . ∣⟨[n], ∣id[n]∣⟩∣ = X,

we can use the elimination principles of the propositional truncation and of Σ-types

and, for every A ∶ U , find a term in

Π (t ∶ ∥A ≃ [n]∥) . ∣⟨[n], ∣id[n]∣⟩∣ = ∣⟨A, t⟩∣.
Using again the elimination principle of the propositional truncation, such a func-

tion is obtained once provided a term in

Π (t′ ∶ A ≃ [n]) . ∣⟨[n], ∣id[n]∣⟩∣ = ∣⟨A, ∣t′∣⟩∣.

174 5. FINITE TYPES AND SYMMETRIC MONOIDAL STRUCTURES

Given t′ ∶ A ≃ [n], we have (ua(t′))−1 ∶ [n] = A, which is enough to give a path

⟨[n], ∣id[n]∣⟩ = ⟨A, ∣t′∣⟩, by virtue of Remark 2.78. Applying ∣−∣ to such a path proves

the claim.

We will now define a symmetric monoidal structure on the subuniverse of fi-

nite types. Since, by Corollary 5.7, BS● is a 1-type, conferring on it a symmetric

monoidal structure will make it a symmetric monoidal groupoid. In order to sim-

plify the exposition, we will often treat paths in BS● as paths in the equivalent type:

Σ (t ∶N ×U) . ∥pr2(t) ≃ [pr1(t)]∥ .

The symmetric monoidal structure we define is the one induced by the one on U

with the coproduct type former + ∶ U → U → U and the empty type 0 as unit,

mentioned in Remark 4.2. There are families of equivalences

α≃U ∶ Π (A, B, C ∶ U) . A + B +C ≃ A + (B +C),
λ≃U ∶ Π (B ∶ U) . 0 + B ≃ B,

ρ≃U ∶ Π (A ∶ U) . A + 0 ≃ A,

τ≃U ∶ Π (A, B ∶ U) . A + B ≃ B + A,

showing associativity, unitality and symmetry of the coproduct of types; these in-

duce, via univalence, corresponding families of paths. For example, symmetry is

the function term

τU ∶≡ (A ↦ B ↦ ua(τ≃U(A, B))) ∶ Π (A, B ∶ U) . A + B = B + A.

The 2-paths for the coherence diagram DU , ▽U , 7U and U are then found by

examining their defining equivalences. For instance, the 2-path

U ∶ Π (A, B ∶ U) . τU(A, B) ⋅ τU(B, A) = reflA+B

is obtained, for A, B ∶ U , as the concatenation

τU(A, B) ⋅ τU(B, A) ≡ ua(τ≃U(A, B)) ⋅ ua(τ≃U(B, A))
= ua(τ≃U(B, A) ○ τ≃U(A, B)) by Lemma 2.113

= ua(idA+B)
= reflA+B by Lemma 2.113,

since there is an identity between the equivalences τ≃
U
(B, A) ○ τ≃

U
(A, B) and idA+B,

as the underlying functions are homotopic (Lemma 2.120(iii)).

FINITE TYPES 175

The type N ∶ U can also be endowed with a symmetric monoidal structure:

addition in N is provably associative, symmetric (commutative) and unital with

respect to 0 ∶ N; the coherence diagrams are trivially satisfied, as N is a 0-type

(Remark 2.75).

The symmetric monoidal structure on BS● will rely on those on U and N; we

will only need to verify that finite types are closed under coproducts, and that this

operation is graded on the cardinality.

Lemma 5.10. The coproduct of two finite types is a finite type whose cardinality is the

sum of the cardinalities of the summands; i.e., given types A, B ∶ U and terms nA, nB ∶N,

tA ∶ ∥A ≃ [nA]∥ and tB ∶ ∥B ≃ [nB]∥, there is a term tA+B ∶ ∥(A + B) ≃ [nA + nB]∥.
Proof. Using the elimination principle of the truncation, it is enough to show that,

given equivalences eA ∶ A ≃ [nA] and eB ∶ B ≃ [nB], we can construct an equivalence

eA+B ∶ (A + B) ≃ [nA + nB]. This will be defined as the composition of eA + eB ∶

(A+ B) ≃ ([nA]+ [nB])with an equivalence ([nA]+ [nB]) ≃ [nA + nB], which can be

obtained by induction on nA.

Lemma 5.11. The type BS● has a symmetric monoidal structure, defined in the proof.

Proof. The unit is given by 0 ∶≡ ⟨0, 0, ∣id0∣⟩ ∶ BS●. For a product ⊞ ∶ BS● → BS● → BS●,

by the elimination principle for Σ-types it is enough to define

⟨nA, A, tA⟩⊞ ⟨nB, B, tB⟩ ∶≡ ⟨nA + nB, A + B, tA+B⟩
for every nA, nB, A, B tA and tB making the expression well-typed, with the term

tA+B constructed from tA and tB as in Lemma 5.10. The rest of the structure follows

by combining the symmetric monoidal structures of N and U , together with path

algebra concerning Σ-types (in particular, applications of Remark 2.78). We have,

for example,

αBS●(⟨nA, A, tA⟩, ⟨nB, B, tB⟩, ⟨nC, C, tC⟩) ∶≡ ⟨αN(nA, nB, nC), αU(A, B, C), . . .⟩,
where αN is the associativity of addition in N, and similarly for the other natural

isomorphisms and coherence diagrams.

We now want to construct a symmetric monoidal equivalence between slist(1)
and BS●. In order to do so, we will use another symmetric monoidal groupoid as

a stepping stone, representing the deloopings of symmetric groups (of any order).

Theoretically, the notion of the delooping of a group G agrees with that of the clas-

sifying space of G; the difference here lies in the definition we provide, which makes

176 5. FINITE TYPES AND SYMMETRIC MONOIDAL STRUCTURES

the construction of the loops explicit (and inductive). We discuss deloopings of sym-

metric groups in the following section.

Remark 5.12. We report that in [Fin+21] an equivalence is shown between the sub-

universe of finite types (BS● in the notation of this thesis) and a HIT B with the

following constructors:

B ∶ ∶= obj ∶N → B ∣ hom ∶ Π (m, n ∶N) . ([m] ≃ [n])→ (obj(m) = obj(n))
∣ id−coh ∶ Π (n ∶N) .homn,n(id[n]) = reflobj(n)
∣ comp−coh ∶ Π (n1, n2, n3 ∶N) . Π (α ∶ [n1] ≃ [n2]) . Π (β ∶ [n2] ≃ [n3]) .

homn1,n3(β ○ α) = homn1,n2(α) ⋅ homn2,n3(β)
∣ TB ∶ IsHGpd(B).

A function g ∶ B → BS● is constructed using the elimination principle of B. This

function computes, on the 0-constructor, g(obj(n)) ≡ ⟨n, [n], ∣id[n]∣⟩ for every n ∶ N,

and it is defined such that

[g](homm,n(e)) = ⟨. . . ,ua(e), . . .⟩,
where the first omitted term comes from a function Π (m, n ∶N) . ([m] ≃ [n])→ (m =
n), while the last term is obtained by the truncation level of ∥[m] ≃ [n]∥. The func-

tion g is then shown to be an equivalence, using an “encode-decode”-style proof.

While providing a proof that the subuniverse of finite types is equivalent to a small

type, this equivalence does not seem to be conducive to a proof that BS● ≃ slist(1),
and hence to a proof that BS● is a free symmetric monoidal groupoid in the sense of

Chapter 4.

5.2 Deloopings of Symmetric Groups

We recall that, given a group G, its delooping is a groupoid with one point ∗ and

a one-to-one correspondence between loops at ∗ and elements in G; the product of

two elements in G is realized by the concatenation of the corresponding loops. Our

aim is to define a type del● of deloopings of symmetric groups (of any degree), to

be shown equivalent to the subuniverse BS● of finite types, highlighting the combi-

natorial nature of finite types in its elimination principle.

Before giving the definition of del●, we will examine the elements of the combi-

natorial structure of BS● that we wish to replicate, in light of the fact that we should

also be able to recognize the deloopings of the symmetric groups in BS● itself:

DELOOPINGS OF SYMMETRIC GROUPS 177

• there is a finite type 0 of cardinality 0. The type 0 ≃ 0 is contractible; this corre-

sponds to the fact that S0 is trivial;

• if A is a finite type of cardinality n, we can produce the type A+ 1 of cardinality

n + 1; consequently, for every equivalence e ∶ A ≃ B of finite types, there is an

equivalence incr(e) ∶ A + 1 ≃ B + 1, with incr as in Definition 2.100. This corre-

sponds to the inclusion Sn ↪ Sn+1;

• for every finite type A, there is a nontrivial automorphism

ωA ∶ A + 1 + 1 ≃ A + 1 + 1, (5.13)

which is the identity on A and swaps inr(∗) with inl(inr(∗)). This embodies the

generator an+1 of Sn+2 in (4.10), i.e., the transposition of n + 1 and n + 2 in the

finite set {1, . . . , n + 2};
• the automorphism ωA in (5.13) is provably an involution, i.e.

ωA ○ωA = idA+1+1, (5.14)

and satisfies the following “braiding” relation (à la Yang-Baxter):

ωA+1 ○ incr(ωA) ○ωA+1 = incr(ωA) ○ωA+1 ○ incr(ωA); (5.15)

the identity between equivalences derives from an easily verified homotopy

between the underlying functions (Lemma 2.120(iii)) as shown in Fig. 5.1. Re-

ferring to (4.10), these two properties correspond, respectively, to the relations

a2
n+1 = 1 in the presentation of Sn+2 and an+2an+1an+2 = an+1an+2an+1 in the pre-

sentation of Sn+3;

• moreover, BSn is a 1-type.

A 1 1 1A 1 1 1

=

ωA+1

incr(ωA)
ωA+1

incr(ωA)
ωA+1

incr(ωA)
=

A 1 1 A 1 1

ωA

ωA

idA+1+1

Figure 5.1: Combinatorial structure of the subuniverse of finite types, in pictures: ωA is an

involution (left) and it “braids” with ωA+1 (right).

The combinatorial structure of BS● presented above concerns equivalences of

finite types. Via univalence, the same structure translates to one involving paths

178 5. FINITE TYPES AND SYMMETRIC MONOIDAL STRUCTURES

between finite types; this suggests the use of HITs to define del●, modelling finite

types as terms, and paths between finite types as paths between the corresponding

terms. The implicit claim, which will motivate our choice for the constructors of

del●, is that the combinatorial structure described above generates all paths in BS●,

and hence it lends itself to an inductive definition. For practical reasons, we found

it convenient to define del● “degreewise”, i.e. uniformly as a family del ∶ N → U of

types indexed by the natural numbers (as for BS in Definition 5.3), each type in the

family representing the delooping of the symmetric group of a certain degree.

Remark 5.16 (Notation). For A ∶ U , we will use the symbol

γA ∶≡ ua(ωA) ∶ A + 1 + 1 = A + 1 + 1, (5.17)

with ωA defined in (5.13). It follows that ωA = ua−1(γA). From Lemma 2.113 and

(5.14), we obtain a 2-path γ−1
A ≡ ua(ωA)−1

= ua(ω−1
A) = ua(ωA) ≡ γA.

Definition 5.18 (Deloopings of symmetric groups). The ap-recursive, indexed fam-

ily del ∶N → U of 1-truncated HITs is defined with the following presentation:2

del(−) ∶ ∶= pt0 ∶ del0

∣ i ∶ Π (n ∶N) .deln → deln+1

∣ tw ∶ Π (n ∶N) . Π (a ∶ deln) . in+1(in(a)) = in+1(in(a))
∣ do ∶ Π (n ∶N) . Π (a ∶ deln) . twn(a) ⋅ twn(a) = reflin+1(in(a))

∣ br ∶ Π (n ∶N) . Π (a ∶ deln) . twn+1(in(a)) ⋅ [in+2](twn(a)) ⋅ twn+1(in(a))
= [in+2](twn(a)) ⋅ twn+1(in(a)) ⋅ [in+2](twn(a))

∣ Tdel ∶ Π (n ∶N) . IsHGpd(deln).
We will use the notation

del● ∶≡ Σ (n ∶N) .deln

for the coproduct, which is a 1-type (Remark 2.75). The index n in i, tw, do and br

will be always omitted in the notation, and we will write twa for tw(a). The family

is depicted in Fig. 5.2.

The elimination principle of del(−) will treat the family uniformly in the degree

n, and hence will pertain eliminating into N-indexed families of families of types.

Explicitly, given C ∶ Π (n ∶N) .deln → U , in order to obtain a section

inddel ∶ Π (n ∶N) . Π (a ∶ deln) . Cn(a),
2The names for the constructors were chosen with pt0 standing for “point”; i for “inclusion”; tw for

“twist”; do for “double”; br for “braid”.

DELOOPINGS OF SYMMETRIC GROUPS 179

del0

pt0

del1

pt1

∶≡ i(pt0)

deln

a

deln+1

i(a)

deln+2

i(i(a)) i(i(a))

twa

twa

doa

deln+3

i(i(i(a))) i(i(i(a)))

i(i(i(a))) i(i(i(a)))

i(i(i(a))) i(i(i(a)))

[i](twa)
twi(a)

[i](twa)

twi(a)

[i](twa)
twi(a)

twi(a)

bra

doi(a)

i

i

. . .

i

i

i

i

. . .

Figure 5.2: The indexed family del ∶ N → U of HITs; some of the defining loops and 2-paths

are shown for a ∶ deln, for some n ∶N. As we will see, the 0-truncation of deln is contractible

for every n ∶N (Lemma 5.26).

180 5. FINITE TYPES AND SYMMETRIC MONOIDAL STRUCTURES

we need:

• a term pt′ ∶ C0(pt0);
• a term i′ ∶ Π (n ∶N) . Π (a ∶ deln) . Cn(a)→ Cn+1(i(a));
• a family of pathovers

tw′ ∶ Π (n ∶N) . Π (a ∶ deln) . Π (a′ ∶ Cn(a)) . (twa)Cn+2
∗
(i′(i′(a′))) = i′(i′(a′)),

where the first two arguments of i′ are left implicit;

and so on, following the induction scheme presented in Section 2.6. The non-depen-

dent version of this elimination principle applies to families of types indexed by N;

for C ∶N → U , a term recdel ∶ Π (n ∶N) .deln → Cn is provided once given terms for

C directly corresponding to the constructors of del(−).

Definition 5.19. All types in the family del are inhabited; we define

pt ∶ Π (n ∶N) .deln

by induction on n, setting pt(0) ∶≡ pt0 and, recursively, pt(n + 1) ∶≡ i(pt(n)). We

will write ptn ∶≡ pt(n) for every n ∶ N, where the judgmental equality resolves the

notational ambiguity of pt0 being also used to denote a constructor of del(−).

Remark 5.20. The definition of del(−) offers a counterpart to the combinatorial struc-

ture of BS● described at the beginning of this section, which, as we discussed, ap-

pears in the classical presentation of the symmetric groups Sn in (4.10). The genera-

tors ai correspond to transpositions of adjacent elements in the finite set {1, . . . , n};
these are embodied by ω(−) in BS● and by tw(−) in del●. As for the relations, both

a2
i = 1 and ai+1aiai+1 = aiai+1ai are found in the specified combinatorial structure

of finite sets and in the constructors of del(−) (respectively, do(−) and br(−)), while

the relation aiaj = ajai for ∣i − j∣ ≥ 2 is redundant in BS● and del●, as shown in the

following lemma (see also [ML98, Chapter XI, proof of Theorem 1] and Lemma 4.12

for related instances of the same phenomenon).

Lemma 5.21 (Naturality of tw, γ and ω). Recall add and incr from Definition 2.42 and

Definition 2.100. With regard to del● and U (hence BS●), the following holds:

(i) the loops tw(−) commute with the concatenation with [i]([i](−)), i.e., for every n ∶N,

a, b ∶ deln and p ∶ a = b, there is a 2-path

[i]([i](p)) ⋅ twb = twa ⋅ [i]([i](p)); (5.22)

DELOOPINGS OF SYMMETRIC GROUPS 181

(ii) the loops γ(−) commute with the concatenation with [add]([add](−)), i.e., for every

A, B ∶ U and p ∶ A = B, there is a 2-path

[add]([add](p)) ⋅ γB = γA ⋅ [add]([add](p)); (5.23)

(iii) the symmetries ω(−) commute with the composition with incr(incr(−)), i.e., for every

A, B ∶ U and e ∶ A ≃ B, there is an identity between equivalences

ωB ○ incr(incr(e)) = incr(incr(e)) ○ωA, (5.24)

where, we remind, incr(e) ∶ add(A) ≃ add(B).
Proof. The first two claims are proved by induction on p, while (5.24) can be derived,

for example, from the second one; indeed:

ωB ○ incr(incr(e)) = ua−1(γB) ○ (incr(incr(ua−1(ua(e)))))
= ua−1(γB) ○ ua−1([add]([add](ua(e)))) by (2.129)

= ua−1([add]([add](p)) ⋅ γB) by path algebra

= ua−1(γA ⋅ [add]([add](p))) by (5.23)

= incr(incr(e)) ○ωA in reverse.

Alternatively, an identity between the two equivalences is obtained because the

underlying functions A → B are homotopic (Lemma 2.120(iii)), which can be easily

verified by induction on any argument in A + 1 + 1.

The results about BS● shown in Section 5.1 have a counterpart in del●.

Lemma 5.25. The types del0 and del1 are contractible.

Proof. We will start by proving that del0 is contractible. The chosen center of contrac-

tion is, obviously, pt0; we will thus need to find a term contr0 ∶ Π (a ∶ del0) .pt0 = a as

proof of contraction. The elimination principle of del(−) cannot be used directly to

produce a dependent function out of del0, as it applies to families indexed over the

natural numbers (recall Remark 2.44). For this reason, we need to generalize our

goal to finding a term

contr′0 ∶ Π (n ∶N) . Π (a ∶ deln) . (n = 0)→ (ptn = a),
so that we can apply the elimination principle of del(−) to the (indexed) family

C ∶ Π (n ∶N) .deln → U defined by Cn(a) ∶≡ (n = 0) → (ptn = a). By function exten-

sionality, every type in the family C is a 0-type, because the target of the function is

an identity type in a 1-type. Hence, such a function can be obtained once provided:

182 5. FINITE TYPES AND SYMMETRIC MONOIDAL STRUCTURES

• a term pt′0 ∶ (0 = 0)→ (pt0 = pt0), which is trivially given as the function constant

at the identity path;

• for every n ∶N and a ∶ deln, a term

i′n(a) ∶ ((n = 0)→ (ptn = a))→ (n + 1 = 0)→ (ptn+1 = i(a));
this can be obtained ex falso, as there is a function Π (n ∶N) . (n + 1 = 0)→ 0;

• for every n ∶N, a ∶ deln and a′ ∶ (n = 0)→ (ptn = a), a pathover

tw′n(a) ∶ (twa)Cn+2
∗
(i′n+1(i′n(a′))) = i′n+1(i′n(a′));

by function extensionality, it is sufficient to show that the two functions agree

on all p ∶ n + 2 = 0; again, this is proved ex falso.

The proof of contraction is then achieved by defining contr0(a) ∶≡ contr′0(0, a, refl0).
Contractibility of del1 is proved similarly: the center of contraction, in this case,

is pt1, and again we use the elimination principle of del(−) to find a term

contr′1 ∶ Π (n ∶N) . Π (a ∶ deln) . (n = 1)→ (ptn = a).
We need:

• a term pt′0 ∶ (0 = 1)→ (pt0 = pt0), trivially given;

• for every n ∶N and a ∶ deln, a term

i′n(a) ∶ ((n = 1)→ (ptn = a))→ (n + 1 = 1)→ (ptn+1 = i(a)).
The function i′n will be, once again, constant on the first argument (the term in

(n = 1)→ (ptn = a)). By induction on n:

– for a ∶ del0, a term in (1 = 1) → (pt1 = i(a)), is given by the function (p ↦
[i](contr0(a))), since pt1 ≡ i(pt0);

– the inductive case seeks, for a ∶ deln+1 and some inductive hypothesis, a term

in (n + 2 = 1)→ (ptn+2 = i(a)), which is given ex falso;

• the requirement tw′ is resolved in the same way as for the proof of contractibility

of del0.

The same argument fails for del2, and in general for an arbitrary n ∶ N other

than 0 or 1. Indeed, assuming that del2 is contractible would imply the existence of

a path twpt0
= reflpt2

, which leads to a contradiction, as we will see in Lemma 5.46.

Conversely, assuming a 2-path p ∶ twa = refli(i(a)) for every n ∶ N and a ∶ deln is

DELOOPINGS OF SYMMETRIC GROUPS 183

enough to show contractibility of all types in the family del. Hence, it does not

come as a surprise that this result can be achieved under the stronger assumption

of having all 2-paths.

Lemma 5.26. For every n ∶N, deln is connected.

Proof. We want to show that ∥deln∥0 is contractible for every n. Using ∣ptn∣ as center

of the contraction, we need to find a term in Π (n ∶N) . Π (a ∶ ∥deln∥0) . ∣ptn∣ = a. By

the elimination principle of the truncation, it is enough to find a term in

Π (n ∶N) . Π (a ∶ deln) . ∣ptn∣ = ∣a∣,
which we can do using the elimination principle of del(−), where we eliminate into

an indexed family of (−1)-types. Therefore, it suffices to provide:

• a path pt′0 ∶ ∣pt0∣ = ∣pt0∣, given by the identity path;

• for every n ∶ N, a ∶ deln and a′ ∶ ∣ptn∣ = ∣a∣, a path i′n(a, a′) ∶ ∣i(ptn)∣ = ∣i(a)∣. The

function i ∶ deln → deln+1 induces a map ∥i∥0 ∶ ∥deln∥0 → ∥deln+1∥0 computing

∥i∥0 (∣x∣) ≡ ∣i(x)∣ for every x ∶ deln, so [∥i∥0](a′) is the sought path.

Using connectedness, we can prove properties (in the sense of Definition 2.73)

of terms in any of the types of the family del, without applying the elimination

principle of the HIT. The following lemma provides an example of the application

of this proof technique.

Lemma 5.27. Let n ∶N. For every a ∶ deln+1, there is a term in ∥Σ (x ∶ deln) . a = i(x)∥.
Proof. Since deln is connected (Lemma 5.26), by Lemma 2.143 it is enough to find a

term in the type ∥Σ (x ∶ deln) .ptn+1 = i(x)∥; this can be given by ∣⟨ptn, reflptn+1
⟩∣.

Like BS●, also del● ≡ Σ (n ∶N) .deln can be endowed with a symmetric mo-

noidal structure; this will require multiple applications of the elimination princi-

ple of del(−). We will present its most prominent features, while leaving out some

details. In the Coq formalization, the symmetric monoidal structure is defined al-

most completely, save for the the coherence diagrams 7 and ; these can be proved

similarly to the ones for slist(X) (as we will see in Lemma 5.30).

We will start by presenting the symmetric monoidal product ⊕ ∶ del● → del● →

del●. The specifics of its definition are motivated by the fact that, ultimately, we

would like to construct a symmetric monoidal equivalence del● ≃ BS● by which, if

a ∶ deln corresponds to a finite type A, then i(a) ∶ deln+1 should correspond to A + 1.

In particular, referring to the definition of the symmetric monoidal product ⊞ in

184 5. FINITE TYPES AND SYMMETRIC MONOIDAL STRUCTURES

BS● (Lemma 5.11), we want to define ⊕ so that f●(x)⊞ f●(y) = f●(x⊕ y) for every x,

y ∶ del●. Since, on the base of the Σ-type, the product ⊞ coincides with the addition

on natural numbers, the product ⊕will too; that is, the type

Π (a, b ∶ del●) .pr1(a⊕ b) = pr1(a)+ pr1(b)
will be inhabited (we omit the proof, which is straightforward).

Definition 5.28. A function ⊕ ∶ del● → del● → del● is defined, using the elimination

principle of Σ-types, by a function

Π (n ∶N) . Π (a ∶ deln) .del● → del●,

which, in turn, is obtained by the elimination principle of del(−), as follows.

• A term pt′0 ∶ del● → del● is given by the identity function;

• for every n ∶ N, a ∶ deln and a′ ∶ del● → del●, a function i′(a′) ∶ del● → del● is

defined by i′(a′) ∶≡ ⟨s, i⟩ ○ a′, using the notation of Definition 2.18, where, we

remind, s is the successor function in N;

• for every n ∶N, a ∶ deln and a′ ∶ del● → del●, a path

tw′ ∶ ⟨s, i⟩ ○ ⟨s, i⟩ ○ a′ = ⟨s, i⟩ ○ ⟨s, i⟩ ○ a′

is obtained by function extensionality; for every x ∶ del●, we need to find a loop

at ⟨s, i⟩(⟨s, i⟩(a′(x))) ∶ del●, i.e., a path

⟨pr1(a′(x))+ 2, i(i(pr2(a′(x))))⟩ = ⟨pr1(a′(x))+ 2, i(i(pr2(a′(x))))⟩;
this is given by ⟨reflpr1(a′(x))+2, twpr2(a′(x))⟩;

• the families of 2-paths relative to the constructors do and br are obtained simi-

larly, using properties of function extensionality, path algebra, and the construc-

tors do and br themselves; for example, for n ∶ N, a ∶ deln and a′ ∶ del● → del●,

a 2-path do′ ∶ tw′ ⋅ tw′ = refl(i′(i′(a′))=i′(i′(a′))) is constructed, for every x ∶ del●, as

the concatenation

⟨reflpr1(a′(x)), twpr2(a′(x))⟩ ⋅ ⟨reflpr1(a′(x)), twpr2(a′(x))⟩
= ⟨reflpr1(a′(x)), twpr2(a′(x)) ⋅

d twpr2(a′(x))⟩
≡ ⟨reflpr1(a′(x)), twpr2(a′(x)) ⋅ twpr2(a′(x))⟩
= ⟨reflpr1(a′(x)), reflpr2(a′(x))⟩ by dopr2(a′(x))

≡ refla′(x),

DELOOPINGS OF SYMMETRIC GROUPS 185

using the notation of Lemma 2.69. The function ⊕ then enjoys the computational

properties:

⟨0,pt0⟩⊕ x ≡ x, ⟨n + 1, i(a)⟩⊕ x ≡ ⟨s, i⟩(⟨n, a⟩⊕ x), (5.29)

for every n ∶N, a ∶ deln and x ∶ del●.

Lemma 5.30. The type del● has a symmetric monoidal structure, defined in the proof.

Proof. The symmetric monoidal structure we define on del● has the term pt0 ∶≡

⟨0,pt0⟩ ∶ del● as unit and the function ⊕ ∶ del● → del● → del● in Definition 5.28 as

symmetric monoidal product. The natural isomorphisms αdel● , ρdel● and τdel● defin-

ing the symmetric monoidal structure are obtained by the elimination principle of

del(−), while λdel● holds judgmentally by (5.29). Starting from associativity, for a

family of paths αdel● ∶ Π (x, y, z ∶ del●) . (x⊕ y)⊕ z = x⊕ (y⊕ z)we need:

• a family of paths (⟨0,pt0⟩⊕ y)⊕ z = ⟨0,pt0⟩⊕ (y⊕ z), all given by the reflexivity

path, since both sides of the identity type compute to y⊕ z;

• given n ∶N, a ∶ deln and y, z ∶ del●, and assuming inductively a path

h ∶ (⟨n, a⟩⊕ y)⊕ z = ⟨n, a⟩⊕ (y⊕ z), (5.31)

a path (⟨n + 1, i(a)⟩⊕ y)⊕ z = ⟨n + 1, i(a)⟩⊕ (y⊕ z) is found directly:

(⟨n + 1, i(a)⟩⊕ y)⊕ z ≡ (⟨s, i⟩(⟨n, a⟩⊕ y))⊕ z

≡ ⟨pr1(⟨n, a⟩⊕ y)+ 1, i(pr2(⟨n, a⟩⊕ y))⟩⊕ z

≡ ⟨s, i⟩((⟨n, a⟩⊕ y)⊕ z)
= ⟨s, i⟩(⟨n, a⟩⊕ (y⊕ z)) by [⟨s, i⟩](h)
≡ ⟨n + 1, i(a)⟩⊕ (y⊕ z);

• given n ∶ N, a ∶ deln, y, z ∶ del● and h as in (5.31), the requirement relative to the

constructor tw of del(−) is fulfilled by the 2-path shown in Fig. 5.3.

A family ρdel● of paths for right unitality is obtained similarly. About symmetry,

defining a family τdel● ∶ Π (x, y ∶ del●) . x⊕ y = y⊕ x requires a nested application of

the elimination principle of del(−). Its construction follows closely the definition of

τslist for ++ in Lemma 4.29. A family of paths

Qy ∶ Π (x ∶ del●) . ⟨s, i⟩(x⊕ y) = x⊕ ⟨s, i⟩(y)
is defined for every y ∶ del● by the elimination principle of del●, computing

Qy⟨0,pt0⟩ ≡ refl⟨s,i⟩(y), Qy⟨n + 1, i(a)⟩ ≡ ⟨refl, twpr2(⟨n,a⟩⊕y)⟩ ⋅ [⟨s, i⟩](Qy⟨n, a⟩),

186 5. FINITE TYPES AND SYMMETRIC MONOIDAL STRUCTURES

⟨pr1(. . .)+ 2, i(i(pr2(. . .)))⟩ ⟨pr1(. . .)+ 2, i(i(pr2(. . .)))⟩

⟨pr1(. . .)+ 2, i(i(pr2(. . .)))⟩ ⟨pr1(. . .)+ 2, i(i(pr2(. . .)))⟩

(⟨n + 2, i(i(a))⟩⊕ y)⊕ z ⟨n + 2, i(i(a))⟩⊕ (y⊕ z)

(⟨n + 2, i(i(a))⟩⊕ y)⊕ z ⟨n + 2, i(i(a))⟩⊕ (y⊕ z)

[⟨s, i⟩]([⟨s, i⟩](h))

[⟨s, i⟩]([⟨s, i⟩](h))

⟨refl, [i]([i](. . .))⟩

⟨refl, [i]([i](. . .))⟩

⟨refl, tw(...)⟩⟨refl, tw(...)⟩

1

2

3

Figure 5.3: Requirement for the constructor tw in the definition of αdel● . The 2-paths in (1)

and (3) are given by (2.67), together with the fact that N is a 0-type (so there is a 2-path

between the path in the base and refl); (2) is given by Lemma 5.21.

for every n ∶ N and a ∶ deln (cf. Lemma 4.25 and relevant Fig. 4.16 for the require-

ment relative to the 1-constructor), and such that there is a family of 2-paths

Rx,y ∶ [⟨s, i⟩](Qy(x)) ⋅Q⟨s,i⟩(y)(x) ⋅ (reflx ⊕ ⟨reflpr1(y)+2, twpr2(y)⟩)
= (⟨reflpr1(x)+2, twpr2(x)⟩⊕ y) ⋅ [⟨s, i⟩](Qy(x)) ⋅Q⟨s,i⟩(y)(x)

for every x, y ∶ del● (cf. Lemma 4.28). Then τdel● can be defined by

τdel●(⟨0,pt0⟩, y) ∶≡ ρ−1
del●
(y) ∶ ⟨0,pt0⟩⊕ y = y⊕ ⟨0,pt0⟩,

τdel●(⟨n + 1, i(a)⟩, y) ∶≡ [⟨s, i⟩(τdel●(⟨n, a⟩, y))] ⋅Q⟨n,a⟩(y)
∶ ⟨n + 1, i(a)⟩⊕ y = y⊕ ⟨n + 1, i(a)⟩,

for every n ∶N, a ∶ deln and y ∶ del●, and via a 2-path relative to the 1-constructor tw

obtained via the family R in a way similar to the one displayed in Fig. 4.17 for τslist.

The families Ddel● , ▽del● , 7del● and del● of 2-paths encoding the coherence di-

agrams require only induction at the level of the 0-constructors pt0 and i of del(−);

these are found, again, similarly to their counterparts for slist.

5.3 An Equivalence slist(1) ≃ del●

This section is devoted to the construction of a symmetric monoidal equivalence

slist(1) ≃ del●. It is easy to imagine how the symmetric monoidal functors in the two

AN EQUIVALENCE slist(1) ≃ del● 187

directions should be defined: indeed, the constructors of the two higher inductive

types are very similar. The main difference between the two definitions is that del(−)

is indexed by the natural numbers; each member deln of the family should then

correspond to the type of symmetric lists of length n ∶N with elements in 1.

Definition 5.32. We define a function

k ∶ slist(1)→ del●

using the elimination principle of slist. The arguments of recslist are :

• a term nil′ ∶ del●, given by nil′ ∶≡ pt0 ≡ ⟨0,pt0⟩;
• a term cons′ ∶ 1 → del● → del●, defined to be cons′x ∶≡ ⟨s, i⟩ for every x ∶ 1;

• for every x, y ∶ 1 and ⟨n, a⟩ ∶ del●, a path

swap′x,y,⟨n,a⟩ ∶ cons
′
x(cons′y⟨n, a⟩) = cons′y(cons′x⟨n, a⟩).

Its type, unfolding the definition of cons′, is judgmentally equal to

⟨n + 2, i(i(a))⟩ = ⟨n + 2, i(i(a))⟩;
the path can be then defined as swap′x,y,⟨n,a⟩ ∶≡ ⟨refln+2, twa⟩;

• for every x, y ∶ 1 and ⟨n, a⟩ ∶ del●, a 2-path

double′x,y,⟨n,a⟩ ∶ swap
′

x,y,⟨n,a⟩ ⋅ swap
′

y,x,⟨n,a⟩ = reflcons′x(cons′y⟨n,a⟩).

Using Lemma 2.69 and doa, we get:

swap′x,y,⟨n,a⟩ ⋅ swap
′

y,x,⟨n,a⟩ ≡ ⟨refln+2, twa⟩ ⋅ ⟨refln+2, twa⟩
= ⟨refln+2, twa ⋅

d twa⟩
≡ ⟨refln+2, twa ⋅ twa⟩
= ⟨refln+2, refli(i(a))⟩
≡ refl⟨n+2,i(i(a))⟩ ≡ reflcons′x(cons′y⟨n,a⟩);

• for every x, y, z ∶ 1 and ⟨n, a⟩ ∶ del●, a 2-path

triple′x,y,z,⟨n,a⟩ ∶ swap
′

x,y,cons′z⟨n,a⟩ ⋅ [cons′y](swap′x,z,⟨n,a⟩) ⋅ swap′y,z,cons′x⟨n,a⟩

= [cons′x](swap′y,z,⟨n,a⟩) ⋅ swap′x,z,cons′y⟨n,a⟩ ⋅ [cons′z](swap′x,y,⟨n,a⟩),
similarly obtained by path algebra and by bra;

188 5. FINITE TYPES AND SYMMETRIC MONOIDAL STRUCTURES

• a proof that del● is a 1-type, which follows from the constructor Tdel of del(−),

together with Remark 2.75.

Remark 5.33. It is tedious, but not hard, to prove that k is a symmetric monoidal

functor:

• the path k0 ∶ pt0 = k(nil) is given by reflexivity;

• a family k2 ∶ Π (l1, l2 ∶ slist(1)) . k(l1)⊕ k(l2) = k(l1 ++ l2) needs to be constructed

by induction on l1; on 0-constructors, we have

k2(nil, l2) ≡ reflk(l2), k2(x ∶ ∶ l1, l2) ≡ [⟨s, i⟩](k2(l1, l2))
for every x ∶ 1 and l1, l2 ∶ slist(1), while the family of 2-paths relative to the

1-constructor swap derives from the fact that loops ⟨refl, tw(−)⟩ commute with

paths of the form [⟨s, i⟩]([⟨s, i⟩](−)), cf. Lemma 5.21(i);

• the families kα, kλ, kρ and kτ are easily obtained via the computation rules of k

relative to the 0-constructors, as the defining terms of the symmetric monoidal

structures of slist(1) and del● correspond in all aspects.

Definition 5.34. We define a function

j ∶ del● → slist(1)
using the elimination principle of Σ-types (by which it is enough to provide a func-

tion Π (n ∶N) .deln → slist(1)) and the one of del(−). The arguments of recdel are the

following:

• a term pt′0 ∶ slist(1), defined to be pt′0 ∶≡ nil;

• a term i′ ∶N → slist(1)→ slist(1), given by i′n ∶≡ cons(∗) uniformly in n ∶N;

• for every n ∶N and l ∶ slist(1), a path

tw′n(l) ∶ i′n+1(i′n(l)) = i′n+1(i′n(l)),
the type of which, unfolding the definition of i′, is judgmentally equal to

∗ ∶ ∶ ∗ ∶ ∶ l = ∗ ∶ ∶ ∗ ∶ ∶ l;

in view of the fact that we want to construct a half-adjoint inverse to k, we define

this to be tw′n(l) ∶≡ swap∗,∗,l ;

• for every n ∶N and l ∶ slist(1), a 2-path

do′n(l) ∶ tw′n(l) ⋅ tw′n(l) = refli′
n+1
(i′n(l)),

given by do′n(l) ∶≡ double∗,∗,l ;

AN EQUIVALENCE slist(1) ≃ del● 189

• for every n ∶N and l ∶ slist(1), a 2-path

br′n(l) ∶ tw′n+1(i′n(l)) ⋅ [i′n+2](tw′n(l)) ⋅ tw′n+1(i′n(l))
= [i′n+2](tw′n(l)) ⋅ tw′n+1(i′n(l)) ⋅ [i′n+2](tw′n(l)),

given by br′n(l) ∶≡ triple∗,∗,∗,l ;

• a proof that slist(1) is a 1-type, which is in its definition.

Theorem 5.35. The functions k and j presented in Definitions 5.32 and 5.34 are half-

adjoint in an equivalence, which can be promoted to a symmetric monoidal equivalence

slist(1) ≃ del●.
Proof. Homotopies j ○ k ∼ idslist(1) and k ○ j ∼ iddel● are obtained because the func-

tions j and k inductively pair the constructors of slist with those of del(−). The first

homotopy is provided as follows: a function Π (l ∶ slist(1)) . j(k(l)) = l is produced

by the elimination principle of slist, following the scheme for elimination in a family

of paths in a groupoid. The required arguments of indslist are:

• a path nil′ ∶ j(k(nil)) = nil, given by reflnil, as the left-hand side of the identity

computes to nil;

• given x ∶ 1, l ∶ slist(1) and assuming the inductive hypothesis h ∶ j(k(l)) = l,

a path cons′x(l, h) ∶ j(k(x ∶ ∶ l)) = x ∶ ∶ l. By the elimination principle of 1, it is

enough to provide a path cons′∗(l, h) ∶ j(k(∗ ∶ ∶ l)) = ∗ ∶ ∶ l; as the left-hand side of

the identity computes to ∗ ∶ ∶ j(k(l)), the claim is proved by [∗ ∶ ∶ −](h);
• for x, y ∶ 1, l ∶ slist(1) and assuming the inductive hypothesis h ∶ j(k(l)) = l,

the 2-path swap′x,y(l, h) shown in Fig. 5.4a; by the elimination principle of 1, it is

enough to give swap′∗,∗(l, h), which is shown in Fig. 5.4b to be obtained by the

computation rules of j and k and by naturality of the constructor swap.

A homotopy k ○ j ∼ iddel● is obtained in a completely similar fashion: the composite

function k ○ j:

• leaves ⟨0,pt0⟩ fixed (judgmentally);

• sends any term of the form ⟨n + 1, i(a)⟩ to ⟨s, i⟩(k(j⟨n, a⟩)) which is by induction

equal to ⟨s, i⟩⟨n, a⟩ ≡ ⟨n + 1, i(a)⟩;
• maps functorially any path of the form ⟨refln+2, twa⟩ to a pathover corresponding

to a 2-path in del● given by the computation rules of k and j on 1-constructors

and naturality of tw.

190 5. FINITE TYPES AND SYMMETRIC MONOIDAL STRUCTURES

j(k(x ∶ ∶ y ∶ ∶ l)) x ∶ ∶ y ∶ ∶ l

j(k(y ∶ ∶ x ∶ ∶ l)) y ∶ ∶ x ∶ ∶ l

cons′x(y ∶ ∶ l, cons′y(l, h))

swapx,y,l[j]([k](swapx,y,l))

cons′y(x ∶ ∶ l, cons′x(l, h))
(a) The type of the 2-path swap′x,y(l, h), which will be obtained by induction on x, y ∶ 1.

∗ ∶ ∶ ∗ ∶ ∶ j(k(l)) ∗ ∶ ∶ ∗ ∶ ∶ l

∗ ∶ ∶ ∗ ∶ ∶ j(k(l)) ∗ ∶ ∶ ∗ ∶ ∶ l

[∗ ∶ ∶ −]([∗ ∶ ∶ −](h))

swap∗,∗,l[j]([k](swap∗,∗,l))

[∗ ∶ ∶ −]([∗ ∶ ∶ −](h))

swap∗,∗,j(k(l))1 2

(b) The 2-path swap∗,∗(l, h), after unfolding the definition of cons′ and computing j and k in the terms

on the left side. The 2-path (1) is obtained by the computation rules of j and k; (2) is given by naturality

of swap.

Figure 5.4: The 2-path swap′x,y(l, h) in the definition of the homotopy j ○ k ∼ idslist(1).

As del● is a Σ-type, the path algebra employed to prove the last point is quite cum-

bersome; a full proof is present in the Coq formalization. The symmetric monoidal

equivalence is achieved by virtue of Remark 4.9.

5.4 A Degreewise Equivalence del● ≃ BS●

Our next goal, which is only partially achieved, is to construct a symmetric mo-

noidal equivalence del● ≃ BS●. This can be obtained from a family of equivalences

f ∶ Π (n ∶N) .deln ≃ BSn. (5.36)

Providing such a family of equivalences would imply that the combinatorial struc-

ture described in Section 5.2 characterizes the subuniverse, and hence that all paths

between finite types are generated by instances of ω, via univalence.

It is immediate to see why such a result would be desirable. A function out

of BS(−) cannot, in principle, be produced in an inductive way, as the universe U ,

which is the base of the Σ-type defining BSn, is not an inductive type and does not

possess an elimination principle. In contrast, Definition 5.18 specifies the require-

ments to obtain indexed functions out of del(−). An equivalence del● ≃ BS● would

A DEGREEWISE EQUIVALENCE del● ≃ BS● 191

bridge this gap, effectively providing an elimination principle for finite types. At

the same time, the difficulty in constructing functions out of BS(−) will constitute

the main challenge to overcome in order to construct a family of equivalences as in

(5.36).

We begin by specializing the non-dependent elimination principle recdel of del(−)

to the case in which we eliminate into a Σ-type whose family is a family of (−1)-
types; we will call the ensuing function recΣ

del.

Lemma 5.37. Let A ∶ U and Q ∶N → A → U , and assume given the terms

T′del ∶ Π (n ∶N) . IsHGpd(Σ (a ∶ A) . Qn(a)),
r ∶ Π (n ∶N) . Π (a ∶ A) . IsHProp(Qn(a)).

In order to construct a function recΣ

del ∶ Π (n ∶N) .deln → Σ (a ∶ A) . Qn(a), it suffices to

provide the following terms:3

ptb0 ∶ A, ptf0 ∶ Q0(ptb0),
ib ∶N → A → A, if ∶ Π (n ∶N) . Π (a ∶ A) . Qn(a)→ Qn+1(ibn(a)),

twb
∶ Π (n ∶N) . Π (a ∶ A) . ibn+1(ibn(a)) = ibn+1(ibn(a)),

dob ∶ Π (n ∶N) . Π (a ∶ A) . twb
n(a) ⋅ twb

n(a) = reflib
n+1
(ibn(a))

,

brb ∶ Π (n ∶N) . Π (a ∶ A) . twb
n+1(ibn(a)) ⋅ [ibn+2](twb

n(a)) ⋅ twb
n+1(ibn(a))

= [ibn+2](twb
n(a)) ⋅ twb

n+1(ibn(a)) ⋅ [ibn+2](twb
n(a)).

Proof. By the non-dependent elimination principle recdel of del(−), the function recΣ

del

can be constructed by providing:

• a term pt′0 ∶ Σ (a ∶ A) . Q0(a), which can be given by ⟨ptb0 ,ptf0⟩;
• for every n ∶ N, a function i′n ∶ (Σ (a ∶ A) . Qn(a)) → (Σ (a ∶ A) . Qn+1(a)); this is

given by ⟨ibn, ifn⟩;
• for every n ∶N, a ∶ A and q ∶ Qn(a), a path in Σ (a ∶ A) . Qn+2(a)

tw′n⟨a, q⟩ ∶ i′n+1(i′n⟨a, q⟩) = i′n+1(i′n⟨a, q⟩).
By our definition of i′, the identity type is judgmentally equal to

⟨ibn+1(ibn(a)), ifn+1(ibn(a), ifn(a, q))⟩ = ⟨ibn+1(ibn(a)), ifn+1(ibn(a), ifn(a, q))⟩;
as r guarantees that Qn+2(a) is a (−1)-type, the given path twb

n(a) in the base of

the Σ-type suffices (Remark 2.78);

3The notation −b and −f refers to base and f ibers of a Σ-type.

192 5. FINITE TYPES AND SYMMETRIC MONOIDAL STRUCTURES

• for every n ∶N, a ∶ A and q ∶ Qn(a), a 2-path in Σ (a ∶ A) . Qn+2(a)
do′n⟨a, q⟩ ∶ tw′n⟨a, q⟩ ⋅ tw′n⟨a, q⟩ = refli′

n+1
(i′n⟨a,q⟩).

The type of do′n⟨a, q⟩, after unfolding the definition of tw′n, is:

⟨twb
n(a), . . .⟩ ⋅ ⟨twb

n(a), . . .⟩ = ⟨reflib
n+1
(ibn(a))

, . . .⟩.
By Lemma 2.69, it is enough to provide a 2-path

⟨twb
n(a) ⋅ twb

n(a), . . .⟩ = ⟨reflib
n+1
(ibn(a))

, . . .⟩;

using again Remark 2.78, by virtue of r, dobn(A) suffices;

• for every n ∶N, a ∶ A and q ∶ Qn(a), a 2-path in Σ (a ∶ A) . Qn+3(a)
br′n⟨a, q⟩ ∶ tw′n+1(i′n⟨a, q⟩) ⋅ [i′n+2](tw′n⟨a, q⟩) ⋅ tw′n+1(i′n⟨a, q⟩)

= [i′n+2](tw′n⟨a, q⟩) ⋅ tw′n+1(i′n⟨a, q⟩) ⋅ [i′n+2](tw′n⟨a, q⟩).
Unfolding the definition of i′ and of tw′, and applying Lemma 2.69, this entails

finding a term in

⟨twb
n+1(ibn(a)) ⋅ [ibn+2](twb

n(a)) ⋅ twb
n+1(ibn(a)), . . .⟩

= ⟨[ibn+2](twb
n(a)) ⋅ twb

n+1(ibn(a)) ⋅ [ibn+2](twb
n(a)), . . .⟩,

which is given by brbn(a), using Remark 2.78;

• the term T′del itself, witnessing the truncation level of the Σ-type.

Remark 5.38. The function recΣ

del in Lemma 5.37 inherits the computation properties

of the function recdel by which it is defined, i.e., we have:

recΣ

del(0,pt0) ≡ ⟨ptb0 ,ptf0⟩, recΣ

del(n + 1, i(a)) ≡ ⟨ib, if⟩(recΣ

del(n, a)),
and so on.

There is no hindrance to the proof of the lemma above when A is a universe of

types. If this is the case, we are able to define functions Π (n ∶N) .deln → U , pro-

vided that they factor through an N-indexed family of subuniverses, all of which

are 1-types:

del(−) Σ (A ∶ U) . Q(−)(A) U .
recΣ

del pr1

A DEGREEWISE EQUIVALENCE del● ≃ BS● 193

We will make use of this observation and employ the subuniverse of finite types as

factoring term.

Definition 5.39. We construct a function

f ∶ Π (n ∶N) .deln → BSn.

In order to do so, we will use recΣ

del defined in Lemma 5.37, applied to A ∶≡ U and

Q ∶≡ (n ↦ (A ↦ ∥A ≃ [n]∥)). We then need to provide the following arguments:

• a proof that BSn is a 1-type for every n; this is shown in Corollary 5.7;

• a proof that ∥A ≃ [n]∥ is a (−1)-type for every n and A; this is immediate;

• a term ptb0 ∶ U , which we choose to be 0 ≡ [0];
• a term ptf0 ∶ ∥[0] ≃ [0]∥, such is ∣id[0]∣;
• a function ib ∶ N → U → U ; this will be constructed uniformly in N, using

Definition 2.42, as ibn ∶≡ add ≡ (X ↦ X + 1);
• for every n ∶ N and A ∶ U , a function ifn(A) ∶ ∥A ≃ [n]∥ → ∥(A + 1) ≃ [n + 1]∥

where, we recall, [n + 1] ≡ [n]+ 1. By the elimination principle of the truncation,

the function

(e ↦ ∣incr(e)∣) ∶ (A ≃ [n])→ ∥(A + 1) ≃ ([n]+ 1)∥ ,

with incr as in Definition 2.100, suffices;

• for every n ∶N and A ∶ U , a path twb
n(A) ∶ A+ 1+ 1 = A+ 1+ 1. This can be given

by twb
n(A) ∶≡ γA, defined in Remark 5.16;

• for every n ∶ N and A ∶ U , a 2-path dobn ∶ γA ⋅ γA = reflA+1+1. We have a chain of

identities:

γA ⋅ γA ≡ ua(ωA) ⋅ ua(ωA) = ua(ωA ○ωA) = ua(idA+1+1) = reflA+1+1

using Lemma 2.113 and the fact that ωA is an involution;

• for every n ∶N and A ∶ U , a 2-path

brbn ∶ γA+1 ⋅ [add](γA) ⋅ γA+1 = [add](γA) ⋅ γA+1 ⋅ [add](γA).
Using Lemmata 2.113 and 2.127, this reduces to finding a 2-path

ua(ωA+1 ○ incr(ωA) ○ωA+1) = ua(incr(ωA) ○ωA+1 ○ incr(ωA)),
which is obtained from (5.15) by application of ua.

194 5. FINITE TYPES AND SYMMETRIC MONOIDAL STRUCTURES

The computational content of f is, in this case, more interesting after taking the

projection to U . Naming

fbn ∶≡ pr1 ○ fn ∶ deln → U ,

we have, because of the computation rules of f:

fb0(pt0) ≡ 0, (5.40)

fbn+1(i(a)) ≡ fbn(a)+ 1 for every n ∶N, a ∶ deln, (5.41)

and a path [fbn+2](twa) = γfbn(a)
for every n ∶N, a ∶ deln. (5.42)

We will not be need the computation rules relative to the constructors do and br of

del(−), since f eliminates into a family of 1-types.

Lemma 5.43. Let n ∶N; a, b ∶ deln and p ∶ a = b. There is a 2-path

[fbn+1]([i](p)) =(fbn(a)+1=fbn(b)+1) [add]([fbn](p)), (5.44)

as shown in Fig. 5.5; the expression above is well-typed because of (5.41).

Proof. By induction on p.

deln

a b
p

deln+1

i(a) i(b)[i](p)

B
S

n

U

fbn(a) fbn(b)
[fbn](p)

B
S

n
+

1

fbn(a)+ 1 fbn(b)+ 1
[add]([fbn](p))

fbn+1(i(a)) fbn+1(i(b))[fbn+1]([i](p))

i

fbn

fbn+1

add

Figure 5.5: The 2-path in (5.44), in a scheme showing the relationship between i and add.

Remark 5.45. A function rb ∶ Π (n ∶N) . fbn(ptn) = [n] is defined by the elimination

principle of N, with the assignments rb0 ∶≡ refl[0] and rbn+1 ∶≡ [add](rbn), which are

A DEGREEWISE EQUIVALENCE del● ≃ BS● 195

well-defined because of the computation rules in (5.40) and (5.41), respectively. The

family rb of paths is enough to define a family r ∶ Π (n ∶N) . fn(ptn) = ⟨[n], ∣id[n]∣⟩,
by virtue of Remark 2.78. This implies, in particular, that the features of canonical

finite types described in Section 5.1 are also enjoyed by the type fbn(ptn) ∶ U . We will

use this type as the preferred finite type of cardinality n, rather than the canonical

finite type [n] ∶ U ; to unburden the syntax in this section and emphasize the relation

between fbn(ptn) and [n], we will use the notation

JnK ∶≡ fbn(ptn),
for every n ∶ N. Note that, by (5.41), Jn + 1K ≡ JnK + 1 for every n ∶ N, and that J−K

computes at numerals: we have, e.g., J0K ≡ [0] ≡ 0 by (5.40), J1K ≡ [1], J2K ≡ [2], and

so on.

The function fb ∶ Π (n ∶N) .deln → U allows us to prove that tw(−) produces

nontrivial loops.

Lemma 5.46. For any n ∶N and a ∶ deln, there is no 2-path p ∶ twa = refli(i(a)) in deln+2,

i.e., there is a function (twa = refli(i(a)))→ 0.

Proof. The argument is analogous to the one presented in [Uni13, Lemma 6.4.1] to

prove that there is no 2-path loop =S1 reflbase. Given n ∶N and a ∶ deln, if there were

a 2-path p ∶ twa = refli(i(a)), then we would have, using the computation rules (5.41)

and (5.42) of fb and Lemma 2.113, a 2-path

ua(ωfbn(a)
) ≡ γfbn(a)

= [fbn+2](twa) = [fbn+2](refli(i(a)))
= reflfb

n+2
(i(i(a))) = reflfbn(a)+1+1 = ua(idfbn(a)+1+1).

As ua is an equivalence, this would imply a path ωfbn(a)
= idfbn(a)+1+1, and in par-

ticular a path inl(inr(∗)) ≡ ωfbn(a)
(inr(∗)) = idfbn(a)+1+1(inr(∗)) ≡ inr(∗). Lemma 2.70

provides the contradiction.

The lemma above has the following consequence.

Corollary 5.47. For no n ∶N is deln+2 contractible.

Proof. Let n ∶ N; by Lemma 5.46, there is no 2-path twptn
= reflptn+2

, so deln+2 is not

a 0-type, and hence not a (−2)-type.

A desired feature of the family f ∶ Π (n ∶N) .deln → BSn of functions defined

above is that it respect the symmetric monoidal structures of del● and BS● given in

Lemma 5.30 and Lemma 5.11.

196 5. FINITE TYPES AND SYMMETRIC MONOIDAL STRUCTURES

Definition 5.48. The function f● ∶ del● → BS● is defined by f● ∶≡ ⟨idN, f⟩, that is, for

every n ∶N and a ∶ deln, by

f●⟨n, a⟩ ∶≡ ⟨n, fn(a)⟩ ≡ ⟨n, fbn(a), . . .⟩.
The function fb● ∶ del● → U is defined by fb●⟨n, a⟩ ∶≡ fbn(a).
Remark 5.49. For every x ∶ del●, we have

f●(⟨s, i⟩(x)) = ⟨s, add, . . .⟩(f●(x)), (5.50)

where the omitted term is if from Definition 5.39. Indeed, using the elimination

principle for Σ-types, we can verify, for every n ∶N and a ∶ deln,

f●(⟨s, i⟩⟨n, a⟩) ≡ f●⟨n + 1, i(a)⟩ ≡ ⟨n + 1, fn+1(i(a))⟩
≡ ⟨n + 1, fbn(a)+ 1, ifn(fbn(a))⟩
≡ ⟨s, add, if⟩⟨n, fbn(a), . . .⟩ ≡ ⟨s, add, if⟩(f●⟨n, a⟩).

Similarly, on types, we have an identity

fb●(⟨s, i⟩(x)) = fb●(x)+ 1,

as we can verify, for every n ∶N and a ∶ deln,

fb● (⟨s, i⟩⟨n, a⟩) ≡ fb●⟨n + 1, i(a)⟩ ≡ fbn+1(i(a)) ≡ fbn(a)+ 1 ≡ fb●⟨n, a⟩+ 1.

Theorem 5.51. The function f● ∶ del● → BS● is a symmetric monoidal functor.

Proof. A path (f●)0 ∶ 0 = f●(pt0) is given by the reflexivity path, as both sides of the

identity type compute to ⟨0, f0(pt0)⟩. For a family of paths

(f●)2 ∶ Π (x, y ∶ del●) . f●(x)⊞ f●(y) = f●(x⊕ y),
we use the elimination principle of Σ-types and search for a family

Π (n ∶N) . Π (a ∶ deln) .

Π (m ∶N) . Π (b ∶ delm) . ⟨n +m, fbn(a)+ fbm(b), . . .⟩ = f●(⟨n, a⟩⊕ ⟨m, b⟩).
By the elimination principle of del(−):

• for every m ∶N and b ∶ delm, we have:

⟨0+m, 0 + fbm(b), . . .⟩ ≡ ⟨m, 0 + fbm(b), . . .⟩
= ⟨m, fbm(b), . . .⟩ by ⟨refl, λU(fbm(b)), . . .⟩
≡ f●⟨m, b⟩
≡ f●(⟨0,pt0⟩⊕ ⟨m, b⟩) by (5.29),

where λU is the left unit law for the coproduct of types, discussed in Section 5.1;

A DEGREEWISE EQUIVALENCE del● ≃ BS● 197

• given n ∶N, a ∶ deln and a term

h ∶ Π (m ∶N) . Π (b ∶ delm) . ⟨n +m, fbn(a)+ fbm(b), . . .⟩ = f●(⟨n, a⟩⊕ ⟨m, b⟩), (5.52)

we have, for every m ∶N and b ∶ delm,

⟨n +m + 1, fbn(a)+ 1 + fbm(b), . . .⟩
= ⟨n +m + 1, fbn(a)+ (1 + fbm(b)), . . .⟩ by ⟨refl, αU(fbn(a), 1, fbm(b)), . . .⟩
= ⟨n +m + 1, fbn(a)+ (fbm(b)+ 1), . . .⟩ by ⟨refl, refl+ τU(1, fbm(b)), . . .⟩
= ⟨n +m + 1, fbn(a)+ fbm(b)+ 1, . . .⟩ by ⟨refl, α−1

U (fbn(a), fbm(b), 1), . . .⟩
≡ ⟨s, add, . . .⟩⟨n +m, fbn(a)+ fbm(b), . . .⟩
= ⟨s, add, . . .⟩(f●(⟨n, a⟩⊕ ⟨m, b⟩)) by [⟨s, add, . . .⟩](hm(b))
= f●(⟨s, i⟩(⟨n, a⟩⊕ ⟨m, b⟩)) by (5.50)

≡ f●(⟨n + 1, i(a)⟩⊕ ⟨m, b⟩ by (5.29),

where αU is the associativity for the coproduct of types (and recall that n +m +

1 ≡ (n + 1)+m);

• given n ∶ N, a ∶ deln and a term h as in (5.52), the requirement relative to the

constructor tw of del(−) in the proof by induction entails unravelling from path

algebra the 2-path shown in Fig. 5.10.

The given constructions of (f●)0 and (f●)2 determine a path (fb●)0 ∶ 0 = fb●(pt0), given

again by reflexivity, and a family

(fb●)2 ∶ Π (x, y ∶ del●) . fb●(x)+ fb●(y) = fb●(x⊕ y),
obtained for every x, y ∶ del● by taking the appropriate projection of the path

(f●)2(x, y); in particular,

(fb●)2(⟨0,pt0⟩, b) = λU(fbm(b)),
(fb●)2(⟨n + 1, i(a)⟩, ⟨m, b⟩) = αU(fbn(a), 1, fbm(b)) ⋅ (refl+ τU(1, fbm(b)))

⋅ α−1
U (fbn(a), fbm(b), 1) ⋅ ((fb●)2(⟨n, a⟩, ⟨m, b⟩)+ refl).

The families of 2-paths (f●)α, (f●)λ, (f●)ρ and (f●)τ are found, again, by induction.

By Lemma 2.143 and Lemma 5.26, we can use connectedness: it is enough to exam-

ine the 2-paths where the involved terms are of the form ⟨n,ptn⟩, and proceed by

induction on n ∶N. These 2-paths are given by families of 2-paths in N (in the base),

which are easy to find, and by families of 2-paths in U . We show in Fig. 5.11 how

to derive (f●)α, focussing on the the mentioned 2-paths in U ; the other families are

found similarly.

198 5. FINITE TYPES AND SYMMETRIC MONOIDAL STRUCTURES

Towards a Proof of the Equivalence

This section is devoted to the search for a proof that fn ∶ deln → BSn is an equiva-

lence for every n ∶ N. In order to reach this goal, we would need to verify that the

definition of the indexed HIT del(−) does indeed reflect the combinatorial structure

of finite types. Although the final result rests on the claims in Assumption 5.91, we

believe that the strategy we describe is sound and conducive to the construction of

the sought equivalence.

A preliminary and easy consideration concerns the functions at the lowest de-

grees in the family.

Lemma 5.53. The functions f0 ∶ del0 → BS0 and f1 ∶ del1 → BS1 are equivalences.

Proof. Lemmata 5.8 and 5.25 prove that all the types involved are contractible; hence,

by Lemma 2.97, the functions f0 and f1 are equivalences.

For a general n ∶N, showing that fn is an equivalence reveals itself to be a more

complex task. The following lemma shows a condition sufficient to prove this claim.

Lemma 5.54. Let n ∶N. If [fbn] ∶ (a = ptn)→ (fbn(a) = JnK) has a section for every a ∶ deln,

then fn is an equivalence, in the sense that there is a function

(Π (a ∶ deln) . Π (p ∶ fbn(a) = JnK) . Σ (q ∶ a = ptn) . [fbn](q) = p)→ IsEquiv(fn).

Proof. By Lemma 2.120(ii), fn is an equivalence if its fibers are contractible, i.e., if

there is a term in

Π (b ∶ BSn) . IsContr(fibfn(b)). (5.55)

Since BSn is connected (Lemma 5.9) and IsContr(fibfn(b)) is a (−1)-type for every

b ∶ BSn (Lemma 2.77), then, by Lemma 2.143, a function term of the type in (5.55)

can be obtained given a term in IsContr(fibfn(b)) for any one choice of b ∶ BSn, such

as b ∶≡ fn(ptn). That is, we can infer that fn is an equivalence if we prove

IsContr(fibfn(fn(ptn))). (5.56)

We can construct a function

IsContr(fibfbn(JnK))→ IsContr(fibfn(fn(ptn))), (5.57)

as follows. Assuming IsContr(Σ (a ∶ deln) . fbn(a) = JnK) gives us a center of con-

traction ⟨a0, p0⟩ with a0 ∶ deln and p0 ∶ f
b
n(a0) = JnK, and a proof of contraction

A DEGREEWISE EQUIVALENCE del● ≃ BS● 199

c ∶ Π (s ∶ Σ (a ∶ deln) . fbn(a) = JnK) . ⟨a0, p0⟩ = s, which can be decomposed for base

and fibers of the Σ-type, as:

cb ∶ Π (a ∶ deln) . (fbn(a) = JnK)→ (a0 = a),
cf ∶ Π (a ∶ deln) . Π (p ∶ fbn(a) = JnK) .(cb(a, p))(z↦fbn(z)=JnK)

∗
(p0) = p,

by defining cb(a, p) ∶≡ pr1(c⟨a, p⟩) and cf(a, p) ∶≡ pr2(c⟨a, p⟩). In order to prove

IsContr(Σ (a ∶ deln) . fn(a) = fn(ptn))we need:

• a center of contraction, which is given by ⟨a0, ⟨p0, . . .⟩⟩, using the shorthand no-

tation of Remark 2.78;

• a proof of contraction, i.e., for every a ∶ deln and p ∶ fn(a) = fn(ptn), a path

⟨a0, ⟨p0, . . .⟩⟩ = ⟨a, p⟩.

Using Lemma 2.66, we can obtain such a path componentwise. A path a0 = a is

given by cb(a,pr1(p)). As for the second component, it is enough to provide a

path

pr1 ((cb(a,pr1(p)))
(z↦fn(z)=fn(ptn))

∗
⟨p0, . . .⟩) = pr1(p),

which can be given by

pr1 ((cb(a,pr1(p)))
(z↦fn(z)=fn(ptn))

∗
⟨p0, . . .⟩)

= (cb(a,pr1(p)))
(z↦fbn(z)=f

b
n(ptn))

∗
(p0) by path algebra

= pr1(p) by cf(a,pr1(p)).

By what above, we conclude that we can prove that fn is an equivalence by showing

that the type fibfbn
(JnK) is contractible. Using ⟨ptn, reflJnK⟩ as center of contraction, the

proof of contraction requires providing, for every a ∶ deln and p ∶ fbn(a) = JnK, a path

⟨ptn, reflJnK⟩ = ⟨a, p⟩, i.e., by Lemmata 2.66 and 2.102, a term in

Σ (q ∶ a = ptn) . [fbn](q) = p.

In other words, to obtain the sought proof of contraction, it is enough to show that

the function

[fbn] ∶ (a = ptn)→ (fbn(a) = JnK)
has a section.

200 5. FINITE TYPES AND SYMMETRIC MONOIDAL STRUCTURES

A strategy to prove that fn is an equivalence for every n, and hence that the

types in the families del and BS are termwise equivalent, is then to find a term

e ∶ Π (n ∶N) . Π (a ∶ deln) . Π (p ∶ fbn(a) = JnK) . Σ (q ∶ a = ptn) . [fbn](q) = p. (5.58)

The following paragraphs present our approach to obtain such a term. As men-

tioned, the final step of our proof relies on a lemma on combinatorics of finite types

which has not been formalized (Assumption 5.91).

A close look at the type in (5.58) suggests a possible definition of the term e

employing the elimination principle of del(−). The first observation we might make

is that the family

(n ↦ (a ↦ Π (p ∶ fbn(a) = JnK) . Σ (q ∶ a = ptn) . [fbn](q) = p)) ∶ Π (n ∶N) .deln → U

is a family of 0-types. Indeed, using Remark 2.75, we can verify this by showing

that, for every n ∶ N, a ∶ deln and p ∶ fbn(a) = JnK, both the identity type a = ptn and

all the types in the family (q ↦ [fbn](q) = p) are 0-types (the former by Tdel, the latter

is a (−1)-type by Lemma 5.6). Hence, a term e as in (5.58) can be constructed by

means of the elimination principle of del(−), if we provide terms:

e′0 ∶ Π (p ∶ J0K = J0K) . Σ (q ∶ pt0 = pt0) . [fb0](q) = p, (5.59)

e′i ∶ Π (n ∶N) . Π (a ∶ deln) .

(Π (p ∶ fbn(a) = JnK) . Σ (q ∶ a = ptn) . [fbn](q) = p)→
Π (p ∶ fbn+1(i(a)) = Jn + 1K) . Σ (q ∶ i(a) = ptn+1) . [fbn+1](q) = p, (5.60)

e′tw ∶ Π (n ∶N) . Π (a ∶ deln) .

Π (a′ ∶ Π (p ∶ fbn(a) = JnK) . Σ (q ∶ a = ptn) . [fbn](q) = p) .

(twa)En
∗
(e′i(n + 1, i(a), e′i(n, a, a′))) = e′i(n + 1, i(a), e′i(n, a, a′)), (5.61)

where E ∶ Π (n ∶N) .deln+2 → U in the type of e′tw is defined as

En ∶≡ (z ↦ Π (p ∶ fbn+2(z) = Jn + 2K) . Σ (q ∶ z = ptn+2) . [fbn+2](q) = p) (5.62)

for every n ∶N. Using techniques similar to those described in Lemma 5.37, we can

examine each of the three requirements separately on base and fibers of Σ-types;

these are treated in the following lemmata, which we will prove later in this section

(Lemma 5.67 will require Assumption 5.91).

Lemma 5.63 (relevant to (5.59)). For every p ∶ J0K = J0K, we construct terms

eb0(p) ∶ pt0 = pt0 and ef0(p) ∶ [fb0](eb0(p)) = p.

A DEGREEWISE EQUIVALENCE del● ≃ BS● 201

Lemma 5.64 (relevant to (5.60)). Let n ∶N and a ∶ deln. Given terms

ebn,a ∶ (fbn(a) = JnK)→ (a = ptn) and (5.65)

efn,a ∶ Π (p ∶ fbn(a) = JnK) . [fbn](ebn,a(p)) = p, (5.66)

we construct functions

ebn+1,i(a)(ebn,a) ∶ (fbn+1(i(a)) = Jn + 1K)→ (i(a) = ptn+1) and

efn+1,i(a)(ebn,a, efn,a) ∶ Π (p ∶ fbn+1(i(a)) = Jn + 1K) . [fbn+1](ebn+1,i(a)(ebn,a, p)) = p.

Lemma 5.67 (relevant to (5.61)). Let n ∶N and p ∶ Jn + 2K = Jn + 2K. Given a term ebn,ptn

as in (5.65) for a ∶≡ ptn, there is a 2-path

ebn+2,ptn+2
(ebn+1,ptn+1

(ebn,ptn
), γJnK ⋅ p)

= twptn
⋅ ebn+2,ptn+2

(ebn+1,ptn+1
(ebn,ptn

), p), (5.68)

with ebn+1,ptn+1
(and ebn+2,ptn+2

) defined in Lemma 5.64.

Assuming the lemmata above, we are ready to prove the main result of this

section.

Theorem 5.69. The function fn ∶ deln → BSn is an equivalence for every n ∶ N. Hence,

there is a symmetric monoidal equivalence del● ≃ BS●.

Proof. By Lemma 5.54, it is enough to find a term e as in (5.58); we proceed by the

elimination principle of del(−):

• a term e′0 as in (5.59) is given by e′0(p) ∶≡ ⟨eb0(p), ef0(p)⟩, with eb0 and ef0 defined in

the proof of Lemma 5.63;

• the term e′i in (5.60) is given by

e′i(n, a, a′, p) ∶≡ ⟨ebn+1,i(a)(pr1(a′), p), efn+1,i(a)(pr1(a′),pr2(a′), p)⟩,
with ebn+1,i(a) and efn+1,i(a) defined for every n ∶ N and a ∶ deln in the proof of

Lemma 5.64;

• as for the term e′tw in (5.61), the 2-path constructed in the proof of Lemma 5.67

is sufficient. Indeed, given n ∶N, a ∶ deln and a term

a′ ∶ Π (p ∶ fbn(a) = JnK) . Σ (q ∶ a = ptn) . [fbn](q) = p,

we have that a term

(twa)En
∗
(e′i(n + 1, i(a), e′i(n, a, a′))) = e′i(n + 1, i(a), e′i(n, a, a′)),

202 5. FINITE TYPES AND SYMMETRIC MONOIDAL STRUCTURES

for e′i as in (5.60), can be obtained, by function extensionality, from a family of

terms

(twa)En
∗
(e′i(n + 1, i(a), e′i(n, a, a′), p)) = e′i(n + 1, i(a), e′i(n, a, a′), p)

for every p ∶ fbn+2(i(i(a))) = Jn + 2K. This is a family of 2-paths in a Σ-type whose

fibers are 1-types, so it is enough to provide a 2-path in the base, i.e, to find, for

every p as above, a term

(twa)Eb
n
∗
(ebn+2,i(i(a))(ebn+1,i(a)(pr1(a′)), p)) = ebn+2,i(i(a))(ebn+1,i(a)(pr1(a′)), p),

where the family Eb is defined by Eb
n ∶≡ (z ↦ (fbn+2(z) = Jn + 2K)→ (z = ptn+2)).

Transporting in such a family of functions entails finding a term

ebn+2,i(i(a))(ebn+1,i(a)(pr1(a′)), (tw−1
a)E

b
n
′

∗
(p)) = twa ⋅ e

b
n+2,i(i(a))(ebn+1,i(a)(pr1(a′)), p),

with Eb
n
′

∶≡ (z ↦ (fbn+2(z) = Jn + 2K)). Path algebra concerning transport in fami-

lies of paths further simplifies the goal above to

ebn+2,i(i(a))(ebn+1,i(a)(pr1(a′)), [fbn+2](twa) ⋅ p) = twa ⋅ e
b
n+2,i(i(a))(ebn+1,i(a)(pr1(a′)), p),

and, after an application of the computation rule (5.42), to the 2-path

ebn+2,i(i(a))(ebn+1,i(a)(pr1(a′)), γfbn(a)
⋅ p) = twa ⋅ e

b
n+2,i(i(a))(ebn+1,i(a)(pr1(a′)), p).

Such a family of 2-paths (parametrized by a ∶ deln) can be obtained from the one

in (5.68) using Lemma 2.143, as the type of 2-paths in a 1-type is a (−1)-type and

deln is connected for every n ∶N (Lemma 5.26).

Then fn ∶ Π (n ∶N) .deln → BSn is an equivalence for every n ∶ N. By Remark 2.99,

the function f● ≡ ⟨idN, f⟩ ∶ del● → BS● from Definition 5.48 is also an equivalence;

this can then be promoted to a symmetric monoidal equivalence, by virtue of The-

orem 5.51 and Remark 4.9.

Proofs of Lemmata

The remaining part of this section is devoted to the proof of Lemmata 5.63, 5.64

and 5.67; in particular, Lemma 5.67 is where we use Assumption 5.91. The proof of

the first lemma is immediate.

Proof of Lemma 5.63. For every path p ∶ 0 = 0, we define eb0(p) ∶≡ reflpt0
∶ pt0 = pt0

(note that the path does not actually depend on p). A term ef0 ∶ [fb0](eb0(p)) = p,

A DEGREEWISE EQUIVALENCE del● ≃ BS● 203

whose type is judgmentally equal to refl0 = p, is obtained by the fact that the identity

type 0 = 0 is equivalent to the type of equivalences 0 ≃ 0 by univalence, and to 0 → 0

by Lemma 2.120; this is a (−1)-type by Remark 2.75.

Lemma 5.64 is more challenging and requires some results about the combina-

torics of finite types.

An equivalence e ∶ A ≃ JnK can be promoted to an equivalence incr(e) ∶ A + 1 ≃

Jn + 1K, which maps inr(∗) ∶ A + 1 to inr(∗) ∶ Jn + 1K, and whose restriction to A is

e itself (Corollary 2.124). In the opposite direction, an equivalence A + 1 ≃ Jn + 1K

can be “adjusted” to one sending inr(∗) ∶ A + 1 to inr(∗) ∶ Jn + 1K, which can be

then restricted to A. The ensuing map (A + 1 ≃ Jn + 1K) → (A ≃ JnK) is obviously

not an equivalence. Nonetheless, understanding its properties will be useful in the

pursue of the term e in (5.58), where the elimination principle of del(−) asks us to

reason about certain paths between finite types of cardinality n + 1, recursively, in

terms of paths between finite types of cardinality n. Since, ultimately, we want to

show that the family of functions fb(−) establishes a correspondence between such

paths and identities in the types of the family del(−) (i.e., that fn is an embedding for

every n ∶ N), we will prefer to reason in terms of paths rather than equivalences.

However, relations between (finite) types are often more easily described by equiv-

alences than by identities, so we will largely use “univalence algebra” (Section 2.5)

to switch between notions.

The recursive definition of ebn+1,i(a) in terms of ebn,a is schematically depicted in

Fig. 5.6. A path

p ∶ fbn+1(i(a)) = Jn + 1K

corresponds to an equivalence

ua−1(p) ∶ fbn+1(i(a)) ≃ Jn + 1K,

to which we can compose a symmetry σ ∶ Jn + 1K ≃ Jn + 1K and obtain an equiva-

lence fixing the term inr(∗). This can be restricted to an equivalence fbn(a) ≃ JnK,

corresponding to a path p ∶ fbn(a) = JnK which, in turn, can be given as argument to

the function ebn,a to produce a path

ebn,a(p) ∶ a = ptn.

A single application of [i] yields a path

[i] (ebn,a(p)) ∶ i(a) = ptn+1,

204 5. FINITE TYPES AND SYMMETRIC MONOIDAL STRUCTURES

fbn+1(i(a)) ≃ Jn + 1K fbn+1(i(a)) = Jn + 1K

fbn(a)+ 1 ≃ JnK+ 1 fbn(a)+ 1 = JnK+ 1 i(a) = ptn+1

Σ (s ∶ fbn(a)+ 1 ≃ JnK+ 1) .

(s(inr(∗)) = inr(∗))
i(a) = ptn+1

fbn(a) ≃ JnK fbn(a) = JnK a = ptn

ua−1

ua

adjustment

(−)∣fbn(a)
ua

ua−1

ebn,a

[fbn]

[i]

counter-adjustment

ebn+1,i(a)

[fbn+1]

incr
efn,a

efn+1,i(a)

Figure 5.6: Recursive definition of ebn+1,i(a) (dashed arrow) in terms of ebn,a, as the composition

of the red arrows. In order to satisfy the requirement given by efn+1,i(a), the composition of

[fbn+1] after the red arrows needs to be the identity.

which is already the target type of ebn+1,i(a); however, in order to fulfill the con-

straints of efn+1,i(a), we will need to concatenate to [i](ebn,a(p)) a loop ptn+1 = ptn+1

reversing the symmetry σ with which we modified the original equivalence.

We will start this endeavour by defining the symmetries used in the process

described above (wavy arrows in Fig. 5.6).

Definition 5.70. A function m ∶ Π (n ∶N) . JnK → (JnK = JnK) is defined inductively

on n and on i ∶ JnK, as follows:

mn+1(inr(∗)) ∶≡ reflJn+1K,

mn+2(inl(inr(∗))) ∶≡ γJnK, (5.71)

mn+3(inl(inl(i))) ∶≡ γJn+1K ⋅ [add](mn+2(inl(i))) ⋅ γJn+1K

for every i ∶ Jn + 1K; all the other cases are obtained ex falso (namely, m0(i), m1(inl(i))
and m2(inl(inl(i))) for i ∶ 0). We note that, for every i ∶ Jn + 1K ≡ JnK + 1, the loop

mn+1(i) ∶ Jn + 1K = Jn + 1K corresponds, via univalence and (2.129), to the transposi-

tion of inr(∗) and i, realized via a composition of ω’s. An example is provided in

Fig. 5.7.

Lemma 5.72. For every n ∶N and i ∶ JnK, the path mn(i) is its own inverse, i.e., (mn(i))−1
=

mn(i). Hence, ua−1(mn(i) ⋅mn(i)) = idJnK.

A DEGREEWISE EQUIVALENCE del● ≃ BS● 205

=

0

1

1

1

1

1

ua−1(m5(inl(inl(inl(inr(∗)))))) =

ωJ3K ωJ3K

ua−1([add](m4(inl(inl(inr(∗))))))
= incr(ua−1(m4(inl(inl(inr(∗))))))
= incr(ωJ2K ○ incr(ωJ1K) ○ωJ2K)

J5K

Figure 5.7: Example of application of the function m. The type J5K computes to the canonical

finite type [5]; the equivalence ua−1(m5(inl(inl(inl(inr(∗)))))) has, as underlying function,

the transposition of the terms inr(∗) and inl(inl(inl(inr(∗)))) ∶ [5] (in green, on the right).

The recursive call is shown in red.

Proof. The claim is proved by induction on n and i, following (5.71); we will show

the recursive case, the other ones being easily deduced. For n ∶N and i ∶ Jn + 1K, we

have:

(mn+3(inl(inl(i))))−1
≡ (γJn+1K ⋅ [add](mn+2(inl(i))) ⋅ γJn+1K)−1

= γ−1
Jn+1K ⋅ [add]((mn+2(inl(i)))−1) ⋅ γ−1

Jn+1K by path algebra

= γ−1
Jn+1K ⋅ [add](mn+2(inl(i))) ⋅ γ−1

Jn+1K inductively

= γJn+1K ⋅ [add](mn+2(inl(i))) ⋅ γJn+1K by Remark 5.16

≡ mn+3(inl(inl(i))).

Lemma 5.73. For every n ∶N and i ∶ Jn + 1K ≡ JnK+ 1, there is a path

ua−1(mn+1(i)) (i) =Jn+1K inr(∗).

Proof. Following (5.71), we proceed by induction on n and i:

• for every n ∶N, we have

ua−1(mn+1(inr(∗))) (inr(∗))
≡ ua−1(refl) (inr(∗)) ≡ id(inr(∗)) ≡ inr(∗);

206 5. FINITE TYPES AND SYMMETRIC MONOIDAL STRUCTURES

• for every n ∶N, we have

ua−1(mn+2(inl(inr(∗)))) (inl(inr(∗)))
≡ (ua−1(γJnK)) (inl(inr(∗))) = ωJnK(inl(inr(∗))) ≡ inr(∗);

• for every n ∶N, assuming as inductive hypothesis that

ua−1(mn+2(j)) (j) = inr(∗) for any j ∶ Jn + 2K, (5.74)

we have, for every i ∶ Jn + 1K,

ua−1(mn+3(inl(inl(i)))) (inl(inl(i)))
≡ ua−1(γJn+1K ⋅ [add](mn+2(inl(i))) ⋅ γJn+1K) (inl(inl(i)))
= ua−1(γJn+1K) (ua−1([add](mn+2(inl(i)))) (ua−1(γJn+1K) (inl(inl(i)))))
= ωJn+1K(ua−1([add](mn+2(inl(i)))) (ωJn+1K (inl(inl(i)))))
≡ ωJn+1K(ua−1([add](mn+2(inl(i)))) (inl(inl(i))))
= ωJn+1K(incr(ua−1(mn+2(inl(i)))) (inl(inl(i)))) by (2.129)

≡ ωJn+1K(inl(ua−1(mn+2(inl(i))) (inl(i))))
= ωJn+1K(inl(inr(∗))) ≡ inr(∗) by (5.74).

All other cases are obtained ex falso.

Similarly, one can prove that ua−1(mn+1(i)) (inr(∗)) = i for every i ∶ Jn + 1K, and

that ua−1(mn+1(i)) (j) = j if (j = i)→ 0 and (j = inr(∗))→ 0, for every i, j as above.

Remark 5.75. If p ∶ A+ 1 = Jn + 1K, for some A ∶ U and n ∶N, we will use the notation

●

p ∶≡ ua−1(p) (inr(∗)) ∶ Jn + 1K.

For p ∶ A + 1 + 1 = Jn + 2K, we will also use the notation

●●

p ∶≡ ua−1(p) (inl(inr(∗))) ∶ Jn + 2K.

Note that (γA ⋅ p)● = ua−1(p) (ωA(inr(∗))) ≡ ●●p and, similarly (γA ⋅ p)●● = ●p. As an

immediate consequence of Lemma 5.73, we have that

ua−1(p ⋅mn+1(●p)) (inr(∗)) = ua−1(mn+1(●p)) (●p) = inr(∗), (5.76)

i.e., the definition of m provides us with a suitable path to concatenate to any path

p ∶ A + 1 = Jn + 1K, so that the corresponding equivalence sends inr(∗) ∶ A + 1 to

inr(∗) ∶ Jn + 1K. This motivates the following definition.

A DEGREEWISE EQUIVALENCE del● ≃ BS● 207

Definition 5.77. For n ∶ N, A ∶ U and p ∶ A + 1 = Jn + 1K, we define the reduction

p ∶ A = JnK of p as the following path:

p ∶≡ ua ((ua−1(p ⋅mn+1(●p))) ∣A) ,

where Corollary 2.124 and (5.76) guarantee that the restriction is well-defined.

The function (p ↦ p) is related to [add](−) in the ways described in the follow-

ing lemmata.

Lemma 5.78. For every n ∶N, A ∶ U and p ∶ A = JnK, there is a 2-path [add](p) = p, i.e.,

(p ↦ p) is a retraction of [add](−).
Proof. The following chain of identities proves the claim:

[add](p) ≡ ua ((ua−1([add](p) ⋅mn+1(ua−1([add](p)) (inr(∗))))) ∣A)
= ua ((ua−1([add](p) ⋅mn+1(incr(ua−1(p)) (inr(∗))))) ∣A) by (2.129)

≡ ua ((ua−1([add](p) ⋅mn+1(inr(∗)))) ∣A)
≡ ua ((ua−1([add](p) ⋅ reflJn+1K)) ∣A)
= ua ((incr(ua−1(p))) ∣A) by (2.129)

= ua(ua−1(p)) = p.

Lemma 5.79. For every n ∶N, A ∶ U and p ∶ A + 1 = Jn + 1K, there is a 2-path

[add](p) = p ⋅mn+1(●p).
Proof. The claim is proved by the following chain of identities:

[add](p) ≡ [add] (ua ((ua−1(p ⋅mn+1(●p))) ∣A))
= ua (incr ((ua−1(p ⋅mn+1(●p))) ∣A)) by (2.128)

= ua(ua−1(p ⋅mn+1(●p))) by Corollary 2.124

= p ⋅mn+1(●p).
In order to relate to del● the combinatorial machinery so far described, we will

use the following definition.

Definition 5.80. A function m̃ ∶ Π (n ∶N) . JnK→ (ptn = ptn) is defined by induction:

m̃n+1(inr(∗)) ∶≡ reflptn+1
,

m̃n+2(inl(inr(∗))) ∶≡ twptn
, (5.81)

m̃n+3(inl(inl(i))) ∶≡ twptn+1
⋅ [i](m̃n+2(inl(i))) ⋅ twptn+1

for every i ∶ Jn + 1K; all the other cases are obtained ex falso.

208 5. FINITE TYPES AND SYMMETRIC MONOIDAL STRUCTURES

Lemma 5.82. For every n ∶N and i ∶ JnK, there is a 2-path [fbn](m̃n(i)) = mn(i).
Proof. The claim follows by the computation rules of fb. By induction on n and i,

we have:

• for every n ∶N,

[fbn+1](m̃n+1(inr(∗))) ≡ [fbn+1](reflptn+1
) ≡ reflJn+1K ≡ mn+1(inr(∗));

• for every n ∶N, using (5.42), we have

[fbn+2](m̃n+2(inl(inr(∗)))) ≡ [fbn+2](twptn
) = γJnK ≡ mn+2(inl(inr(∗)));

• for every n ∶N, assuming as inductive hypothesis a 2-path

[fbn+2](m̃n+2(j)) = mn+2(j) for any j ∶ Jn + 2K, (5.83)

we have, for every i ∶ Jn + 1K,

[fbn+3](m̃n+3(inl(inl(i))))
≡ [fbn+3](twptn+1

⋅ [i](m̃n+2(inl(i))) ⋅ twptn+1
)

= [fbn+3](twptn+1
) ⋅ [fbn+3]([i](m̃n+2(inl(i)))) ⋅ [fbn+3](twptn+1

)
= γJn+1K ⋅ [fbn+3]([i](m̃n+2(inl(i)))) ⋅ γJn+1K by (5.42)

= γJn+1K ⋅ [add]([fbn+2](m̃n+2(inl(i)))) ⋅ γJn+1K by (5.44)

= γJn+1K ⋅ [add](mn+2(inl(i))) ⋅ γJn+1K by (5.83)

≡ mn+3(inl(inl(i))).

All other cases are obtained ex falso.

The family of functions m̃ satisfies the following lemma, which we will use later

in this section.

Lemma 5.84. For every n ∶N and i ∶ JnK, there is a 2-path

b̃rn, i ∶ twptn
⋅ [i](m̃n+1(inl(i))) ⋅ twptn

= [i](m̃n+1(inl(i))) ⋅ twptn
⋅ [i](m̃n+1(inl(i))). (5.85)

Proof. By induction on n and i.

• for every n ∶ N, the term b̃rn+1, inr(∗) is obtained directly by virtue of the con-

structor brptn
of del(−), since m̃n+2(inl(inr(∗))) ∶≡ twptn

;

A DEGREEWISE EQUIVALENCE del● ≃ BS● 209

• for every n ∶ N, i ∶ Jn + 1K and assuming given the term b̃rn+1, i as inductive

hypothesis, the term b̃rn+2, inl(i) is obtained as follows:

twptn+2
⋅ [i](m̃n+3(inl(inl(i)))) ⋅ twptn+2

= twptn+2
⋅ [i](twptn+1

) ⋅ [i]([i](m̃n+2(inl(i)))) ⋅ [i](twptn+1
) ⋅ twptn+2

= twptn+2
⋅ [i](twptn+1

) ⋅ twptn+2
⋅ twptn+2

⋅ [i]([i](m̃n+2(inl(i)))) ⋅ [i](twptn+1
) ⋅ twptn+2

by doptn+2

= twptn+2
⋅ [i](twptn+1

) ⋅ twptn+2

⋅ [i]([i](m̃n+2(inl(i)))) ⋅ twptn+2
⋅ [i](twptn+1

) ⋅ twptn+2
by (5.22)

= [i](twptn+1
) ⋅ twptn+2

⋅ [i](twptn+1
)

⋅ [i]([i](m̃n+2(inl(i)))) ⋅ [i](twptn+1
) ⋅ twptn+2

⋅ [i](twptn+1
) by brptn+1

= [i](twptn+1
) ⋅ twptn+2

⋅ [i]([i](m̃n+2(inl(i)))) ⋅ [i](twptn+1
)

⋅ [i]([i](m̃n+2(inl(i)))) ⋅ twptn+2
⋅ [i](twptn+1

) by b̃rn+1, i

= [i](twptn+1
) ⋅ [i]([i](m̃n+2(inl(i)))) ⋅ twptn+2

⋅ [i](twptn+1
)

⋅ twptn+2
⋅ [i]([i](m̃n+2(inl(i)))) ⋅ [i](twptn+1

) by (5.22)

= [i](twptn+1
) ⋅ [i]([i](m̃n+2(inl(i)))) ⋅ [i](twptn+1

) ⋅ twptn+2

⋅ [i](twptn+1
) ⋅ [i]([i](m̃n+2(inl(i)))) ⋅ [i](twptn+1

) by brptn+1

= [i](m̃n+3(inl(inl(i)))) ⋅ twptn+2
⋅ [i](m̃n+3(inl(inl(i)))).

All other cases are obtained ex falso.

With the lemmata shown so far, we can now prove the inductive case in Theo-

rem 5.69 relative to the constructor i.

Proof of Lemma 5.64. Given n ∶N, a ∶ deln, terms ebn,a and efn,a as in (5.65) and (5.66),

and a path p ∶ fbn+1(i(a)) = Jn + 1K, we define

ebn+1,i(a)(ebn,a, p) ∶≡ [i](ebn,a(p)) ⋅ m̃n+1(●p). (5.86)

Then, the 2-path efn+1,i(a)(ebn,a, efn,a, p) ∶ [fbn+1](ebn+1,i(a)(ebn,a, p)) = p is given by the

following chain of identities:

[fbn+1](ebn+1,i(a)(ebn,a, p))
≡ [fbn+1]([i](ebn,a(p)) ⋅ m̃n+1(●p))
= [fbn+1]([i](ebn,a(p))) ⋅ [fbn+1](m̃n+1(●p))
= [add]([fbn](ebn,a(p))) ⋅ [fbn+1](m̃n+1(●p)) by (5.44)

210 5. FINITE TYPES AND SYMMETRIC MONOIDAL STRUCTURES

= [add](p) ⋅ [fbn+1](m̃n+1(●p)) by efn,a(p)
= p ⋅mn+1(●p) ⋅ [fbn+1](m̃n+1(●p)) by Lemma 5.79

= p ⋅ (mn+1(●p))−1
⋅ [fbn+1](m̃n+1(●p)) by Lemma 5.72

= p ⋅ ([fbn+1](m̃n+1(●p)))−1
⋅ [fbn+1](m̃n+1(●p)) by Lemma 5.82

= p.

For the proof of Lemma 5.67, we will need to fully harness the combinatorial

structure of the subuniverse of finite types. We are interested, in particular, in de-

termining
●

p ∶ Jn + 1K for p ∶ A + 1 + 1 = Jn + 2K; this will depend on both
●

p and
●●

p.

We discussed ua−1(mn+1(i)) (i) for i ∶ Jn + 1K in Lemma 5.73; we will now provide a

calculation of ua−1(mn+2(i)) (j)when i and j are different terms.

Definition 5.87. Let n ∶N, i, j ∶ Jn + 2K and assume d ∶ (i = j)→ 0. A term wn(i, j, d) ∶
Jn + 1K is defined by induction on n, i and j, as follows:

w0(i , j , d) ∶≡ inr(∗) for i, j ∶ J2K

wn+1(inr(∗) , inr(∗) , d) is given ex falso, with d(refl) ∶ 0
wn+1(inr(∗) , inl(j) , d) ∶≡ j for j ∶ Jn + 2K

wn+1(inl(inr(∗)) , inr(∗) , d) ∶≡ inr(∗)
wn+1(inl(inr(∗)) , inl(inr(∗)) , d) is given ex falso, with d(refl) ∶ 0
wn+1(inl(inr(∗)) , inl(inl(j)) , d) ∶≡ inl(j) for j ∶ Jn + 1K

wn+1(inl(inl(i)) , inr(∗) , d) ∶≡ inl(i) for i ∶ Jn + 1K

wn+1(inl(inl(i)) , inl(inr(∗)) , d) ∶≡ inr(∗) for i ∶ Jn + 1K

wn+1(inl(inl(i)) , inl(inl(j)) , d) ∶≡ inl (wn(inl(i), inl(j), (p ↦ d([inl](p)))))
for i, j ∶ Jn + 1K.

We will omit the argument d from the notation.

The definition above is used in the following lemma, which determines, for ev-

ery i ∶ Jn + 2K, where the symmetry ua−1(mn+2(i)) ∶ Jn + 2K ≃ Jn + 2K “moves” a term

j different from i.

Lemma 5.88. For every n ∶N, i, j ∶ Jn + 2K and for d ∶ (i = j)→ 0, there is a path

ua−1(mn+2(i)) (j) =Jn+2K inl(wn(i, j)). (5.89)

Proof. The proof proceeds by induction on n, i and j. Most of the cases are trivial;

we present here the recursive case.

A DEGREEWISE EQUIVALENCE del● ≃ BS● 211

Assuming as inductive hypothesis a path as in (5.89) for some n ∶N and for all

arguments i, j and d, we have, for i, j ∶ Jn + 1K and d ∶ (inl(inl(i)) = inl(inl(j)))→ 0,

ua−1(mn+3(inl(inl(i)))) (inl(inl(j)))
≡ ua−1(γJn+1K ⋅ [add](mn+2(inl(i))) ⋅ γJn+1K) (inl(inl(j)))
= ωJn+1K(incr(ua−1(mn+2(inl(i)))) (ωJn+1K(inl(inl(i)))))
≡ ωJn+1K(incr(ua−1(mn+2(inl(i)))) (inl(inl(j))))
≡ ωJn+1K(inl(ua−1(mn+2(inl(i))) (inl(j))))
= ωJn+1K(inl(inl(wn(inl(i), inl(j))))) inductively

≡ inl(inl(wn(inl(i), inl(j))))
≡ inl(wn+1(inl(inl(i)), inl(inl(j)))),

proving the case.

Corollary 5.90. For every n ∶ N, a ∶ deln and p ∶ fbn+2(i(i(a))) = Jn + 2K, there are paths
●

p = wn(●p,
●●

p) and
●

γfbn(a)
⋅ p = wn(●●p,

●

p).
Proof. We have:

inl(●p) =Jn+2K inl((ua−1(p ⋅mn+2(●p)))∣fb
n+1
(i(a))

(inr(∗)))
≡ ua−1(p ⋅mn+2(●p)) (inl(inr(∗)))
= ua−1(mn+2(●p)) (●●p)
= inl(wn(●p,

●●

p)) by Lemma 5.88,

where wn(●p,
●●

p) is well-defined, since from a path
●

p =
●●

p one can obtain a path

inr(∗) = (ua−1(p))−1(●p) = (ua−1(p))−1(●●p) = inl(inr(∗)),
and thus a term in 0 (Lemma 2.70). Hence, by Lemma 2.72,

●

p = wn(●p,
●●

p). By the

same reasoning, we obtain
●

γ ⋅ p = wn ((γ ⋅ p)●, (γ ⋅ p)●●) = wn(●●p,
●

p).
As mentioned, we will assume the following result on the combinatorics of fi-

nite types, which deals with properties of permutations. Although we believe in its

provability, exhibiting an exact proof term revealed itself to be a challenging task.

Assumption 5.91. Let n ∶N and p ∶ Jn + 2K = Jn + 2K. The following holds:

(i) if
●

p = inr(∗), then p = γJnK ⋅ p;

(ii) if
●

p = inl(inr(∗)) and
●●

p = inl(inl(j)) for some j ∶ JnK, then p = γJnK ⋅ p.

212 5. FINITE TYPES AND SYMMETRIC MONOIDAL STRUCTURES

Moreover, assume that a 2-path as in (5.68) can be found for every p ∶ Jn + 3K = Jn + 3K

such that
●

p = inl(i) and
●●

p = inl(j) for some i, j ∶ Jn + 2K. Then:

(iii) a 2-path as in (5.68) can be found for every q ∶ Jn + 4K = Jn + 4K such that
●

q =

inl(inl(i)) and
●●

q = inl(inl(j)).
The mathematical content of Assumption 5.91 is the following one, which we

will explain using a mathematical notation disconnected from HoTT. A loop p ∶

Jn + 2K = Jn + 2K corresponds to a permutation σ ∶ {1, . . . , n + 2} ≃ {1, . . . , n + 2}; ac-

cordingly, the path γJnK ⋅ p corresponds to the permutation σ ○ (n + 2, n + 1), where

we precompose by the transposition of n + 2 and n + 1. The reduction p ∶ Jn + 1K =

Jn + 1K corresponds to the restriction to {1, . . . , n + 1} of the permutation

(n + 2, σ(n + 2)) ○ σ,

obtained by composing with the transposition of n + 2 and σ(n + 2); the restriction

can be applied, since, trivially, ((n + 2, σ(n + 2)) ○ σ)(n + 2) = n + 2. The inductive

definition of JnK allows us to keep track of some elements: for instance, the terms

inr(∗) and inl(inr(∗)) ∶ Jn + 2K stand for the elements n + 2 and n + 1, respectively.

The terms
●

p and
●●

p ∶ Jn + 2K then correspond, respectively, to the elements σ(n + 2)
and σ(n + 1).

Claim (i) in Assumption 5.91 represents the statement: if σ(n + 2) = n + 2, then

((n + 2, σ(n + 2)) ○ σ)(i) = ((n + 2, σ(n + 1)) ○ σ ○ (n + 2, n + 1))(i) (5.92)

for every i ≤ n + 1. Substituting with the hypothesis, (5.92) reduces to:

σ(i) = ((σ(n + 2), σ(n + 1)) ○ σ ○ (n + 2, n + 1))(i) (5.93)

for every i ≤ n+1. This can be easily verified by case analysis (separately for i = n+1

and i ≤ n). Similarly, claim (ii) represents the statement: if σ(n + 2) = n + 1 and

σ(n + 1) = j ≤ n, then

((n + 1, ((n + 2, σ(n + 2))(σ(n + 1)))) ○ (n + 2, σ(n + 2)) ○ σ)(i) (5.94)

= ((n + 1, ((n + 2, σ(n + 1))(σ(n + 2)))) ○ (n + 2, σ(n + 1)) ○ σ ○ (n + 2, n + 1))(i)
for every i ≤ n. Substituting with the hypotheses and simplifying in (5.94), and

using that i ≤ n, this reduces to showing that

((n + 1, j) ○ (n + 2, n + 1) ○ σ)(i) = ((n + 2, j) ○ σ)(i) (5.95)

for every i ≤ n. This can be shown again by case analysis: if σ(i) = n + 2, then both

the LHS and the RHS in (5.95) compute to j; the case for σ(i) = n+ 1 = σ(n+ 2) does

A DEGREEWISE EQUIVALENCE del● ≃ BS● 213

not apply because i ≤ n; finally, if σ(i) ≤ n, then we notice that it is not the case that

σ(i) = j = σ(n + 1) because i ≤ n, and both the LHS and the RHS in (5.95) reduce to

σ(i).
While the informal proofs of claims (i) and (ii) in Assumption 5.91 are mani-

festly nothing more than an elementary exercise in combinatorics, a formalization

in our framework would actually be quite cumbersome and require a number of

preliminary results and nested induction on coproduct types. Especially in (ii), the

argument by induction on σ(i) would need to be formalized as a term in a type of

the form

Π (i ∶ JnK) . Π (x ∶ Jn + 2K) . ((ua−1(p) (inl(inl(i))) = x)→ . . .) ,

which would take considerably more effort than the simple proof above. To this,

one should also remember that the definition of p entails going back and forth with

univalence twice, which increases the overall complexity of the sought proof term.

Claim (iii) is of a different kind. Plain and simple, it is the inductive step in

the proof that the definition of ebn+1,i(−) from Lemma 5.64 (see Fig. 5.6) “respects”

transpositions of adjacent elements, in the sense that, for every n ∶N, the function

ebn+2,ptn+2
∶ (Jn + 2K = Jn + 2K)→ (ptn+2 = ptn+2)

should recursively take, for every p ∶ Jn + 2K = Jn + 2K, the path γJnK ⋅ p to the path

twa ⋅ e
b
n+2,ptn+2

(p). Since the “combinatorial” semantics of BS● and of del● is the same,

we find no help in reasoning on the nature of the permutations involved in the

definition of each subterm of the type in (5.68); currently, this problem remains

unsolved.

Using Assumption 5.91, which regrettably makes our formalization incomplete,

we are able to prove the last lemma in the way of an equivalence del● ≃ BS●.

Proof of Lemma 5.67. Let n ∶N, p ∶ Jn + 2K = Jn + 2K and ebn,ptn
as in (5.65). Using the

definition of ebn+1,ptn+1
given in the proof of Lemma 5.64 for a ∶≡ ptn, to find a 2-path

as in (5.68) is to find a 2-path

[i]([i](ebn,ptn
(γJnK ⋅ p))) ⋅ [i](m̃n+1(

●

γJnK ⋅ p)) ⋅ m̃n+2((γJnK ⋅ p)●)
= twptn

⋅ [i]([i](ebn,ptn
(p))) ⋅ [i](m̃n+1(

●

p)) ⋅ m̃n+2(●p), (5.96)

or, via Lemma 5.21 and simplifying,

[i]([i](ebn,ptn
(γJnK ⋅ p))) ⋅ [i](m̃n+1(

●

γJnK ⋅ p)) ⋅ m̃n+2(●●p)
= [i]([i](ebn,ptn

(p))) ⋅ twptn
⋅ [i](m̃n+1(

●

p)) ⋅ m̃n+2(●p). (5.97)

214 5. FINITE TYPES AND SYMMETRIC MONOIDAL STRUCTURES

We proceed by induction on n ∶N.

• For p ∶ J2K = J2K, we have that γ0 ⋅ p = p, as the type 0 = 0 is a (−1)-type; more-

over,
●

p = w0(●p,
●●

p) ≡ inr(∗) by Corollary 5.90, and similarly
●

γ0 ⋅ p = inr(∗), so

m̃1(
●

γ0 ⋅ p) = m̃1(
●

p) = m̃1(inr(∗)) ≡ reflpt1
. Hence, it is enough to construct a 2-

path m̃2(●●p) = twpt0
⋅ m̃2(●p). Induction on

●

p and
●●

p ∶ J2K ≡ [2] gives the following

cases:

– if
●

p ≡ inr(∗) and
●●

p ≡ inl(inr(∗)), we obtain immediately

m̃2(●●p) ≡ twpt0
= twpt0

⋅ reflpt2
≡ twpt0

⋅ m̃2(●p);

– if
●

p ≡ inl(inr(∗)) and
●●

p ≡ inr(∗), we use dopt0
to get

m̃2(●●p) ≡ reflpt2
= twpt0

⋅ twpt0
≡ twpt0

⋅ m̃2(●p);

all other cases are obtained ex falso, as assuming
●

p =
●●

p leads to a term in 0 (as in

the proof of Corollary 5.90).

• Assuming n ∶ N and (5.97) for all q ∶ Jn + 2K = Jn + 2K, and given p ∶ Jn + 3K =

Jn + 3K, we reason again by induction on
●

p and
●●

p ∶ Jn + 3K, excluding the cases
●

p =
●●

p, which are resolved ex falso:

(i) if
●

p ≡ inr(∗) and
●●

p ≡ inl(inr(∗)), we have that
●

p = wn+1(●p,
●●

p) ≡ inr(∗) by

Corollary 5.90. We find:

[i]([i](ebn+1,ptn+1
(ebn,ptn

, γJn+1K ⋅ p))) ⋅ [i](m̃n+2(
●

γJn+1K ⋅ p)) ⋅ m̃n+3(●●p)
= [i]([i](ebn+1,ptn+1

(ebn,ptn
, p))) ⋅ [i](m̃n+2(

●

p)) ⋅ m̃n+3(●●p) by Ass. 5.91(i)

= [i]([i](ebn+1,ptn+1
(ebn,ptn

, p))) ⋅ reflptn+3
⋅ twptn+1

= [i]([i](ebn+1,ptn+1
(ebn,ptn

, p))) ⋅ twptn+1
⋅ reflptn+3

⋅ reflptn+3

= [i]([i](ebn+1,ptn+1
(ebn,ptn

, p))) ⋅ twptn+1
⋅ [i](m̃n+2(

●

p)) ⋅ m̃n+3(●p);

(ii) if
●

p ≡ inr(∗) and
●●

p ≡ inl(inl(j)) for some j ∶ Jn + 1K, we have that
●

p =

wn+1(●p,
●●

p) = inl(j) by Corollary 5.90. We find:

[i]([i](ebn+1,ptn+1
(ebn,ptn

, γJn+1K ⋅ p))) ⋅ [i](m̃n+2(
●

γJn+1K ⋅ p)) ⋅ m̃n+3(●●p)
= [i]([i](ebn+1,ptn+1

(ebn,ptn
, p))) ⋅ [i](m̃n+2(

●

p)) ⋅ m̃n+3(●●p) by Ass. 5.91(i)

= [i]([i](ebn+1,ptn+1
(ebn,ptn

, p))) ⋅ [i](m̃n+2(inl(j)))
⋅ twptn+1

⋅ [i](m̃n+2(inl(j))) ⋅ twptn+1

A DEGREEWISE EQUIVALENCE del● ≃ BS● 215

= [i]([i](ebn+1,ptn+1
(ebn,ptn

, p))) ⋅ twptn+1
⋅ [i](m̃n+2(inl(j))) by Lemma 5.84

= [i]([i](ebn+1,ptn+1
(ebn,ptn

, p))) ⋅ twptn+1
⋅ [i](m̃n+2(

●

p)) ⋅ m̃n+3(●p);
(iii) the case for

●

p ≡ inl(inr(∗)) and
●●

p ≡ inr(∗) is analogous to the one presented

in (i), with the roles of p and γJn+1K ⋅ p exchanged;

(iv) if
●

p ≡ inl(inr(∗)) and
●●

p ≡ inl(inl(j)) for some j ∶ Jn + 1K, we have that
●

p =

wn+1(●p,
●●

p) = inl(j) and
●

γJn+1K ⋅ p = wn+1(●●p,
●

p) = inr(∗) by Corollary 5.90. We

then find:

[i]([i](ebn+1,ptn+1
(ebn,ptn

, γJn+1K ⋅ p))) ⋅ [i](m̃n+2(
●

γJn+1K ⋅ p)) ⋅ m̃n+3(●●p)
= [i]([i](ebn+1,ptn+1

(ebn,ptn
, p))) ⋅ [i](m̃n+2(

●

γJn+1K ⋅ p)) ⋅ m̃n+3(●●p)
by Ass. 5.91(ii)

= [i]([i](ebn+1,ptn+1
(ebn,ptn

, p))) ⋅ reflptn+3

⋅ twptn+1
⋅ [i](m̃n+2(inl(j))) ⋅ twptn+1

= [i]([i](ebn+1,ptn+1
(ebn,ptn

, p))) ⋅ twptn+1
⋅ [i](m̃n+2(

●

p)) ⋅ m̃n+3(●p);
(v) the case for

●

p ≡ inl(inl(i)) and
●●

p ≡ inr(∗) is analogous to the one in (ii);

(vi) the case for
●

p ≡ inl(inl(i)) and
●●

p ≡ inl(inr(∗)) is analogous to the one in (iv);

(vii) finally, assume that the 2-path can be found for every p ∶ Jn + 3K = Jn + 3K

such that
●

p = inl(i) and
●●

p = inl(j) for i, j ∶ Jn + 2K. Then, by Assump-

tion 5.91(iii), we get the sought 2-path for p ∶ Jn + 4K = Jn + 4K such that
●

p ≡ inl(inl(i)) and
●●

p ≡ inl(inl(j)), concluding the proof by induction.

Remark 5.98. The proof of Theorem 5.69 we showed in this section can be alter-

natively presented as follows. As proved in [Uni13, Theorem 8.8.1], a function

f ∶ A → B is an equivalence if it is an embedding and the induced function ∥ f ∥0 ∶
∥A∥0 → ∥B∥0 on 0-truncations is surjective. Combining this result with connected-

ness of the types in the family del● (Lemma 5.26), we then have that, for n ∶ N, the

function fn ∶ deln → BSn is an equivalence if the following conditions hold:

(i) the function ∥fn∥0 ∶ ∥deln∥0 → ∥BSn∥0 is surjective; this is trivial, as both deln

and BSn are connected;

(ii) for every a ∶ deln, the function

∥[fn]∥0 ∶ ∥a = ptn∥0 → ∥fn(a) = fn(ptn)∥0
is surjective;

216 5. FINITE TYPES AND SYMMETRIC MONOIDAL STRUCTURES

(iii) for every a ∶ deln and p, q ∶ a = ptn, the function

∥[[fn]]∥0 ∶ ∥p = q∥0 → ∥[fn](p) = [fn](q)∥0
is surjective; this is also trivial, since both deln and BSn are 1-types;

(iv) for every a ∶ deln, p, q ∶ a = ptn and r, s ∶ p = q, the function

[[[fn]]] ∶ (r = s)→ ([[fn]](r) = [[fn]](s))
is an equivalence; as both the source and target of [[[fn]]] are (−1)-types, this

simply entails defining a function in the opposite direction.

Trying to pursue such a proof of Theorem 5.69 would not reduce its complexity,

which is largely due to the combinatorics of finite types. Roughly, condition (ii)

corresponds to Lemma 5.63 and Lemma 5.64, while condition (iv) corresponds to

Lemma 5.67.

5.5 Discussion and Conclusions

Save for the unformalized results in Assumption 5.91 about combinatorics of finite

types, in this and the previous chapter we have managed to construct a chain of

symmetric monoidal equivalences:

FSMG(1) ≃ slist(1) ≃ del● ≃ BS●, (5.99)

parallel to the one in (3.60) for free monoidal groupoids.

Especially in the proof of del● ≃ BS●, univalence played a key role, because we

essentially establish an equivalence between paths in del● and paths in the subuni-

verse of finite types. A path between finite types is much better described by the

equivalence it entails; for example, a path p ∶ A+ 1 = A+ 1 conceals the information

on where the equivalence ua−1(p) ∶ A + 1 ≃ A + 1 sends the rightmost term inr(∗).
Working with such an equivalence – rather than a path – lets us perform induction

on the image of inr(∗), which is necessary because the combinatorial nature of finite

types (and of symmetric groups) is fundamentally an inductive machinery. Univa-

lence allows us to switch between the notions of paths and equivalences, so that we

can use the former to link identity types in del● to those in BS● (via [fn]) and the

latter to reason about combinatorics.

The first, immediate conclusion we can draw from (5.99) is that the subuniverse

of finite types is a free symmetric monoidal groupoid. Tracing the image of the gen-

erator ∗ ∶ 1 along the chain of equivalences described in this chapter, we see that

DISCUSSION AND CONCLUSIONS 217

it corresponds to the (canonical) finite type [1], as displayed in Fig. 5.8. In partic-

ular, the identity types in the subuniverse of finite types embody the symmetric

monoidal structures of FSMG(1) and slist(1); that is, the constructors of FSMG, ex-

pressing associativity, unitality, symmetry and the coherence diagrams, describe

the classifying spaces of symmetric groups. In turn, automorphisms of finite types

can be described in terms of transpositions of adjacent elements in a symmetric list.

1

FSMG(1) slist(1) del● BS●

ι

≃

K
≃

k
≃

f●

ι(∗) ∗ ∶ ∶ nil ⟨1,pt1⟩ ⟨1, [1], ∣id[1]∣⟩

Figure 5.8: The generator ∗ ∶ 1 in FSMG(1) corresponds to the finite type [1] in BS●.

The constructions FSMG(1), slist(1) and del● all provide elimination principles

that can be employed, according to the need, to eliminate out of finite types. Indeed,

assuming function extensionality, for every family P ∶ BS● → U , we can construct a

chain of equivalences between dependent function types:

Π (Z ∶ BS●) . P(Z) ≃ Π (a ∶ del●) . P(f●(a))
≃ Π (l ∶ slist(1)) . P(f●(k(l)))
≃ Π (a ∶ FSMG(1)) . P(f●(k(K(a)))), (5.100)

where K, k and f● are the equivalences used in (5.99), which we described in detail

in this thesis.

In this chapter we have so far focussed on symmetric monoidal groupoids gen-

erated by one element only (the term in 1). As a matter of fact, the chains of equiv-

alences in (5.99) and (5.100) can be extended to a stronger result and encompass

symmetric monoidal groupoids generated by any set, as presented in the following

lemma.

Lemma 5.101. Let X be a 0-type. There is a symmetric monoidal equivalence

slist(X) ≃ (Σ (a ∶ del●) . (fb●(a)→ X)) .

Proof. The proof of Theorem 5.35 can be adapted to produce the sought symmetric

monoidal equivalence:

218 5. FINITE TYPES AND SYMMETRIC MONOIDAL STRUCTURES

• the type Σ (a ∶ del●) . (fb●(a) → X) has a symmetric monoidal structure obtained

combining the one of del● (Lemma 5.30) with one on Σ (A ∶ U) . A → X; the latter

uses ⟨0, rec0⟩ as unit, while the product of ⟨A, f ⟩ and ⟨B, g⟩ is ⟨A + B, f + g⟩;
• a function k̂ ∶ slist(X)→ (Σ (a ∶ del●) . (fb●(a)→ X)) can be defined so that

k̂(nil) ∶≡ ⟨k(nil), rec0⟩ ≡ ⟨pt0, rec0⟩,
k̂(x ∶ ∶ l) ∶≡ ⟨k(x ∶ ∶ l),pr2(̂k(l))+ constx⟩,

for every x ∶ X and l ∶ slist(X), with constx ∶≡ (u ↦ x) ∶ 1 → X and k as in

Definition 5.32. Indeed, we have that

fb●(k(x ∶ ∶ l)) ≡ fb●⟨pr1(k(l))+ 1, i(pr2(k(l)))⟩ ≡ fb●(k(l))+ 1,

so pr2(̂k(l)) + constx ∶ f
b
●(k(x ∶ ∶ l)) → X is well-typed. The requirements relative

to the higher constructors can be given in a way similar to the one presented in

Definition 5.32; the function k̂ can then be proved to be the underlying function

of a symmetric monoidal functor;

• conversely, a function ĵ ∶ (Σ (a ∶ del●) . (fb●(a)→ X)) → slist(X) is produced simi-

larly to j in Definition 5.34, i.e., via a term

j ∶ Π (n ∶N) . Π (a ∶ deln) . (fbn(a)→ X)→ slist(X)
obtained by the elimination principle of del(−). The resulting dependent func-

tion will compute

j(0,pt0, f) ∶≡ nil,
j(n + 1, i(a), f) ∶≡ f (inr(∗)) ∶ ∶ j(n, a, f ○ inl)

for every n ∶ N, a ∶ deln and f ∶ fbn(a) → X, where fbn+1(i(a)) ≡ fbn(a) + 1, thus

f (inr(∗)) ∶ X and f ○ inl ∶ fbn(a) → X are well-typed. Again, the requirements

relative to the higher constructors can be given similarly to Definition 5.34;

• the equivalence is proved in the same way as in Theorem 5.35.

The lemma above has not been formalized, as the path algebra required to for-

mally prove it is rather involved.

Remark 5.102. For a 0-type X, the type Σ (Z ∶ BS●) . (Z → X) – where, to simplify

the notation, we liberally write Z instead of its type component pr1(pr2(Z)) ∶ U –

also has a symmetric monoidal structure, which combines the one already known

for BS● (Lemma 5.11) with the on Σ (A ∶ U) . A → X described in Lemma 5.101.

DISCUSSION AND CONCLUSIONS 219

By virtue of the previous lemma and the results presented in Chapter 4, we

can conclude that the type of free symmetric monoidal expressions on X, defined

inductively as the HIT FSMG(X), is equivalent to the type of unordered (coordinate-

free), finite “vectors” with entries in the 0-type X.

Corollary 5.103. For every 0-type X, there is a symmetric monoidal equivalence

FSMG(X) ≃ Σ (Z ∶ BS●) . (Z → X).

Proof. The claim is proved by the following chain of equivalences:

FSMG(X) ≃ slist(X) by Corollary 4.49

≃ Σ (a ∶ del●) . (fb●(a)→ X) by Lemma 5.101

≃ Σ (Z ∶ BS●) . (Z → X),

where the last equivalence is given by ⟨f●, (a ↦ id)⟩.

We can put this equivalence to use in the following way. In Chapter 4, we gave

an example of a non-commuting diagram in FSMG(X) (Fig. 4.1), involving a sym-

metric monoidal expression where certain elements were repeated. Indeed, one can

show that (τa,a = refla⊗a) → 0 for every a ∶ FSMG(X), corresponding to the non-

identification between the automorphisms ωA and idA+1+1, for any A ∶ U . This,

however, is the only pathological case; all diagrams in FSMG(X) involving expres-

sions containing terms in X “different” from each other commute. Trying to classify

such expressions in FSMG(X) would be a complex task; instead, the equivalence

in Corollary 5.103 gives us an easy way to describe them as specific coordinate-

free, finite vectors with distinct entries in X, i.e., to terms inhabiting the subtype of

Σ (Z ∶ BS●) . (Z → X) consisting of functions which are embeddings.

This result will be proved in the last theorem of this chapter. We consider it an

alternative take on the coherence theorem for symmetric monoidal groupoids, as it

complements the now established description of the paths in FSMG(X) (in terms of

automorphisms of finite types) with a characterization of the class of commuting

diagrams in the groupoid:

• all diagrams not containing instances of τ commute. Indeed, there is an obvi-

ous map incl ∶ FMG(X) → FSMG(X) obtained by the elimination principle of

FMG, whose computation rules show that incl ○ ι ≡ ι, i.e., the diagram in Fig. 5.9

commutes judgmentally;

220 5. FINITE TYPES AND SYMMETRIC MONOIDAL STRUCTURES

• all (other) diagrams commute if and only if the corresponding diagrams in BS●

do; in particular, all diagrams involving symmetric monoidal expressions with

distinct elements commute.

X

FMG(X) FSMG(X)

ι ι

incl

Figure 5.9: Inclusion of FMG(X) in FSMG(X).

The proof of the following theorem does not require any of the results previ-

ously shown in this chapter. However, it gains relevance in light of the equivalence

in Corollary 5.103, which shows that, for a 0-type X, the symmetric monoidal group-

oid Σ (Z ∶ BS●) . (Z → X) is free.

Theorem 5.104 (Coherence for coordinate-free, finite vectors). Let X be a 0-type. The

type

Σ (Z ∶ BS●) . Σ (f ∶ Z → X) . IsEmb(f)
of coordinate-free vectors with distinct entries in X is a 0-type.

Proof. The statement holds in more generality: for any type X, the type

Σ (Z ∶ U) . Σ (f ∶ Z → X) . IsEmb(f)
is a 0-type. In order to prove the claim, we need to show that, for every A, B ∶ U ,

f ∶ A → X, g ∶ B → X, h ∶ IsEmb(f) and k ∶ IsEmb(g), the type

⟨A, f , h⟩ = ⟨B, g, k⟩
is a (−1)-type. Since being an embedding is a (−1)-type (Lemma 2.120(i)), it is

enough to show that the type

⟨A, f ⟩ =(Σ(Z∶U). (Z→X)) ⟨B, g⟩ (5.105)

is a (−1)-type. By Remark 2.68, the type in (5.105) is equivalent to the type

Σ (p ∶ A = B) . (p(Z↦(Z→X))
∗ (f) = g) . (5.106)

In turn, the type in (5.106) is equivalent, using Remark 2.99, to the type

Σ (e ∶ A ≃ B) . (f ∼ g ○ e), (5.107)

DISCUSSION AND CONCLUSIONS 221

via the equivalence ua−1 ∶ (A = B) ≃ (A ≃ B) on the base, and a family of equiva-

lences

Π (p ∶ A = B) . ((p(Z↦(Z→X))
∗ (f) = g) ≃ (f ≃ g ○ ua−1(p)))

obtained by induction on p, which amounts to providing the equivalence fxt−1
∶

(f = g) ≃ (f ∼ g). Finally, the type in (5.107) is equivalent to

Π (x ∶ X) .fib f (x) ≃ fibg(x). (5.108)

Briefly explained, a family of equivalences s in the type in (5.108) determines an

equivalence ⟨id, s⟩ ∶ Σ (x ∶ X) .fib f (x) ≃ Σ (x ∶ X) .fibg(x), and hence an equivalence

e ∶ A ≃ (Σ (x ∶ X) .fib f (x)) ≃ (Σ (x ∶ X) .fibg(x)) ≃ B

by [Uni13, Lemma 4.82], such that f ∼ g ○ e. Conversely, an equivalence e ∶ A ≃ B

and a homotopy f ∼ g ○ e determine, for every x ∶ X, an equivalence

fib f (x) ≃ fibg○e(x) ≃ fibg(x)
as one can show that fibers respect homotopies and equivalences. This correspon-

dence is an equivalence; details are shown in [Gyl20, Lemma 5].

By univalence, the type in (5.108) is equivalent to

Π (x ∶ X) .fib f (x) = fibg(x),
which is a (−1)-type if, for every x ∶ X, fibg(x) is a (−1)-type (Lemma 2.130). This

holds by Lemma 2.110, as g is an embedding.

222 5. FINITE TYPES AND SYMMETRIC MONOIDAL STRUCTURES

5.6 Figures in Proofs

fbn(a)+ 1 + 1 + fbm(b)

fbn(a)+ 1 + (1 + fbm(b))

fbn(a)+ 1 + (fbm(b)+ 1)

fbn(a)+ 1 + fbm(b)+ 1

fbn(a)+ (1 + fbm(b))+ 1

fbn(a)+ (fbm(b)+ 1)+ 1

fbn(a)+ fbm(b)+ 1 + 1

fbn(a)+ 1 + 1 + fbm(b)

fbn(a)+ 1 + (1 + fbm(b))

fbn(a)+ 1 + (fbm(b)+ 1)

fbn(a)+ 1 + fbm(b)+ 1

fbn(a)+ (1 + fbm(b))+ 1

fbn(a)+ (fbm(b)+ 1)+ 1

fbn(a)+ fbm(b)+ 1 + 1

αU

refl+ τU

α−1
U

[add](αU)

[add](refl+ τU)

[add](α−1
U
)

αU

refl+ τU

α−1
U

[add](αU)

[add](refl+ τU)

[add](α−1
U
)

ua (ωfbn(a)
)+ refl

ua (ωfbn(a)+fbm(b)
)

Figure 5.10: The requirement relative to the constructor tw in the inductive definition of the

family (f●)2 has, at its core, the displayed 2-path. The diagram commutes because the under-

lying functions of the two different compositions of equivalences corresponding to the paths

in U bordering the 2-path are homotopic: they both send inl(inl(inl(x))) to inl(inl(inl(x))) for

every x ∶ fbn(a); inl(inl(inr(∗))) to inr(∗); inl(inr(∗)) to inl(inr(∗)); and inr(y) to inl(inl(inr(y)))

for every y ∶ fbm(b).

FIGURES IN PROOFS 223

fb●⟨n,ptn⟩+ fb●⟨m,ptm⟩+ fb●⟨l,ptl⟩

JnK+ JmK+ JlK JnK+ (JmK+ JlK)

fb●(⟨n,ptn⟩⊕ ⟨m,ptm⟩)+ JlK JnK+ fb●(⟨m,ptm⟩⊕ ⟨l,ptl⟩)

fb●((⟨n,ptn⟩⊕ ⟨m,ptm⟩)⊕ ⟨l,ptl⟩) fb●(⟨n,ptn⟩⊕ (⟨m,ptm⟩⊕ ⟨l,ptl⟩))

αU

1+ (fb●)2

(fb●)2

(fb●)2 + 1

(fb●)2

[fb●](αdel●)
(a) The 2-path (fb●)α(⟨n,ptn⟩, ⟨m,ptm⟩, ⟨l,ptl⟩).

0 + JmK+ JlK 0 + (JmK+ JlK)

JmK+ JlK 0 + fb●(⟨m,ptm⟩⊕ ⟨l,ptl⟩)

fb●(⟨m,ptm⟩⊕ ⟨l,ptl⟩) fb●(⟨m,ptm⟩⊕ ⟨l,ptl⟩)

αU

1+ (fb●)2

λU

λU + 1

(fb●)2

1

λU
λU

1

2

3

(b) The 2-path (fb●)α(⟨0,pt0⟩, ⟨m,ptm⟩, ⟨l,ptl⟩). The 2-path (1) is an instance of the derived coherence

diagram in Fig. 3.4a, but it can also be produced directly by examining the equivalences corresponding

to the paths in U ; (2) is an instance of naturality of λU ; (3) is trivial.

Figure 5.11: Construction of (f●)α: (a) general case; (b) inductive case for pt0; (c) inductive

case for i.

224 5. FINITE TYPES AND SYMMETRIC MONOIDAL STRUCTURES

JnK+ 1 + JmK+ JlK

JnK+ (1 + JmK)+ JlK

JnK+ (JmK+ 1)+ JlK

JnK+ JmK+ 1 + JlK

fb●(⟨n,ptn⟩⊕ ⟨m,ptm⟩)+ 1 + JlK

fb●(⟨n,ptn⟩⊕ ⟨m,ptm⟩)+ (1 + JlK)

fb●(⟨n,ptn⟩⊕ ⟨m,ptm⟩)+ (JlK+ 1)

fb●(⟨n,ptn⟩⊕ ⟨m,ptm⟩)+ JlK+ 1

fb●((⟨n,ptn⟩⊕ ⟨m,ptm⟩)⊕ ⟨l,ptl⟩)+ 1

fb●(⟨s, i⟩((⟨n,ptn⟩⊕ ⟨m,ptm⟩)⊕ ⟨l,ptl⟩))

JnK+ JmK+ (1 + JlK)

JnK+ JmK+ (JlK+ 1)

JnK+ JmK+ JlK+ 1

αU

αU + 1

(1+ τU)+ 1

αU + 1

(fb●)2 + 1+ 1

αU

1+ τU

αU

(fb●)2

[fb●]([⟨s, i⟩](αdel●))

[fb●](αdel●)+ 1

αU + 1

(fb●)2 + 1+ 1

(fb●)2 + (1+ 1)

(fb●)2 + (1+ 1)

αU

1+ τU

αU

1

2

3

7

8

9

(c) Construction of (f●)α(⟨n + 1,ptn+1⟩, ⟨m,ptm⟩, ⟨l,ptl⟩). The 2-paths (1), (3), (4) and (6) are in-

stances of naturality of αU ; (2) and (5) are instances of naturality of τU ; (7) is derived from

(f●)α(⟨n,ptn⟩, ⟨m,ptm⟩, ⟨l,ptl⟩); (8) can be obtained from the computation rule (5.41) of fb; (9) could

be composed of coherence diagrams, but can also be found directly, as the paths bordering the diagram

correspond to equivalences with homotopic underlying functions.

Figure 5.11: Continued.

FIGURES IN PROOFS 225

JnK+ 1 + (JmK+ JlK)

JnK+ 1 + fb●(⟨m,ptm⟩⊕ ⟨l,ptl⟩)

JnK+ (1 + fb●(⟨m,ptm⟩⊕ ⟨l,ptl⟩))

JnK+ (fb●(⟨m,ptm⟩⊕ ⟨l,ptl⟩)+ 1)

JnK+ fb●(⟨m,ptm⟩⊕ ⟨l,ptl⟩)+ 1

fb●(⟨n,ptn⟩⊕ (⟨m,ptm⟩⊕ ⟨l,ptl⟩))+ 1

fb●(⟨s, i⟩(⟨n,ptn⟩⊕ (⟨m,ptm⟩⊕ ⟨l,ptl⟩)))

JnK+ (1 + (JmK+ JlK))

JnK+ ((JmK+ JlK)+ 1)

JnK+ (JmK+ JlK)+ 1

1+ (fb●)2
≡ 1+ 1+ (fb●)2

αU

1+ τU

αU

(fb●)2 + 1

1+ (fb●)2 + 1

1+ ((fb●)2 + 1)

1+ (1+ (fb●)2)

αU

1+ τU

αU

4

5

6

Chapter 6

Directions for Further Research

This chapter presents additional work related to stating and proving coherence the-

orems for monoidal categories in HoTT. Although the content of this chapter is par-

tial and not formalized, we believe that it can still have a place in this exposition, as

it unveils possible problems in pursuing an alternative approach to the proof of co-

herence and, at the same time, it provides some ideas about how to further expand

the results of coherence shown in the previous chapters.

6.1 Alternative Formulations of Coherence Statements1

While investigating possible ways to formalize coherence for monoidal and sym-

metric monoidal structures, we also considered an approach different from the one

adopted in the previous chapters. The constructions FMG and FSMG given in this

thesis are based on a 0-type X used as parameter for the HITs; in this sense, the

types FMG(X) and FSMG(X) can be seen as spaces with a multiplication that is as-

sociative, unital and (for FSMG(X)) symmetric up to 2-path coherence. As we saw

in Theorem 5.104, coherence with respect to symmetric monoidal expressions be-

haves differently if such expressions contain repetitions of a term in the same prod-

uct (as symmetric monoidal expressions without repetitions form a 0-type). For this

reason, it is worth to examine the symmetric monoidal structure itself, leaving aside

the type parameter X altogether.

In this section, we will briefly explain a strategy leading to a different formu-

lation of a coherence statement for monoidal and symmetric monoidal structures.

The underlying idea is to consider these structures using combinatorial species (in

the sense of [Joy81]), building a layered notion of:

• species, here simply interpreted as functions from the subuniverse of 0-types to

itself, possessing

1Joint work with Håkon R. Gylterud.

227

228 6. DIRECTIONS FOR FURTHER RESEARCH

• a “monad” structure (with a 0-coherent unit and multiplication), together with

• a family of “equalities”, versatile enough to describe (for a specific species) weak

and strict monoidal and symmetric monoidal equality structures – which we

aim to compare.

We will proceed to describe this notion more precisely, with the important caveat

that the work presented here has not been completed. In this regard, since the pur-

pose is to convey an idea rather than show a complete formalization, many details

will be left out. In particular, we will work “informally” within the subuniverse Set

of 0-types, without going into the trouble of expressing it as a Σ-type.

Definition 6.1. A species is a function S ∶ Set → Set. A speciad (species with a

monad-like structure) consists of a species S together with:

• a unit term η ∶ S(1)
• for every A ∶ Set, s ∶ S(A), B ∶ A → Set and t ∶ Π (a ∶ A) . S(B(a)), a substitution

(or multiplication) term µs,t ∶ S(Σ (a ∶ A) . B(a));
• families of pathovers witnessing associativity and left and right unitality (with

respect to η) of the substitution. For example, for left unitality, given A ∶ Set and

s ∶ S(A), we demand that the substitution term

µη, (x↦s) ∶ S(Σ (x ∶ 1) . A) (6.2)

“coincide” with s. The term s and the one in (6.2) are, evidently, of different types.

However, there is an equivalence

eλ ∶ (Σ (x ∶ 1) . A) ≃ A. (6.3)

This induces, via univalence, a path ua(eλ) in Set along which to transport, in

the family S, the term in (6.2) to the type S(A), where we demand a path to

s ∶ S(A). Similarly, for right unitality, we require a pathover

(ua(eρ))S∗ (µs, (a↦η)) = s (6.4)

for every s ∶ S(A), where we used the equivalence eρ ∶ (Σ (a ∶ A) . 1) ≃ A. For

associativity, given

A ∶ Set, s ∶ S(A),
B ∶ A → Set, t ∶ Π (a ∶ A) . S(B(a)),
C ∶ Π (a ∶ A) . B(a)→ Set, u ∶ Π (a ∶ A) . Π (b ∶ B(a)) . S(C(a, b)),

ALTERNATIVE FORMULATIONS OF COHERENCE STATEMENTS 229

we consider the substitution terms

µs, (a↦µt(a),u(a)) ∶ S(Σ (a ∶ A) . Σ (b ∶ B(a)) . C(a, b)), (6.5)

obtained by first acting on the family C and then on B, and

µ(µs,t), uuc ∶ S(Σ (x ∶ Σ (a ∶ A) . B(a)) . Cuc(x)), (6.6)

obtained by first acting on B and then on C, where Cuc ∶ (Σ (a ∶ A) . B(a)) → Set

is the uncurried version of C (i.e., Cuc⟨a, b⟩ ∶≡ C(a, b), and similarly for uuc). We

then require a pathover

(ua(eα))S∗ (µs, (a↦µt(a),u(a))) = µ(µs,t), uuc , (6.7)

where the path in Set is obtained, by univalence, from the equivalence

eα ∶ Σ (a ∶ A) . Σ (b ∶ B(a)) . C(a, b) ≃ Σ (x ∶ Σ (a ∶ A) . B(a)) . Cuc(x). (6.8)

Appropriate notions of maps of species, maps of speciads and algebras over a speciad can

be defined, but we will not use them in this exposition.

Definition 6.9. The magma speciad is specified as follows:

• its underlying species M ∶ Set → Set is a family whose members are inductively

defined as follows:

M ∶ ∶= u ∶M(0) ∣ v ∶M(1) ∣ n ∶ Π (A1, A2 ∶ Set) .M(A1)→M(A2)→M(A1 + A2);
we denote nA1,A2

(s1, s2) by s1 ⊞ s2;

• its unit is defined to be η ∶≡ v ∶M(1);
• its substitution µs,t ∶ M(Σ (a ∶ A) . B(a)), for s ∶ M(A) and t ∶ Π (a ∶ A) .M(B(a)),

is defined by induction on s, as follows: the terms

µu,t ∶M(Σ (x ∶ 0) . B(x))
µv,t ∶M(Σ (x ∶ 1) . B(x))

µs1⊞s2,t ∶M(Σ (a ∶ A1 + A2) . B(a))
are obtained by transporting, respectively, the terms

u ∶M(0)
t(∗) ∶M(B(∗))

µs1,t○inl ⊞ µs2,t○inr ∶M(Σ (a ∶ A1) . B(inl(a))+Σ (a ∶ A2) . B(inr(a)))
in the family M, along paths obtained via univalence from suitable equivalences

(0 ≃ Σ (x ∶ 0) . B(x), and so on);

230 6. DIRECTIONS FOR FURTHER RESEARCH

• pathovers for associativity and unitality are obtainable, but omitted here.

The usefulness of the speciad M in our study lies essentially in the fact that, for a

type A ∶ Set, a term s ∶M(A) yields easily a proof that the type A is finite – implicitly,

because it shows that A is the coproduct of instances of the empty type and the unit

type, in some order and with some choice of priority.2 We want to reason about

such coproducts as the combinatorial backbone of tree-like monoidal expressions,

where the unit type acts as a placeholder for data (the kind of data injected by ι in

FMG and FSMG), the empty type represents the unit in the monoidal structure, and

the coproduct of types takes the place of the monoidal product. In this sense, for

example, the term

((u⊞ v)⊞ (v⊞ u))⊞ v ∶M((0 + 1)+ (1 + 0)+ 1)
embodies, from the point of view of combinatorics, all monoidal expressions

((e⊗ ι(−))⊗ (ι(−)⊗ e))⊗ ι(−) ∶ FMG(−) (or FSMG(−)),
abstracting from the source of the data (the parameter of FMG).

The inductive definition of the magma species allows us to perform induction

on monoidal expressions in a different way than FMG (and FSMG) could, since

they are now untied from the paths and 2-paths that specify the rest of the mo-

noidal structure; these will examined independently and encoded in families of

types embodying suitable equivalence relations, effectively building setoids. These,

as discussed in Section 3.2, are challenging to work with; here our aim is to avoid

looking at quotients and simply compare equivalence relations, for which we need

a suitable, general notion.

Definition 6.10. An E-family for a speciad ⟨S, η, µ, . . .⟩ is a family

E ∶ Π (A1, A2 ∶ Set) . S(A1)→ S(A2)→ (A1 ≃ A2)→ Set,

whose members will be denoted by Es1, s2, γ, which is closed under identity, com-

position, inverses and substitution, and such that: the composition is associative;

the identity behaves as a left and right unit for the composition; the inverse is an

inverse operation with respect to the composition and the identity; and the substi-

tution commutes with the group operations. That is, the following terms define the

E-family:

2The converse, i.e. producing a term s ∶M(A) from a proof that A is finite, is not possible, as there is

no canonical way of expressing a finite type as such a coproduct (this would be equivalent to finding a

function ∥A ≃ [n]∥ → (A ≃ [n]), for n ∶N).

ALTERNATIVE FORMULATIONS OF COHERENCE STATEMENTS 231

• ιA, s ∶ Es, s, idA
for every A ∶ Set, witnessing identity;

• ⊚ ∶ Es2, s3, γ2 → Es1, s2, γ1
→ Es1, s3, γ2○γ1

(infix notation) for equivalences of sets

γ1 ∶ A1 ≃ A2 and γ2 ∶ A2 ≃ A3, witnessing composition;

• (−)−1 ∶ Es1, s2, γ → Es2, s1, γ−1 , witnessing inverses;

• given arguments making the expressions µs1, t1
∶ S(Σ (a ∶ A1) . B1(a)) and µs2, t2 ∶

S(Σ (a ∶ A2) . B2(a))well-typed, and given an equivalence

⟨γ, δ⟩ ∶ Σ (a ∶ A1) . B1(a) ≃ Σ (a ∶ A2) . B2(a)
(in the notation of Definition 2.18), and terms

e ∶ Es1, s2, γ and f ∶ Π (a ∶ A1) . Et1(a), t2(γ(a)), δ(a),

closure under substitution consists of a term

µE
∶ E(µs1, t1

), (µs2, t2
), ⟨γ,δ⟩,

parsed as µE
γ, e, δ, f ;

• families of paths witnessing the group laws for ι, ⊚ and (−)−1, i.e.,

⊚
α
∶ (e3 ⊚ e2)⊚ e1 = e3 ⊚ (e2 ⊚ e1),

⊚
λ
∶ ιA, s ⊚ e = e, ⊚

−l
∶ e−1
⊚ e = ιA, s,

⊚
ρ
∶ e⊚ ιA, s = e, ⊚

−r
∶ e⊚ e−1

= ιA, s,

whenever such expressions are well-typed;

• families of paths witnessing commutativity of the substitution with the group

operations, i.e.,

µ⊚ ∶ µE
(γ2○γ1), (e2⊚e1), (a↦δ2(a)○δ1(a)), (a↦ f2(a)⊚ f1(a))

= µE
γ2, e2, δ2, f2

⊚ µE
γ1, e1, δ1, f1

,

for arguments making the expression well-typed.

A speciad together with an E-family is called an E-speciad.

We will proceed to define two separate E-families for the magma speciad M,

both referring to a monoidal structure for the monoidal expressions that the terms

in the members of the family M are meant to represent.

Definition 6.11. Given A ∶ Set, a term s ∶M(A) provides an order ≤A∶ A → A → Prop

in A (where Prop is the subuniverse of (−1)-types; we will write a1 ≤A a2 whenever

the type ≤A(a1, a2) is inhabited), defined inductively on s:

232 6. DIRECTIONS FOR FURTHER RESEARCH

• for s ≡ u, the empty type 0 is ordered ex falso;

• for s ≡ v, the unit type 1 is trivially ordered (∗ ≤1 ∗);

• for s ≡ s1 ⊞ s2, with s1 ∶ M(A1), s2 ∶ M(A2), the coproduct type A1 + A2 can be

given an order by declaring:

– inl(a1) ≤A1+A2
inl(a′1) if a1 ≤A1

a′1, for any a1, a′1 ∶ A1;

– inr(a2) ≤A1+A2
inr(a′2) if a2 ≤A2

a′2, for any a2, a′2 ∶ A2;

– inl(a1) ≤A1+A2
inr(a2) for every a1 ∶ A1 and a2 ∶ A2.

It is easy to see that ≤A is a reflexive and transitive relation.

We define an E-family Ewk for the magma speciad by declaring, for every equiv-

alence γ ∶ A1 ≃ A2,

Ewk

s1, s2, γ ∶≡ Π (x, y ∶ A1) . (x ≤A1
y)→ (γ(x) ≤A2

γ(y));

that is, Ewk
s1, s2, γ is the type encoding that γ is order-preserving (“O.P.”). This definition

satisfies all the requirements of an E-family, once noticed: that the identity equiva-

lence is O.P.; that the composition of O.P. equivalences is O.P.; that the inverse of

an O.P. equivalence is O.P.; that an O.P. equivalence on the base type of a fibration

together with a pointwise O.P. equivalence on its fibers induce an O.P. equivalence

on the total space; that Ewk is a family of propositions. The resulting E-speciad will

be called a magma with a weak monoidal structure.

The E-family Ewk defined above serves the purpose of placing in the same equiv-

alence relation those equivalences between coproducts of instances of the empty

type and the unit type which do not “scramble” the instances of the unit type. For

example, relatively to the distinct equivalences id1+1 and τ ∶ 1+ 1 ≃ 1+ 1, we see that

the type Ewk

v⊞v, v⊞v, id1+1
is inhabited, while Ewk

v⊞v, v⊞v, τ is not (because τ is not O.P.).

Definition 6.12. We define an E-family Estr for the magma speciad as a higher in-

ductive family of types with the following constructors:

• all terms specified in Definition 6.10 are constructors;

• terms

eα
∶ Estr

(v⊞v)⊞v, v⊞(v⊞v)), α eλ
∶ Estr

u⊞v, v, λ eρ
∶ Estr

v⊞u, v, ρ

for α ∶ 1 + 1 + 1 ≃ 1 + (1 + 1), λ ∶ 0 + 1 ≃ 1 and ρ ∶ 1 + 0 ≃ 1 the “canonical”

equivalences, are constructors;

ALTERNATIVE FORMULATIONS OF COHERENCE STATEMENTS 233

• path constructors related to the coherence diagrams for a monoidal structure.

We leave the complete expressions unspecified here, as the substitution machin-

ery needed to make them type-check is rather involved, and this definition has

not been formalized on a proof assistant yet. The general idea is that two pairs

of equivalences,

hD

1 , hD

2 ∶ 1 + 1 + 1 + 1 ≃ 1 + (1 + (1 + 1)) and

h▽1 , h▽2 ∶ 1 + 0 + 1 ≃ 1 + 1,

can be obtained from α, λ, ρ (and substitution tricks); these mimic, in their

definitions, the different ways to travel around the coherence diagrams D and

▽ in a monoidal structure, and they are provably equal (i.e., there are paths

pD ∶ hD

1 = hD

2 and p▽ ∶ h▽1 = h▽2). Corresponding terms

eD1 ∶ E
str

((v⊞v)⊞v)⊞v, v⊞(v⊞(v⊞v)), hD
1

eD2 ∶ E
str

((v⊞v)⊞v)⊞v, v⊞(v⊞(v⊞v)), hD
2

e▽1 ∶ E
str

(v⊞u)⊞v, v⊞v, h▽
1

e▽2 ∶ E
str

(v⊞u)⊞v, v⊞v, h▽
2

can be built from the term constructors. The path constructors defining Estr are

then the pathovers

(pD)Estr

((v⊞v)⊞v)⊞v, v⊞(v⊞(v⊞v))

∗
(eD1) = eD2 and

(p▽)Estr

(v⊞u)⊞v, v⊞v

∗
(e▽1) = e▽2 .

In other words, Estr is the “E-family closure” of the minimal terms specifying as-

sociativity, unitality and coherence. The resulting E-speciad will be called a magma

with a strict monoidal structure.

Now that we defined a “weak” and a “strict” E-family for the magma speciad,

the natural goal is to compare them.

Statement 6.13 (Coherence for monoidal structures). The type families Ewk and Estr

in Definitions 6.11 and 6.12 are equivalent, i.e., for every A1, A2 ∶ Set, s1 ∶ M(A1), s2 ∶

M(A2) and γ ∶ A1 ≃ A2, there is an equivalence

Ewk

s1, s2, γ ≃ Estr

s1, s2, γ.

This corresponds roughly to the statement: “Every order-preserving equiva-

lence γ between coproducts of instances of the empty type and the unit type can

be expressed as a composition of coproducts of instances of the equivalences α, λ

234 6. DIRECTIONS FOR FURTHER RESEARCH

and ρ”, which indeed represents the combinatorial core of coherence for monoidal

categories. One notices immediately that, in order to prove Statement 6.13, it is

enough to show that Estr is a family of (−1)-types; this exposes a very clear paral-

lel to the statement of coherence for monoidal groupoids discussed in Chapter 3,

which entails showing that all identity types between terms in FMG(X) are (−1)-
types (equivalently, that FMG(X) is a 0-type).

Monoidal structures as interpreted in this framework concern only O.P. equiv-

alences, since associativity and unitality do not disturb the order of the data. For

symmetric monoidal structures, we allow the positions for data to trade places; this

motivates the following definition.

Definition 6.14. The E-family Es-wk for the magma speciad is defined to be the

constant family

Es-wk

s1, s2, γ ∶≡ 1

for every A1, A2 ∶ Set, s1 ∶ M(A1), s2 ∶ M(A2) and γ ∶ A1 ≃ A2. All conditions

required in the definition of an E-family are trivially met. The ensuing E-speciad is

dubbed magma with a symmetric weak monoidal structure.

Predictably, a corresponding strict structure can be defined, and a statement of

coherence for symmetric monoidal structures follows.

Definition 6.15. The E-family Es-str for the magma speciad is specified similarly to

Estr in Definition 6.12, accounting also for symmetries (that is, with the addition of a

constructor eτ ∶ Es-str
v⊞v, v⊞v, τ with τ ∶ 1+ 1 ≃ 1+ 1 the nontrivial equivalence, and path

constructors relative to the coherence diagrams). The resulting E-speciad is called

magma with a symmetric strict monoidal structure.

Statement 6.16 (Coherence for symmetric monoidal structures). The type families

Es-wk and Es-str in Definitions 6.14 and 6.15 are equivalent, i.e., for every A1, A2 ∶ Set,

s1 ∶M(A1), s2 ∶M(A2) and γ ∶ A1 ≃ A2, there is an equivalence

Es-wk

s1, s2, γ ≃ Es-str

s1, s2, γ.

In other words, the claim above states: “Every equivalence γ between coprod-

ucts of instances of the empty type and the unit type can be expressed as a compo-

sition of coproducts of instances of the equivalences α, λ, ρ and τ”, i.e., these four

“generate” all equivalences.

The coherence theorems in Statements 6.13 and 6.16 were not proved, and their

formalization remains, at the present time, at a very preliminary stage. We spec-

ulate that the complexity of their proofs will match that of the proofs presented

OTHER MONOIDAL STRUCTURES 235

in the previous chapters, with the added burden of having to work, already from

the very definition of a speciad, with paths over paths obtained via univalence.

While acknowledging that this approach to coherence needs further research, we

are also aware that similar problems of establishing a type-theoretic language to ad-

dress monoidal structures and coherence have been investigated by other research

groups [see e.g. Fio+08; FS19; Sav20].

6.2 Other Monoidal Structures

Braided Monoidal Groupoids

Another flavour of monoidality often considered for a product in a category is

braided monoidality. A braided monoidal structure on a category is a weaker vari-

ant of a symmetric monoidal structure, where the symmetry natural isomorphism

is not the inverse of itself. In the language of this thesis, a braided monoidal struc-

ture on a type M consists of a unit term eM ∶ M, a function ⊗M ∶ M → M → M,

families of paths αM, λM, ρM and τM and of 2-paths DM, ▽M and 7M as in Defini-

tion 4.1, and an ulterior coherence diagram 7
′

M shown in Fig. 4.4c (note that M is

not present in the definition, nor it can be derived).

Results parallel to those presented for symmetric monoidal groupoids in Chap-

ter 4 and, partially, Chapter 5 also hold for braided monoidal groupoids:

• for X ∶ U , we can define a HIT FBMG(X), with constructors given by the defini-

tion of a braided monoidal structure; the ensuing construction FBMG ∶ U → U is

free;

• the type FBMG(X) is equivalent to a HIT blist(X) of “braided lists”, via braided

monoidal functors. the constructors of blist(X) are the same as those of slist(X),
save for double; these stem from the following presentation of the braid groups

Bn on n strands: the groups B0 and B1 are trivial, while

Bn+2 ∶=
(a1, . . . , an+1)

ai+1aiai+1 = aiai+1ai, aiaj = ajai for ∣i − j∣ ≥ 2

(cf. (4.10) for the presentation of symmetric groups, which has the additional

relations a2
i = 1). This proof of normalisation – i.e., a (braided monoidal) equiv-

alence FBMG(X) ≃ blist(X) – follows closely the one given in Chapter 4 for

symmetric monoidal expressions;

236 6. DIRECTIONS FOR FURTHER RESEARCH

• similarly, an indexed family bdel ∶N → U of HITs encoding the deloopings of the

braid groups can be defined and its total space bdel● can be proved equivalent

to blist(1).
Given that the constructions FBMG(X), blist(X) and bdel● and the relevant proofs

mentioned above would go along the lines of those in Chapter 4 and Chapter 5 for

symmetric monoidal groupoids, a more detailed dissertation would be redundant.

We did not find an easy description in HoTT of the classifying spaces BBn of the

braid groups. Referring to the content of Section 6.1, we do not know of a definition

of an E-family Eb-wk to describe a magma with a braided weak monoidal structure

either, revealing that the complexity of braided structures is harder to formulate

than that of symmetric structures.

Distributive Monoidal Groupoids

A distributive (also bimonoidal or rig) structure on a category consists of two symmet-

ric monoidal structures interacting with each other, akin to the two operations in a

semiring. In the language of this thesis, a bimonoidal structure on a type M is given

by:

• a unit term eM ∶ M and a null term vM ∶ M;

• functions ⊗M and ⊕M ∶ M → M → M (respectively, monoidal product and mo-

noidal coproduct);

• families of paths witnessing associativity, unitality (with respect to eM and vM

respectively) and symmetry of the monoidal product and coproduct;

• families of paths

κlM ∶ Π (b ∶ M) . vM ⊗M b = vM,

κrM ∶ Π (a ∶ M) . a⊗M vM = vM,

witnessing absorption, and families of paths

δlM ∶ Π (a, b, c ∶ M) . (a⊕M b)⊗M c = (a⊗M c)⊕ (b⊗M c),
δrM ∶ Π (a, b, c ∶ M) . a⊗M (b⊕M c) = (a⊗M b)⊕ (a⊗M c),

witnessing distributivity of the monoidal product over the monoidal coproduct;

• a large number of families of 2-paths (coherence diagrams), which are described

in detail in [Lap72].

DIRECTIONS FOR FURTHER RESEARCH OTHER MONOIDAL STRUCTURES 237

Once defined a HIT of free distributive monoidal expressions, a possible HIT of

normal forms could be based on slist(slist(X)), with additional higher constructors.

A term in such a type is an unordered list of unordered lists, such as

(x ∶ ∶ y ∶ ∶ z ∶ ∶ nil) ∶ ∶ (x ∶ ∶ y ∶ ∶ nil) ∶ ∶ nil,
which ought to be the normal form, for instance, of

(ι(x)⊗ (ι(y)⊗ ι(z))) ⊕ (ι(x)⊗ ι(y)),
i.e., a list of lists represents a coproduct of products. The null term in slist(slist(X))
is the empty list nil, while the unit term is the list nil ∶ ∶ nil containing the empty list.

Then the already defined operation ++ (appending symmetric lists, at the exterior

level) is the monoidal coproduct, while a monoidal product × ∶ slist(slist(X)) →
slist(slist(X))→ slist(slist(X)) needs to be defined as a new operation. Leaving aside

all details on higher constructors, in order to match with the distributivity of ⊗ over

⊕, such a function should compute, for every L1, L2 ∶ slist(slist(X)) and l ∶ slist(X):
L1 × nil ≡ nil, L1 × (l ∶ ∶ L2) ≡ (L1 ⋉ l)++(L1 × L2),

where the auxiliary function ⋉ ∶ slist(slist(X)) → slist(X) → slist(slist(X)), also de-

fined by induction on the first argument, should compute, on 0-constructors:

nil⋉ l ≡ nil, (l′ ∶ ∶ L)⋉ l ≡ (l′ ++ l) ∶ ∶ (L ⋉ l).
Contrary to braided monoidal structures, normalisation of distributive monoidal

expressions seems to be fundamentally different from normalisation of symmetric

monoidal expressions, as the distributivity δl and δr involve duplication of terms,

and the diagonal function

∆ ∶≡ (a ↦ ⟨a, a⟩) ∶ M → (M ×M)
is not invertible. Further studies are then needed to formulate and formalize nor-

malisation of such expressions in HoTT. As for the type of “unordered, distributive

vectors” on a (0-)type X, the obvious guess is to “iterate” the construction based on

BS●:

Σ (A ∶ U) . ((Σ (n ∶N) . ∥A ≃ [n]∥)×
(Σ (B ∶ A → U) . (Π (a ∶ A) . Σ (m ∶N) . ∥B(a) ≃ [m]∥)×

Σ (a ∶ A) . B(a)→ X)) ,

i.e., these are functions Σ (a ∶ A) . B(a) → X for a finite type A and a family of finite

types B ∶ A → U .

Appendix A

Formalization in Coq

The computer verification has been written using the HoTT library for the proof

assistant Coq [Hoq].1 We include here only a few selected fragments; the full for-

malization is accessible online.2

The structure of the files in the formalization is displayed in Fig. A.1; a descrip-

tion of their content is shown in Table A.2.

hott_lemmas.v

monoidalgroupoid.v

smonoidalgroupoid.v

combinatorics.v

FMG.v

lists.v

FSMG.v

slists.v

deloop.v

BS.v

FMG_free.v

FMG_coherence.v

FSMG_free.v

FSMG_coherence.v

equiv_slist_deloop.v

deloop_to_BS.v

equiv_deloop_to_BS.v

Figure A.1: Structure of the files in the Coq formalization (the dependency relation is to be

read left-to-right).

1The formalization runs on commit 68774877142adbd435ea5013c5f201f3ec6ff66a (February 14th,

2020) of the HoTT library.
2https://github.com/spiceghello/FSMG

239

https://github.com/spiceghello/FSMG

240 A. FORMALIZATION IN COQ

File Content Chapter

hott_lemmas.v Path algebra; function extensionality algebra. 2

monoidalgroupoid.v Monoidal structures, groupoids and functors; derived coher-

ence diagrams in a monoidal groupoid.

3 (A.1)

lists.v Lists over 0-types are 0-types; a monoidal structure on list(X).

FMG.v Definition of the HIT construction FMG.

FMG_free.v Freeness of FMG.

FMG_coherence.v A monoidal equivalence FMG(X) ≃ list(X); notes on the nor-

malizing functor in [BD96; Bey97].

smonoidalgroupoid.v Symmetric monoidal structures, groupoids and functors; de-

rived coherence diagrams in a symmetric monoidal groupoid.

4 (A.2)

slists.v Definition of the HIT construction slist and its symmetric mo-

noidal structure.

FSMG.v Definition of the HIT construction FSMG.

FSMG_free.v Freeness of FSMG.

FSMG_coherence.v A symmetric monoidal equivalence FSMG(X) ≃ slist(X).

BS.v Finite types BS● and their symmetric monoidal structure.

5 (A.3)

deloop.v Definition of the HIT construction del(−) and a symmetric mo-

noidal structure on del●.†

equiv_slist_deloop.v A symmetric monoidal equivalence slist(1) ≃ del●.

combinatorics.v Definitions of add, incr, e∣A
, ω and relevant lemmata.

deloop_to_BS.v Definition of the family of functions f ∶ Π (n ∶N) .deln → BSn;

sketch of the proof that f● is a symmetric monoidal functor.

equiv_deloop_to_BS.v Proof that fn is an equivalence for every n ∶ N, under the un-

formalized assumption described in the thesis.

Table A.2: Description of the files in the Coq formalization, referring to the chapter in which

the content appears in this thesis and to the section of this appendix where it is presented.
† The symmetric monoidal structure on del● is short of the coherence diagrams 7 and , which can

however be deduced since all its coherence diagrams are proved similarly to the ones of slist(X).

COHERENCE FOR MONOIDAL GROUPOIDS 241

A.1 Coherence for Monoidal Groupoids

For the definitions of monoidal groupoids, monoidal functors, monoidal natural

isomorphisms and free functors, we use classes instead of Σ-types for easy access

to their components and for type coercions. Below is the implementation of Defini-

tion 3.11.

Section MonoidalStructure.

Context {X : Type} (e : X) (m : X -> X -> X).

Definition IsAssociative : Type

:= forall a b c : X, m (m a b) c = m a (m b c).

Definition IsLeftUnital : Type

:= forall b : X, m e b = b.

Definition IsRightUnital : Type

:= forall a : X, m a e = a.

Definition IsPentagonCoherent (alpha : IsAssociative) : Type

:= forall a b c d : X,

alpha (m a b) c d @ alpha a b (m c d)

= ap011 m (alpha a b c) (idpath d) @ alpha a (m b c) d

@ ap011 m (idpath a) (alpha b c d).

Definition IsTriangleCoherent (alpha : IsAssociative) (lambda : IsLeftUnital)

(rho : IsRightUnital) : Type

:= forall a b : X,

alpha a e b @ ap011 m (idpath a) (lambda b)

= ap011 m (rho a) (idpath b).

End MonoidalStructure.

Class MonoidalGroupoid := {

mgcarrier : Type;

mgtrunc : IsTrunc 1 mgcarrier;

mg_e : mgcarrier;

mg_m : mgcarrier -> mgcarrier -> mgcarrier;

mg_alpha : IsAssociative mg_m;

mg_lambda : IsLeftUnital mg_e mg_m;

mg_rho : IsRightUnital mg_e mg_m;

mg_pentagon : IsPentagonCoherent mg_m mg_alpha;

mg_triangle : IsTriangleCoherent mg_e mg_m mg_alpha mg_lambda mg_rho

}.

We can use the same name for a monoidal groupoid and its underlying type:

Coercion mgcarrier : MonoidalGroupoid >-> Sortclass.

We give a short name to the function [−⊗M −] (notation as in Remark 2.65), using

ap011 from the library:

242 A. FORMALIZATION IN COQ

Definition mg_mm {M : MonoidalGroupoid} {a b a' b'} (pa : a = a') (pb : b = b')

: mg_m a b = mg_m a' b'

:= ap011 mg_m pa pb.

Naturality of αM, λM and ρM (Lemma 3.15) follows by path induction; for ex-

ample:

Definition alpha_natural {a b c a' b' c'}

(pa : a = a') (pb : b = b') (pc : c = c')

: mg_alpha a b c @ mg_mm pa (mg_mm pb pc)

= mg_mm (mg_mm pa pb) pc @ mg_alpha a' b' c'.

Proof.

induction pa, pb, pc.

exact (concat_p1 _ @ (concat_1p _)^).

Defined.

proves naturality of αM. The first line of the proof performs induction on the three

paths; since refl⊗ refl ≡ refl, it is enough to show that

αM(a, b, c) ⋅ refla⊗(b⊗c) = refl(a⊗b)⊗c ⋅ αM(a, b, c),
which is done on the second line of the proof, using library-defined terms for uni-

tality of concatenation of paths (Definition 2.48).

Much of the path algebra required to construct 2-paths in the thesis is invisible

in the figures, in which we treat, for instance, concatenation of paths as if it were

judgmentally associative and unital (see Remark 3.8, Remark 2.51). In the formal-

ization, of course, a different (and harder) kind of work is required. As an example,

we present the construction of the derived coherence diagram in Fig. 3.4a. The num-

bers on the left refer to the 2-paths in Fig. 3.9a.

Definition alpha_lambda (a b : M)

: mg_alpha mg_e a b @ mg_lambda (mg_m a b) = mg_mm (mg_lambda a) (idpath b).

Proof.

1 apply (cancelL (mg_lambda _) _ _); refine (concat_p_pp _ _ _ @ _);

refine (whiskerR (lambda_natural (mg_alpha mg_e a b)) _

@ concat_pp_p _ _ _ @ _).

2 refine (whiskerL _ (lambda_natural (mg_lambda (mg_m a b)))

@ concat_p_pp _ _ _ @ _).

3 refine (_ @ (lambda_natural (mg_mm (mg_lambda a) (idpath b)))^);

apply whiskerR.

4 apply (cancelL (mg_alpha _ _ _) _ _); refine (concat_p_pp _ _ _ @ _);

refine (_ @ (alpha_natural (idpath mg_e) (mg_lambda a) (idpath b))^);

refine (concat_pp_p _ _ _ @ _).

8 apply (cancelL (mg_mm (mg_alpha _ _ _) idpath) _ _);

refine (concat_p_pp _ _ _ @ concat_p_pp _ _ _ @ _ @ concat_pp_p _ _ _);

refine (whiskerR (mg_pentagon mg_e mg_e a b)^ _ @ concat_pp_p _ _ _ @ _).

7 refine (whiskerL _ (mg_triangle mg_e (mg_m a b)) @ _).

6 refine (alpha_natural (mg_rho mg_e) idpath idpath @ _); apply whiskerR.

COHERENCE FOR MONOIDAL GROUPOIDS 243

5 refine (_ @ (ap011_pqpq mg_m (mg_alpha mg_e mg_e a)

(mg_mm idpath (mg_lambda a)) idpath idpath)^);

exact (mg_mmm (mg_triangle _ _)^ idpath).

Defined.

The term mg_mmm is [[−⊗−]], while ap011_pqpq is the interchange law in (2.64).

Monoidal functors and monoidal natural isomorphisms (described in Defini-

tions 3.17 and 3.18) are implemented as follows.

Class MonoidalFunctor (A B : MonoidalGroupoid) := {

mg_f : A -> B;

mg_f0 : mg_e = mg_f mg_e;

mg_f2 : forall a b : A, mg_m (mg_f a) (mg_f b) = mg_f (mg_m a b);

mg_dalpha : forall a b c : A,

mg_alpha (mg_f a) (mg_f b) (mg_f c) @ (mg_mm idpath (mg_f2 b c) @ mg_f2 a (mg_m b c))

= (mg_mm (mg_f2 a b) idpath @ mg_f2 (mg_m a b) c) @ ap mg_f (mg_alpha a b c);

mg_dlambda : forall b : A,

mg_lambda (mg_f b) = mg_mm mg_f0 idpath @ mg_f2 mg_e b @ ap mg_f (mg_lambda b);

mg_drho : forall a : A,

mg_rho (mg_f a) = mg_mm idpath mg_f0 @ mg_f2 a mg_e @ ap mg_f (mg_rho a)

}.

Coercion mg_f : MonoidalFunctor >-> Funclass.

Class MonoidalNatIso {A B} (F G : MonoidalFunctor A B) := {

mg_nt : F == G;

mg_nt0 : @mg_f0 _ _ F @ mg_nt mg_e = @mg_f0 _ _ G;

mg_nt2 : forall a b : A,

@mg_f2 _ _ F a b @ mg_nt (mg_m a b)

= ap011 mg_m (mg_nt a) (mg_nt b) @ @mg_f2 _ _ G a b

}.

Finally, functors and free functors are also given as classes. In the following

excerpt we show the implementation of Definition 3.23 and Definition 3.24; the

terms MonoidalFunctor_id and MonoidalFunctor_comp are, respectively, the identity

monoidal functor and the composition of monoidal functors, whose construction

we omit.

Class IsFunctor (F : forall X : Type, IsHSet X -> MonoidalGroupoid) := {

F_arr : forall (X Y : Type) (T_X : IsHSet X) (T_Y : IsHSet Y) (f : X -> Y),

MonoidalFunctor (F X T_X) (F Y T_Y);

F_id : forall (X : Type) (T_X : IsHSet X),

MonoidalNatIso (F_arr X X T_X T_X (fun x => x)) (MonoidalFunctor_id (F X T_X));

F_comp : forall (X Y Z : Type) (T_X : IsHSet X) (T_Y : IsHSet Y) (T_Z : IsHSet Z)

(g : Y -> Z) (f : X -> Y),

MonoidalNatIso

(MonoidalFunctor_comp (F_arr Y Z T_Y T_Z g) (F_arr X Y T_X T_Y f))

(F_arr X Z T_X T_Z (g o f))

}.

Class IsFreeFunctor (F : forall X : Type, IsHSet X -> MonoidalGroupoid) := {

free_functor : IsFunctor F;

244 A. FORMALIZATION IN COQ

Phi : forall (X : Type) (T_X : IsHSet X)

(M : MonoidalGroupoid) (G : MonoidalFunctor (F X T_X) M),

X -> @mgcarrier M;

Phi_nat_M : forall (X : Type) (T_X : IsHSet X)

(M : MonoidalGroupoid) (G : MonoidalFunctor (F X T_X) M)

(N : MonoidalGroupoid) (H : MonoidalFunctor M N),

H o Phi X T_X M G == Phi X T_X N (MonoidalFunctor_comp H G);

Psi : forall (X : Type) (T_X : IsHSet X)

(M : MonoidalGroupoid) (g : X -> @mgcarrier M),

MonoidalFunctor (F X T_X) M;

Psi_nat_X : forall (X : Type) (T_X : IsHSet X)

(M : MonoidalGroupoid) (g : X -> @mgcarrier M)

(Y : Type) (T_Y : IsHSet Y) (h : Y -> X),

MonoidalNatIso

(MonoidalFunctor_comp

(Psi X T_X M g)

(@F_arr F free_functor Y X T_Y T_X h))

(Psi Y T_Y M (g o h));

Theta : forall (X : Type) (T_X : IsHSet X) (M : MonoidalGroupoid),

Phi X T_X M o Psi X T_X M == idmap;

Chi : forall (X : Type) (T_X : IsHSet X)

(M : MonoidalGroupoid) (G : MonoidalFunctor (F X T_X) M),

MonoidalNatIso (Psi X T_X M (Phi X T_X M G)) G

}.

We now turn our attention to the monoidal groupoids we discussed in the the-

sis. The construction of lists is already available from the HoTT library; our formal-

ization of the encode-decode proof that list(X) is a 0-type (IsHSet_list) for every

0-type X closely follows the one provided in Lemma 3.27, and we will not include

it in this appendix.

The definition of the components of the monoidal structure of types of lists is

also straightforward; here we display the definition of the monoidal groupoid with

carrier list(X) in (3.35), in order to show the names we give to such components.

Definition listMG (X : Type) {T : IsHSet X} : MonoidalGroupoid

:= Build_MonoidalGroupoid (list X) (@trunc_succ 0 _ (IsHSet_list X))

nil app alpha_list lambda_list rho_list pentagon_list triangle_list.

Above, the monoidal product app is the operation of list append ++ ∶ list(X) →
list(X) → list(X) in Definition 2.32, which is defined inductively on the first argu-

ment.

Fixpoint app {X : Type} (l : list X)

: list X -> list X

:= fun k => match l with

| nil => k

| cons x l' => cons x (app l' k) end.

COHERENCE FOR MONOIDAL GROUPOIDS 245

Given a type X, the the higher inductive type FMG(X) of free monoidal expres-

sions (Definition 3.37) is implemented by specifying, in a private environment, its

0-constructors (on which Coq can perform pattern matching) and, separately, the

higher constructors and the elimination principle of the HIT as axioms. This way

of defining HITs follows the well-established scheme adopted in the HoTT library,

which is due to Licata [Lic11].

Private Inductive FMG (X : Type) : Type :=

| e : FMG X

| iota : X -> FMG X

| m : FMG X -> FMG X -> FMG X.

Global Arguments e {X}.

Global Arguments iota {X} _.

Global Arguments m {X} _ _.

Context (X : Type).

Definition mm {x x' y y' : FMG X}

(p : x = x') (q : y = y')

: m x y = m x' y'

:= ap011 m p q.

Axiom alpha : @IsAssociative (FMG X) m.

Axiom lambda : @IsLeftUnital (FMG X) e m.

Axiom rho : @IsRightUnital (FMG X) e m.

Axiom pentagon : IsPentagonCoherent m alpha.

Axiom triangle : IsTriangleCoherent e m alpha lambda rho.

Axiom T_FMG : IsTrunc 1 (FMG X).

The elimination principle indFMG requires some attention. The type FMG(X) is ap-

recursive; given a family P ∶ FMG(X) → U , the requirement corresponding to ⊗ in

the definition of indFMG ∶ Π (x ∶ FMG(X)) . P(x) is

⊗
′
∶ Π (a, b ∶ FMG(X)) . P(a)→ P(b)→ P(a⊗ b),

producing a term in the fiber of the product of two terms, given terms in the respec-

tive fibers. In order to define the requirements corresponding to D and ▽, we need

instances of the dependent application of (−⊗′ −), i.e., a term

[−⊗′ −]d ∶ Π (a1, a2, b1, b2 ∶ FMG(X)) .

Π (a′1 ∶ P(a1), a′2 ∶ P(a2), b′1 ∶ P(b1), b′2 ∶ P(b2)) .

Π (p ∶ a1 = a2, q ∶ b1 = b2) .

Π (p′ ∶ pP
∗(a′1) =P(a2) a′2, q′ ∶ qP

∗(b′1) =P(b2) b′2) .

(p⊗ q)P
∗
(a′1 ⊗′ b′1) =P(a2⊗b2) a′2 ⊗ b′2,

which can be obtained by induction on the paths p, q, p′ and q′. In the excerpt below,

this term appears as mm'.

246 A. FORMALIZATION IN COQ

Context

(P : FMG X -> Type)

(e' : P e)

(iota' : forall x : X, P (iota x))

(m' : forall (a b : FMG X), P a -> P b -> P (m a b)).

Global Arguments m' {a} {b} _ _.

Definition mm'

{a1 a2 b1 b2 : FMG X} {p : a1 = a2} {q : b1 = b2}

{a1' : P a1} {a2' : P a2} {b1' : P b1} {b2' : P b2}

(p' : transport P p a1' = a2') (q' : transport P q b1' = b2')

: transport P (mm p q) (m' a1' b1') = m' a2' b2'.

Proof.

induction p, q, p', q'; constructor.

Defined.

Fixpoint FMG_ind

(alpha' : forall (a b c : FMG X) (a' : P a) (b' : P b) (c' : P c),

transport P (alpha a b c) (m' (m' a' b') c') = m' a' (m' b' c'))

(lambda' : forall (b : FMG X) (b' : P b),

transport P (lambda b) (m' e' b') = b')

(rho' : forall (a : FMG X) (a' : P a),

transport P (rho a) (m' a' e') = a')

(pentagon' : forall (a b c d : FMG X) (a' : P a) (b' : P b) (c' : P c) (d' : P d),

concat_D

(alpha' _ _ _ (m' a' b') c' d')

(alpha' _ _ _ a' b' (m' c' d'))

= ap (fun z => transport P z (m' (m' (m' a' b') c') d')) (pentagon a b c d)

@ concat_D

(concat_D

(mm' (alpha' _ _ _ a' b' c') (transport_1 P d'))

(alpha' _ _ _ a' (m' b' c') d'))

(mm' (transport_1 P a') (alpha' _ _ _ b' c' d')))

(triangle' : forall (a b : FMG X) (a' : P a) (b' : P b),

concat_D

(alpha' _ _ _ a' e' b')

(mm' (transport_1 P a') (lambda' _ b'))

= ap (fun z => transport P z (m' (m' a' e') b')) (triangle a b)

@ mm' (rho' _ a') (transport_1 P b'))

(T' : forall (w : FMG X), IsTrunc 1 (P w))

(w : FMG X) : P w

:= match w with

| e => e'

| iota x => iota' x

| m a b =>

m'

(FMG_ind alpha' lambda' rho' pentagon' triangle' T' a)

(FMG_ind alpha' lambda' rho' pentagon' triangle' T' b) end.

Above, concat_D is (− ⋅d −) (from Definition 2.60(vii)), while transport_1 proves

reflP
∗(u) = u (the identity holds judgmentally).

We see that FMG_ind computes on terms of the form e, ι(x) and a⊗ b, while for α,

λ and ρ we need axioms along the lines of:

Axiom FMG_ind_beta_lambda

COHERENCE FOR MONOIDAL GROUPOIDS 247

: forall (b : FMG X),

apD (FMG_ind P e' iota' m' alpha' lambda' rho' pentagon' triangle' T')

(lambda b)

= lambda' b (FMG_ind b).

The computation rules relative to D and△were not formalized, since we never use

them (as mentioned in Remark 2.134).

The non-dependent version recFMG of the elimination principle can be derived

from indFMG. We omit the construction here, as it only consists of tedious path al-

gebra. Other specific (derived) versions of the elimination principle were also for-

malized, applying to cases when we eliminate into (families of) 0- or (−1)-types or,

even more specifically, to families of paths in 1- or 0-types.

FMG(X) is a monoidal groupoid:

Definition FMG_MG (X : Type) {T_X : IsHSet X} : MonoidalGroupoid

:= Build_MonoidalGroupoid (FMG X) T_FMG e m alpha lambda rho pentagon triangle.

Functoriality of FMG and the proof of freeness are described in detail in Chap-

ter 3. Here we only include the function underlying the monoidal functor obtained

by functoriality from a function between types (Lemma 3.38):

Definition FMG_functor_fun {X Y : Type} {T_X : IsHSet X} {T_Y : IsHSet Y}

(h : X -> Y)

: FMG X -> FMG Y

:= FMG_rec X (FMG Y) e (iota o h) m alpha lambda rho pentagon triangle T_FMG.

where FMG_rec is recFMG and e, iota, ... are the constructors of FMG(Y).
The definitions of the monoidal functors K and J and of the monoidal natural

isomorphism η follow the ones given in Chapter 3; we present here the underlying

functions of K and J (respectively, Definition 3.49 and Definition 3.50).

Definition K_fun

: FMG X -> list X

:= FMG_rec X (list X) nil (fun x => cons x nil) app alpha_list lambda_list rho_list

pentagon_list triangle_list (@trunc_succ 0 (list X) (IsHSet_list X)).

Fixpoint J_fun (l : list X)

: FMG X

:= match l with

| nil => e

| x :: l => m (iota x) (J_fun l) end.

The proof of coherence (Theorem 3.26) uses path algebra, the underlying homo-

topy in η and the proof that the type of lists over a 0-type is a 0-type.

248 A. FORMALIZATION IN COQ

Theorem FMG_coherence

: forall {a b : FMG X} (p q : a = b), p = q.

Proof.

intros.

refine ((moveR_pV _ _ _ (concat_pA1 eta_homotopy p))^ @ _

@ moveR_pV _ _ _ (concat_pA1 eta_homotopy q)).

apply whiskerR; apply whiskerL.

refine (ap_compose K J p @ _ @ (ap_compose K J q)^).

apply ap.

srapply @set_list.

Defined.

Corollary IsHSet_FMG

: IsHSet (FMG X).

Proof.

srapply hset_axiomK.

exact (fun x p => FMG_coherence p idpath).

Defined.

A.2 Coherence for Symmetric Monoidal Groupoids

The formalization of symmetric monoidal groupoid follows closely the one of mo-

noidal groupoids. In particular, we define new classes for symmetric monoidal

groupoids, functors and natural isomorphisms; these could in principle be built

upon the definition given in Appendix A.1, by stating that a symmetric monoidal

groupoid is a monoidal groupoid with additional data. However, we encountered

some issues as Coq failed to recognize the components of the newly defined class

properly. For this reason, we decided to define specific classes anew, even though

it resulted in code duplication.

The code relevant to Definition 4.1 is as follows:

Definition IsSymmetric : Type

:= forall a b : X, m a b = m b a.

Definition IsHexagonCoherent (alpha : IsAssociative) (tau : IsSymmetric) : Type

:= forall a b c : X,

alpha a b c @ tau a (m b c) @ alpha b c a

= ap011 m (tau a b) (idpath c) @ alpha b a c @ ap011 m (idpath b) (tau a c).

Definition IsBigonCoherent (tau : IsSymmetric) : Type

:= forall a b : X,

tau a b @ tau b a = idpath (m a b).

Class SymMonoidalGroupoid := {

smgcarrier : Type;

smgtrunc : IsTrunc 1 smgcarrier;

smg_e : smgcarrier;

smg_m : smgcarrier -> smgcarrier -> smgcarrier;

COHERENCE FOR SYMMETRIC MONOIDAL GROUPOIDS 249

smg_alpha : IsAssociative smg_m;

smg_lambda : IsLeftUnital smg_e smg_m;

smg_rho : IsRightUnital smg_e smg_m;

smg_tau : IsSymmetric smg_m;

smg_pentagon : IsPentagonCoherent smg_m smg_alpha;

smg_triangle : IsTriangleCoherent smg_e smg_m smg_alpha smg_lambda smg_rho;

smg_hexagon : IsHexagonCoherent smg_m smg_alpha smg_tau;

smg_bigon : IsBigonCoherent smg_m smg_tau

}.

The HIT of symmetric lists (Definition 4.11) is implemented as below:

Private Inductive slist (X : Type) : Type :=

| nil : slist X

| cons : X -> slist X -> slist X.

Global Arguments nil {X}.

Global Arguments cons {X} _ _.

End slist_private.

Declare Scope slist_scope.

Infix "::" := cons (at level 60, right associativity) : slist_scope.

Open Scope slist_scope.

Section slist.

Context {X : Type}.

Axiom swap

: forall (x y : X) (l : slist X),

x :: y :: l = y :: x :: l.

Axiom double

: forall (x y : X) (l : slist X),

swap x y l @ swap y x l = idpath.

Axiom triple

: forall (x y z : X) (l : slist X),

swap x y (cons z l) @ ap (cons y) (swap x z l) @ swap y z (cons x l)

= ap (cons x) (swap y z l) @ swap x z (cons y l) @ ap (cons z) (swap x y l).

Axiom T_slist

: IsTrunc 1 (slist X).

Section slist_ind.

Definition swap'_ind_type

(P : slist X -> Type)

(cons' : forall (x : X) (l : slist X) (IHl : P l), P (x :: l))

: Type

:= forall (x y : X) (l : slist X) (IHl : P l),

transport P (swap x y l) (cons' x _ (cons' y _ IHl)) = cons' y _ (cons' x _ IHl).

Definition double'_ind_type

(P : slist X -> Type)

(cons' : forall (x : X) (l : slist X) (IHl : P l), P (x :: l))

(swap' : swap'_ind_type P cons')

: Type

250 A. FORMALIZATION IN COQ

:= forall (x y : X) (l : slist X) (IHl : P l),

concat_D (swap' x y l IHl) (swap' y x l IHl)

= ap (fun z => transport P z (cons' x _ (cons' y _ IHl))) (double x y l).

Definition triple'_ind_type

(P : slist X -> Type)

(cons' : forall (x : X) (l : slist X) (IHl : P l), P (x :: l))

(swap' : swap'_ind_type P cons')

: Type

:= forall (x y z : X) (l : slist X) (IHl : P l),

concat_D

(concat_D

(swap' x y _ (cons' z _ IHl))

(transport_ap P (cons y) (cons' y) _ (swap' x z _ IHl)))

(swap' y z _ (cons' x _ IHl))

= ap

(fun w => transport P w (cons' x _ (cons' y _ (cons' z _ IHl))))

(triple x y z l)

@ concat_D

(concat_D

(transport_ap P (cons x) (cons' x) _ (swap' y z _ IHl))

(swap' x z _ (cons' y _ IHl)))

(transport_ap P (cons z) (cons' z) _ (swap' x y _ IHl)).

Fixpoint slist_ind

(P : slist X -> Type)

(nil' : P nil)

(cons' : forall (x : X) (l : slist X) (IHl : P l), P (x :: l))

(swap' : swap'_ind_type P cons')

(double' : double'_ind_type P cons' swap')

(triple' : triple'_ind_type P cons' swap')

(T_slist' : forall (l : slist X), IsTrunc 1 (P l))

(l : slist X)

: P l

:= match l with

| nil => nil'

| x :: k => cons' x k (slist_ind P nil' cons' swap' double' triple' T_slist' k)

end.

Axiom slist_ind_beta_swap

: forall (P : slist X -> Type)

(nil' : P nil)

(cons' : forall (x : X) (l : slist X) (IHl : P l), P (x :: l))

(swap' : swap'_ind_type P cons')

(double' : double'_ind_type P cons' swap')

(triple' : triple'_ind_type P cons' swap')

(T_slist' : forall (l : slist X), IsTrunc 1 (P l))

(x y : X) (l : slist X),

apD (slist_ind P nil' cons' swap' double' triple' T_slist') (swap x y l)

= swap' x y _ (slist_ind P nil' cons' swap' double' triple' T_slist' l).

End slist_ind.

The non-dependent version slist_rec of the elimination principle is derived.

The definition of symmetric list append (++ ∶ slist(X) → slist(X) → slist(X) in

Definition 4.13) by means of the elimination principle of slist(X) requires function

extensionality: indeed, it behaves like list append on 0-constructors, but in order

COHERENCE FOR SYMMETRIC MONOIDAL GROUPOIDS 251

to verify that the definition respects the 1-constructor swap we need to provide

an identity between functions. Below, path_forall is fxt, while path_forall_1 and

path_forall_pp correspond to the laws in Lemma 2.117.

Context `{Funext}.

Context {X : Type}.

Lemma sapp_cons

: X -> (slist X -> slist X) -> slist X -> slist X.

Proof.

intros x f. exact (cons x o f).

Defined.

Lemma sapp_swap

: swap'_rec_type (slist X -> slist X) sapp_cons.

Proof.

unfold_slist_types.

intros x y f. unfold sapp_cons.

exact (path_forall _ _ (fun l => swap x y (f l))).

Defined.

Lemma sapp_double

: double'_rec_type (slist X -> slist X) sapp_cons sapp_swap.

Proof.

unfold_slist_types.

intros x y f.

unfold sapp_swap.

refine ((path_forall_pp _ _ _ (fun l => swap x y (f l)) (fun l => swap y x (f l)))^

@ _).

refine (_ @ path_forall_1 (fun l : slist X => x :: y :: f l)).

apply ap. srapply @path_forall; intro l.

apply double.

Qed.

Lemma sapp_triple

: triple'_rec_type (slist X -> slist X) sapp_cons sapp_swap.

Proof.

unfold_slist_types.

intros x y z f.

rewrite (ap_pf_2 (swap x z)), (ap_pf_2 (swap y z)), (ap_pf_2 (swap x y)).

unfold sapp_swap, sapp_cons.

rewrite <- path_forall_pp, <- path_forall_pp, <- path_forall_pp, <- path_forall_pp.

apply ap. apply path_forall; intro l.

apply triple.

Qed.

Definition sapp_trunc

: IsTrunc 1 (slist X -> slist X).

Proof.

exact (@trunc_forall H (slist X) (fun _ => slist X) 1 (fun _ => T_slist)).

Defined.

Definition sapp

: slist X -> slist X -> slist X

:= slist_rec _ idmap sapp_cons sapp_swap sapp_double sapp_triple sapp_trunc.

The definition of the HIT FSMG(X) and the proof of freeness of the construction

252 A. FORMALIZATION IN COQ

follow the ones given for FMG(X). The construction of a symmetric monoidal struc-

ture on list(X) and the proof of coherence for symmetric monoidal groupoid entail

a number of application of the elimination principles of higher inductive types and

are omitted here, for they are described in detail in Chapter 4.

A.3 Finite Types and Symmetric Monoidal Structures

The subuniverse BSn of finite types of cardinality n (Definition 5.3) is implemented

as a Σ-type:

Definition BS : nat -> Type

:= fun n => {A : Type & merely (A <~> Fin n)}.

Definition BS_dot

: Type

:= sig BS.

The proof that BSn is a 1-type for every n ∶N (Corollary 5.7) is included below:

Lemma BS_trunc (n : nat)

: IsTrunc 1 (BS n).

Proof.

unfold BS. srapply @trunc_sigma';

change (forall X Y : BS n, IsHSet (X.1 = Y.1)).

intros [A tA] [B tB]; simpl.

srapply @istrunc_paths_Type.

apply hset_Finite.

exact (Build_Finite B n tB).

Defined.

where trunc_sigma' (Lemma 2.79) is defined as follows:

Definition trunc_sigma'

{A : Type} {B : A -> Type} {n : trunc_index}

{TB : forall a : A, IsTrunc n.+1 (B a)}

{Ts : forall p q : sig B, IsTrunc n (p.1 = q.1)}

: IsTrunc n.+1 (sig B).

Proof.

intros x y.

enough (Tp : (IsTrunc n {p : x.1 = y.1 & transport B p x.2 = y.2})).

{ revert Tp. srapply @trunc_equiv'.

exact (Build_Equiv _ _ (path_sigma_uncurried B x y) _). }

srapply @trunc_sigma.

Defined.

BS0 and BS1 are contractible (Lemma 5.8); here we show the former.

Lemma Contr_BS0

: Contr (BS 0).

FINITE TYPES AND SYMMETRIC MONOIDAL STRUCTURES 253

Proof.

unfold BS. srapply @Build_Contr.

+ exact (Fin 0; tr equiv_idmap).

+ intros [A t].

srapply @sigma_truncfib. symmetry.

strip_truncations.

exact (path_universe_uncurried t).

Defined.

Above, sigma_truncfib is the function term described in Remark 2.78.

BSn is connected for every n ∶N (Lemma 5.9):

Lemma Connected_BS

: forall n : nat, Contr (Trunc 0 (BS n)).

Proof.

intro n. srapply @Build_Contr.

+ apply tr. exact (Fin n; tr equiv_idmap).

+ srapply @Trunc_ind.

intros [A t]. strip_truncations.

apply ap. srapply @sigma_truncfib.

exact (path_universe_uncurried t)^.

Defined.

Following Lemma 5.11, we define a symmetric monoidal structure on the type

Definition BS_dot'

: Type

:= {X : nat * Type & merely (snd X <~> Fin (fst X))}.

The symmetric monoidal product is:

Definition BS_dot'_product

: BS_dot' -> BS_dot' -> BS_dot'.

Proof.

unfold BS_dot', BS.

srapply m_base_fiber.

+ intros [nA A] [nB B]. exact (nA + nB, (A + B)).

+ intros ?? tA tB; simpl in *. exact (fin_coproduct tA tB).

Defined.

where we use:

Lemma fin_coproduct {nA nB : nat} {A B : Type}

(tA : Trunc (-1) (A <~> Fin nA)) (tB : Trunc (-1) (B <~> Fin nB))

: Trunc (-1) (A + B <~> Fin (nA + nB)).

...

Lemma m_base_fiber

(m_base : A -> A' -> A'')

(m_fiber : forall (a : A) (a' : A'), B a -> B' a' -> B'' (m_base a a'))

: sig B -> sig B' -> sig B''.

254 A. FORMALIZATION IN COQ

A symmetric monoidal structure on N is easily found; for a symmetric monoidal

structure on U we use constructions such as:

Lemma alpha_U_equiv

: forall A B C : Type, ((A + B) + C) <~> (A + (B + C)).

Proof.

srapply equiv_sum_assoc.

Defined.

Lemma alpha_U

: forall A B C : Type, ((A + B) + C) = (A + (B + C)).

Proof.

intros; srapply @path_universe_uncurried. srapply alpha_U_equiv.

Defined.

Lemma pentagon_U_equiv

: forall A B C D : Type,

alpha_U_equiv A B (C + D) oE alpha_U_equiv (A + B) C D

= (1 +E alpha_U_equiv B C D)

oE (alpha_U_equiv A (B + C) D oE (alpha_U_equiv A B C +E 1)).

Proof.

intros. apply path_equiv. apply path_forall.

intros [[[a|b]|c]|d]; constructor.

Defined.

Lemma pentagon_U

: IsPentagonCoherent (fun A B => A + B) alpha_U.

...

We then combine those structures to obtain one for BS_dot':

Lemma alpha_BS_dot'

: forall a b c : BS_dot',

BS_dot'_product (BS_dot'_product a b) c = BS_dot'_product a (BS_dot'_product b c).

Proof.

unfold BS_dot', BS, BS_dot'_product.

intros [[nA A] tA] [[nB B] tB] [[nC C] tC].

srapply @sigma_truncfib. srapply @path_prod'.

+ apply alpha_nat.

+ apply alpha_U.

Defined.

We omit the rest of the formalization here.

The indexed family del ∶N → U of HITs representing the deloopings of symmet-

ric groups (Definition 5.18) is implemented as follows.

Section deloop.

Open Scope nat.

Private Inductive deloop : nat -> Type :=

| dlpt0 : deloop 0

| dli : forall n : nat, deloop n -> deloop n.+1.

Global Arguments dli {n} _.

FINITE TYPES AND SYMMETRIC MONOIDAL STRUCTURES 255

Fixpoint dlpt (n : nat) : deloop n

:= match n with

| 0 => dlpt0

| n'.+1 => dli (dlpt n') end.

Axiom dltw : forall (n : nat) (a : deloop n),

dli (dli a) = dli (dli a)

:> deloop n.+2.

Global Arguments dltw {n} _.

Axiom dldo : forall (n : nat) (a : deloop n),

dltw a @ dltw a = idpath

:> (dli (dli a) = dli (dli a)).

Global Arguments dldo {n} _.

Definition dldo_ : forall (n : nat) (a : deloop n),

(dltw a)^ = dltw a.

Proof.

intros n a.

refine (cancelR (dltw a)^ (dltw a) (dltw a) _).

exact (concat_Vp _ @ (dldo a)^).

Defined.

Global Arguments dldo_ {n} _.

Axiom dlbr : forall (n : nat) (a : deloop n),

dltw (dli a) @ ap dli (dltw a) @ dltw (dli a)

= ap dli (dltw a) @ dltw (dli a) @ ap dli (dltw a)

:> (dli (dli (dli a)) = dli (dli (dli a))).

Global Arguments dlbr {n} _.

Axiom dlT : forall (n : nat), IsTrunc 1 (deloop n).

Definition deloop_dot

:= sig deloop.

Definition dlT_dot

: IsTrunc 1 deloop_dot.

Proof.

srapply @trunc_sigma; intro; apply dlT.

Defined.

Definition dlpt0_dot

: deloop_dot

:= (0; dlpt0).

Definition Sdli

: deloop_dot -> deloop_dot

:= sigma_function S (@dli).

Section deloop_ind.

Definition dltw'_type

(P : forall n : nat, deloop n -> Type)

(dli' : forall (n : nat) (a : deloop n) (a' : P n a), P n.+1 (dli a))

: Type

:= forall (n : nat) (a : deloop n) (a' : P n a),

transport (P n.+2) (dltw a) (dli' _ _ (dli' _ _ a')) = dli' _ _ (dli' _ _ a').

Definition dldo'_type

256 A. FORMALIZATION IN COQ

(P : forall n : nat, deloop n -> Type)

(dli' : forall (n : nat) (a : deloop n) (a' : P n a), P n.+1 (dli a))

(dltw' : dltw'_type P dli')

: Type

:= forall (n : nat) (a : deloop n) (a' : P n a),

(ap (fun z => transport (P n.+2) z (dli' _ _ (dli' _ _ a'))) (dldo a))^

@ concat_D (dltw' _ _ a') (dltw' _ _ a')

= idpath.

Definition dlbr'_type

(P : forall n : nat, deloop n -> Type)

(dli' : forall (n : nat) (a : deloop n) (a' : P n a), P n.+1 (dli a))

(dltw' : dltw'_type P dli')

: Type

:= forall (n : nat) (a : deloop n) (a' : P n a),

(ap (fun z => transport (P n.+3) z (dli' _ _ (dli' _ _ (dli' _ _ a')))) (dlbr a))^ @

concat_D

(concat_D

(dltw' _ _ (dli' _ _ a'))

(transport_ap_nat (@dli) (@dli') (dltw a) (dltw' _ _ a')))

(dltw' _ _ (dli' _ _ a'))

= concat_D

(concat_D

(transport_ap_nat (@dli) (@dli') (dltw a) (dltw' _ _ a'))

(dltw' _ _ (dli' _ _ a')))

(transport_ap_nat (@dli) (@dli') (dltw a) (dltw' _ _ a')).

Context (P : forall n : nat, deloop n -> Type)

(dlpt0' : P 0 dlpt0)

(dli' : forall (n : nat) (a : deloop n) (a' : P n a), P n.+1 (dli a)).

Arguments dli' {n} {a} _.

Fixpoint deloop_ind

(dltw' : dltw'_type P (@dli'))

(dldo' : dldo'_type P (@dli') dltw')

(dlbr' : dlbr'_type P (@dli') dltw')

(dlT' : forall (n : nat) (x : deloop n), IsTrunc 1 (P n x))

(n : nat) (s : deloop n)

: P n s

:= match s with

| dlpt0 => fun _ => fun _ => fun _ => fun _ => dlpt0'

| dli n s0 => fun _ => fun _ => fun _ => fun _ =>

dli' (deloop_ind dltw' dldo' dlbr' dlT' n s0)

end dltw' dldo' dlbr' dlT'.

Axiom deloop_ind_beta_dltw

: forall

(dltw' : dltw'_type P (@dli'))

(dldo' : dldo'_type P (@dli') dltw')

(dlbr' : dlbr'_type P (@dli') dltw')

(dlT' : forall (n : nat) (x : deloop n), IsTrunc 1 (P n x))

(n : nat) (a : deloop n),

apD (deloop_ind dltw' dldo' dlbr' dlT' n.+2) (dltw a) =

dltw' _ _ (deloop_ind dltw' dldo' dlbr' dlT' n a).

Lemma deloop_ind_to_set

(dltw' : dltw'_type P (@dli'))

(dlT' : forall (n : nat) (x : deloop n), IsTrunc 0 (P n x))

(n : nat) (s : deloop n)

: P n s.

FINITE TYPES AND SYMMETRIC MONOIDAL STRUCTURES 257

Proof.

srapply @deloop_ind.

{ exact dltw'. }

all: repeat intro; srapply @path_ishprop.

Defined.

Lemma deloop_ind_to_prop

(dlT' : forall (n : nat) (x : deloop n), IsHProp (P n x))

(n : nat) (s : deloop n)

: P n s.

Proof.

srapply @deloop_ind_to_set.

repeat intro; srapply @path_ishprop.

Defined.

End deloop_ind.

Because del(−) is both indexed and ap-recursive, in the specification of the elimi-

nation principle above (specifically, in the requirement for br) we make use of the

term transport_ap_nat, which is defined as follows:

Lemma transport_ap_nat

{A : nat -> Type} {B : forall n : nat, A n -> Type}

(f : forall n : nat, A n -> A n.+1)

(g : forall (n : nat) (a : A n), B n a -> B n.+1 (f n a))

{n : nat} {x y : A n} (p : x = y) {x' : B n x} {y' : B n y}

(h : transport (B n) p x' = y')

: transport (B n.+1) (ap (f n) p) (g n x x') = g n y y'.

Proof.

refine (_ @ ap (g n y) h).

induction p. constructor.

Defined.

The non-dependent elimination principle deloop_rec is derived accordingly. Fol-

lowing Lemma 5.37, we can further specialize the non-dependent elimination prin-

ciple for when we eliminate into Σ-types whose family is a family of (−1)-types

(such as subuniverses):

Lemma deloop_rec_truncfib

(A : Type)

(Q : nat -> A -> Type)

(T : forall n : nat, IsTrunc 1 {a : A & Q n a})

(Tf : forall (n : nat) (a : A), IsHProp (Q n a))

(dlpt0' : A)

(dlpt0'q : Q 0 dlpt0')

(dli' : nat -> A -> A)

(dli'q : forall (n : nat) (a : A), Q n a -> Q n.+1 (dli' n a))

(dltw' : forall (n : nat) (a : A), dli' n.+1 (dli' n a) = dli' n.+1 (dli' n a))

(dldo' : forall (n : nat) (a : A), dltw' n a @ dltw' n a = idpath)

(dlbr' : forall (n : nat) (a : A),

(dltw' n.+1 (dli' n a) @ ap (dli' n.+2) (dltw' n a)) @ dltw' n.+1 (dli' n a)

= (ap (dli' n.+2) (dltw' n a) @ dltw' n.+1 (dli' n a)) @ ap (dli' n.+2) (dltw' n a))

: forall (n : nat), deloop n -> {a : A & Q n a}.

Proof.

258 A. FORMALIZATION IN COQ

srapply @deloop_rec; hnf.

+ exists dlpt0'. exact dlpt0'q.

+ intro n. exact (sigma_function (dli' n) (dli'q n)).

+ simpl. intros n [a q]; unfold sigma_function.

srapply @sigma_truncfib. apply dltw'.

+ abstract (intros n [a q];

refine (sigma_truncfib_concat _ _ (dltw' n a) (dltw' n a) @ _

@ @sigma_truncfib_1 _ (fun a : A => Q n.+2 a) _ _ (Tf n.+2) _ idpath);

apply ap; apply dldo').

+ abstract (intros n [a q]; simpl;

rewrite ap_sigma_function_p;

unfold path_sigma_function;

rewrite path_path_sigma'_concat, path_path_sigma'_concat,

path_path_sigma'_concat, path_path_sigma'_concat;

srapply @path_path_sigma'_truncfib;

rewrite sigma_truncfib_pr1;

apply dlbr').

Defined.

Lemma deloop_rec_truncfib_beta_dltw

(A : Type)

(Q : nat -> A -> Type)

(T : forall n : nat, IsTrunc 1 {a : A & Q n a})

(Tf : forall (n : nat) (a : A), IsHProp (Q n a))

(dlpt0' : A)

(dlpt0'q : Q 0 dlpt0')

(dli' : nat -> A -> A)

(dli'q : forall (n : nat) (a : A), Q n a -> Q n.+1 (dli' n a))

(dltw' : forall (n : nat) (a : A), dli' n.+1 (dli' n a) = dli' n.+1 (dli' n a))

(dldo' : forall (n : nat) (a : A), dltw' n a @ dltw' n a = idpath)

(dlbr' : forall (n : nat) (a : A),

(dltw' n.+1 (dli' n a) @ ap (dli' n.+2) (dltw' n a)) @ dltw' n.+1 (dli' n a)

= (ap (dli' n.+2) (dltw' n a) @ dltw' n.+1 (dli' n a)) @ ap (dli' n.+2) (dltw' n a))

(n : nat) (a : deloop n)

: ap pr1

(ap

(deloop_rec_truncfib A Q T Tf dlpt0' dlpt0'q dli' dli'q dltw' dldo' dlbr' n.+2)

(dltw a))

= dltw' n

(deloop_rec_truncfib A Q T Tf dlpt0' dlpt0'q dli' dli'q dltw' dldo' dlbr' n a).1.

Proof.

unfold deloop_rec_truncfib.

refine (ap (ap pr1) (deloop_rec_beta_dltw _ _ _ _ _ _ _ _ a) @ _).

apply sigma_truncfib_pr1.

Defined.

Definition deloop_rec_subuniverse

:= deloop_rec_truncfib Type.

Definition deloop_rec_subuniverse_beta_dltw

:= deloop_rec_truncfib_beta_dltw Type.

The types del0 and del1 are contractible (Lemma 5.25); here we show it for del0:

Lemma deloop_contr_0 `{Funext}

: forall (n : nat) (a : deloop n), n = 0 -> dlpt n = a.

Proof.

srapply @deloop_ind_to_set; simpl.

FINITE TYPES AND SYMMETRIC MONOIDAL STRUCTURES 259

+ intros; exact idpath.

+ intros n b IH p. apply Empty_rec. exact (not_sn_0 p).

+ unfold dltw'_type. intros. srapply @path_forall. intro p.

apply Empty_rec. exact (not_sn_0 p).

+ intros; srapply @trunc_forall; intros; srapply @dlT.

Defined.

Lemma Contr_deloop0 `{Funext}

: Contr (deloop 0).

Proof.

srapply @Build_Contr.

+ apply dlpt.

+ intro a. exact (deloop_contr_0 0 a idpath).

Defined.

The type deln is connected for every n ∶N (Lemma 5.26):

Lemma Connected_deloopn

: forall n : nat, Contr (Trunc 0 (deloop n)).

Proof.

intro n. srapply @Build_Contr.

+ apply tr. exact (dlpt n).

+ srapply @Trunc_ind.

revert n. srapply @deloop_ind_to_prop; simpl.

- constructor.

- intros m b p.

exact (ap (truncmap 0 dli) p).

Defined.

As we saw in Lemma 5.30, the type del● has a symmetric monoidal structure.

Here we show the implementation of the symmetric monoidal product ⊕ ∶ del● →

del● → del● (Definition 5.28):

Definition deloop_m_dli

: (deloop_dot -> deloop_dot) -> deloop_dot -> deloop_dot.

Proof.

intro a'. exact (Sdli o a').

Defined.

Definition deloop_m_dltw

: forall a' : deloop_dot -> deloop_dot,

deloop_m_dli (deloop_m_dli a') = deloop_m_dli (deloop_m_dli a').

Proof.

unfold deloop_m_dli.

intros. srapply @path_forall; intro x.

apply dltw_dot.

Defined.

Definition deloop_m_dldo

: forall a' : deloop_dot -> deloop_dot, deloop_m_dltw a' @ deloop_m_dltw a' = 1%path.

Proof.

unfold deloop_m_dltw.

intros.

refine ((path_forall_pp _ _ _ _ _)^ @ _).

refine (_ @ path_forall_1 _).

apply ap. srapply @path_forall; intro x.

260 A. FORMALIZATION IN COQ

apply dldo_dot.

Defined.

Definition deloop_m_dlbr

: forall a' : deloop_dot -> deloop_dot,

(deloop_m_dltw (deloop_m_dli a') @ ap deloop_m_dli (deloop_m_dltw a'))

@ deloop_m_dltw (deloop_m_dli a')

= (ap deloop_m_dli (deloop_m_dltw a') @ deloop_m_dltw (deloop_m_dli a'))

@ ap deloop_m_dli (deloop_m_dltw a').

Proof.

unfold deloop_m_dltw, deloop_m_dli.

intros.

rewrite ap_compose_pf.

repeat rewrite <- path_forall_pp.

apply ap. srapply @path_forall; intro x.

apply dlbr_dot.

Defined.

Definition deloop_m

: deloop_dot -> deloop_dot -> deloop_dot.

Proof.

srapply @sig_rect; intro n; revert n; hnf.

assert (T : (IsTrunc 1 (deloop_dot -> deloop_dot))).

{ exact (@trunc_forall _ _ _ _ (fun _ => dlT_dot)). }

srefine (deloop_rec_const (deloop_dot -> deloop_dot) _ _ _ _ _ _); clear T.

+ exact idmap.

+ exact deloop_m_dli.

+ exact deloop_m_dltw.

+ exact deloop_m_dldo.

+ exact deloop_m_dlbr.

Defined.

The proof of the symmetric monoidal equivalence slist(1) ≃ del● follows the one

given in Theorem 5.35. Here we include the definitions of the functions k ∶ slist(1)→
del● and j ∶ del● → slist(1) (Definition 5.32 and Definition 5.34 respectively).

Lemma cons'_for_slist_Unit_to_deloop

: Unit -> deloop_dot -> deloop_dot.

Proof.

intros _. exact Sdli.

Defined.

Lemma swap'_for_slist_Unit_to_deloop

: swap'_rec_type deloop_dot cons'_for_slist_Unit_to_deloop.

Proof.

unfold swap'_rec_type.

intros [] [] a; unfold cons'_for_slist_Unit_to_deloop.

exact (dltw_dot a).

Defined.

Lemma double'_for_slist_Unit_to_deloop

: double'_rec_type

deloop_dot cons'_for_slist_Unit_to_deloop swap'_for_slist_Unit_to_deloop.

Proof.

unfold double'_rec_type.

intros [] [] a; unfold swap'_for_slist_Unit_to_deloop.

exact (dldo_dot a).

FINITE TYPES AND SYMMETRIC MONOIDAL STRUCTURES 261

Qed.

Lemma triple'_for_slist_Unit_to_deloop

: triple'_rec_type

deloop_dot cons'_for_slist_Unit_to_deloop swap'_for_slist_Unit_to_deloop.

Proof.

unfold triple'_rec_type.

intros [] [] [] a;

unfold cons'_for_slist_Unit_to_deloop, swap'_for_slist_Unit_to_deloop.

exact (dlbr_dot a).

Qed.

Definition slist_Unit_to_deloop

: slist Unit -> deloop_dot.

Proof.

srapply @slist_rec.

+ exact (0; dlpt0).

+ exact cons'_for_slist_Unit_to_deloop.

+ exact swap'_for_slist_Unit_to_deloop.

+ exact double'_for_slist_Unit_to_deloop.

+ exact triple'_for_slist_Unit_to_deloop.

+ exact dlT_dot.

Defined.

Lemma dli'_for_deloop_to_slist_Unit

: nat -> slist Unit -> slist Unit.

Proof.

intros _ l; exact (cons tt l).

Defined.

Lemma dltw'_for_deloop_to_slist_Unit

: dltw'_rec_type (fun _ : nat => slist Unit) dli'_for_deloop_to_slist_Unit.

Proof.

unfold dltw'_rec_type, dli'_for_deloop_to_slist_Unit.

intros _ l. exact (swap tt tt l).

Defined.

Lemma dldo'_for_deloop_to_slist_Unit

: dldo'_rec_type (fun _ : nat => slist Unit)

dli'_for_deloop_to_slist_Unit dltw'_for_deloop_to_slist_Unit.

Proof.

unfold dldo'_rec_type, dltw'_for_deloop_to_slist_Unit.

intros ? l; exact (double tt tt l).

Defined.

Lemma dlbr'_for_deloop_to_slist_Unit

: dlbr'_rec_type (fun _ : nat => slist Unit)

dli'_for_deloop_to_slist_Unit dltw'_for_deloop_to_slist_Unit.

Proof.

unfold dlbr'_rec_type, dltw'_for_deloop_to_slist_Unit, dli'_for_deloop_to_slist_Unit.

intros _ l.

change ((swap tt tt (cons tt l) @ ap (cons tt) (swap tt tt l))

@ swap tt tt (cons tt l)

= (ap (cons tt) (swap tt tt l) @ swap tt tt (cons tt l))

@ ap (cons tt) (swap tt tt l)).

exact (triple tt tt tt l).

Defined.

Definition deloop_to_slist_Unit

: deloop_dot -> slist Unit.

262 A. FORMALIZATION IN COQ

Proof.

intros [n a]; revert a; revert n.

srapply @deloop_rec; simpl.

+ exact nil.

+ exact dli'_for_deloop_to_slist_Unit.

+ exact dltw'_for_deloop_to_slist_Unit.

+ exact dldo'_for_deloop_to_slist_Unit.

+ exact dlbr'_for_deloop_to_slist_Unit.

+ intro; apply T_slist.

Defined.

The families of functions f ∶ Π (n ∶N) .deln → BSn and fb ∶ Π (n ∶N) .deln → U in

Definition 5.39 are given as follows:

Definition dtb_dlpt0b

: Type

:= Fin 0.

Definition dtb_dlpt0f

: Trunc (-1) (dtb_dlpt0b <~> Fin 0)

:= (tr 1%equiv).

Definition dtb_dlib

: nat -> Type -> Type

:= fun _ => add.

Definition dtb_dlif

: forall (n : nat) (A : Type),

merely (A <~> Fin n) -> merely (dtb_dlib n A <~> Fin n.+1).

Proof.

simpl; intros n A; unfold dtb_dlib, add.

srapply @Trunc_rec; intro e.

exact (tr (exp e)).

Qed.

Definition dtb_dltwb

: forall (n : nat) (A : Type),

dtb_dlib n.+1 (dtb_dlib n A) = dtb_dlib n.+1 (dtb_dlib n A).

Proof.

intros; unfold dtb_dlib, add.

exact (gamma A).

Defined.

Definition dtb_dldob

: forall (n : nat) (A : Type), dtb_dltwb n A @ dtb_dltwb n A = idpath.

Proof.

intros; unfold dtb_dltwb.

apply gamma_double.

Defined.

Definition dtb_dlbrb

: forall (n : nat) (A : Type),

(dtb_dltwb n.+1 (dtb_dlib n A) @ ap (dtb_dlib n.+2) (dtb_dltwb n A))

@ dtb_dltwb n.+1 (dtb_dlib n A)

= (ap (dtb_dlib n.+2) (dtb_dltwb n A) @ dtb_dltwb n.+1 (dtb_dlib n A))

@ ap (dtb_dlib n.+2) (dtb_dltwb n A).

Proof.

FINITE TYPES AND SYMMETRIC MONOIDAL STRUCTURES 263

intros; unfold dtb_dlib, dtb_dltwb.

apply gamma_triple.

Defined.

Definition deloop_to_BS

: forall n : nat, deloop n -> BS n

:= deloop_rec_subuniverse

(fun n A => merely (A <~> Fin n)) BS_trunc _

dtb_dlpt0b dtb_dlpt0f dtb_dlib dtb_dlif dtb_dltwb dtb_dldob dtb_dlbrb.

Definition deloop_to_BSb

: forall n : nat, deloop n -> Type

:= fun n a => (deloop_to_BS n a).1.

where add is add from Definition 2.42 and exp is incr from Definition 2.100, while

gamma is described in Remark 5.16 and gamma_double, gamma_triple are as in the

construction in Definition 5.39 itself.

Canonical finite types [n] are already implemented (as Fin n) in the HoTT li-

brary. In Remark 5.45, we rebase canonical finite types to JnK ∶≡ fbn(ptn):
Definition FFin (n : nat)

: Type

:= deloop_to_BSb n (dlpt n).

Lemma FFin_Fin

: forall n : nat, FFin n = Fin n.

Proof.

induction n.

+ constructor.

+ exact (ap add IHn).

Defined.

Finally, the strategy to prove that fn is an equivalence for every n ∶ N is imple-

mented as follows. Lemma 5.54 is formalized below:

Theorem condition_equiv_deloop_to_BS (n : nat)

: (forall (a : deloop n) (p : deloop_to_BSb n a = FFin n),

{q : a = dlpt n & ap (deloop_to_BSb n) q = p})

-> IsEquiv (deloop_to_BS n).

Proof.

intro h.

srapply @isequiv_fcontr.

refine (forall_BS_hprop n _ _ (deloop_to_BS n (dlpt n)) _);

hnf.

srapply @contr_sigma_prop;

change (Contr {a : deloop n & deloop_to_BSb n a = FFin n}).

srapply @Build_Contr.

{ exact (dlpt n; idpath). }

intros [a p]. symmetry. srapply @path_sigma; simpl.

+ exact (h a p).1.

+ refine (@transport_paths_Fl (deloop n) _ (deloop_to_BSb n) _ _ (FFin n) (h a p).1 p

@ _);

apply moveR_Vp; refine (_ @ (concat_p1 _)^).

264 FORMALIZATION IN COQ

exact (h a p).2^.

Defined.

where forall_BS_hprop is the term proving that we can use connectedness of BSn

to produce a dependent function into a family of (−1)-types, and contr_sigma_prop

generalizes (5.57).

The combinatorial machinery described in the proofs of Lemmata 5.63, 5.64

and 5.67 involves a number of proofs by induction, which we omit here. We report

the implementation of the function m ∶ Π (n ∶N) . JnK → (JnK = JnK) from Defini-

tion 5.70:

Definition move {n : nat}

: FFin n -> FFin n = FFin n.

Proof.

intro i; induction n.

+ exact idpath.

+ clear IHn. induction n.

- exact idpath.

- clear IHn. change (FFin n.+1 + Unit)%type in i. induction i as [j|[]].

* induction n.

++ exact (gamma Empty).

++ change (FFin n.+1 + Unit)%type in j. induction j as [k|[]].

-- exact (gamma (FFin n.+1) @ ap add (IHn k) @ gamma (FFin n.+1)).

-- exact (gamma (FFin n.+1)).

* exact idpath.

Defined.

References

[AAD07] A. Abel, K. Aehlig, and P. Dybjer, “Normalization by Evaluation for Martin-

Löf Type Theory with One Universe”, Electronic Notes in Theoretical Com-

puter Science 173 (2007), Proceedings of the 23rd Conference on the Mathe-

matical Foundations of Programming Semantics (MFPS XXIII), pp. 17–39, DOI:

doi.org/10.1016/j.entcs.2007.02.025.

[ABD96] S. Agerholm, I. Beylin, and P. Dybjer, “A comparison of HOL and ALF formal-

izations of a categorical coherence theorem”, Theorem Proving in Higher Order

Logics, Springer Berlin Heidelberg, 1996, pp. 17–32.

[Acc17] M. Acclavio, “A Constructive Proof of Coherence for Symmetric Monoidal

Categories Using Rewriting”, arXiv e-print (math.CT), 2017, arXiv:1606.01722.

[Ada78] J. F. Adams, Infinite loop spaces, vol. no. 90, Annals of mathematics studies,

Princeton University Press, 1978.

[Agda] G. Brunerie, K.-B. Hou (Favonia), E. Cavallo, T. Baumann, E. Finster, J. Cockx,

C. Sattler, C. Jeris, M. Shulman, et al., Homotopy Type Theory in Agda, URL:

https://github.com/HoTT/HoTT-Agda.

[AH56] J. F. Adams and P. J. Hilton, “On the chain algebra of a loop space”, Commen-

tarii mathematici Helvetici 30.1 (1956), pp. 305–330.

[Alt+18] T. Altenkirch, P. Capriotti, G. Dijkstra, N. Kraus, and F. Nordvall Forsberg,

“Quotient Inductive-Inductive Types”, Foundations of Software Science and Com-

putation Structures, Springer International Publishing, 2018, pp. 293–310.

[Ann+19] D. Annenkov, P. Capriotti, N. Kraus, and C. Sattler, “Two-Level Type Theory

and Applications”, arXiv e-print (cs.LO), 2019, arXiv:1705.03307.

[AW09] S. Awodey and M. A. Warren, “Homotopy theoretic models of identity types”,

Math. Proc. Cambridge Philos. Soc. 146.1 (2009), pp. 45–55, DOI: 10 . 1017 /

S0305004108001783.

[Bau+17] A. Bauer, J. Gross, P. L. Lumsdaine, M. Shulman, M. Sozeau, and B. Spitters,

“The HoTT Library: A Formalization of Homotopy Type Theory in Coq”, Pro-

ceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs,

CPP 2017, Association for Computing Machinery, 2017, pp. 164–172, DOI: 10.

1145/3018610.3018615, URL: https://doi.org/10.1145/3018610.3018615.

265

https://doi.org/doi.org/10.1016/j.entcs.2007.02.025
https://arxiv.org/abs/arXiv:1606.01722
https://github.com/HoTT/HoTT-Agda
https://arxiv.org/abs/arXiv:1705.03307
https://doi.org/10.1017/S0305004108001783
https://doi.org/10.1017/S0305004108001783
https://doi.org/10.1145/3018610.3018615
https://doi.org/10.1145/3018610.3018615
https://doi.org/10.1145/3018610.3018615

266 REFERENCES

[BCH14] M. Bezem, T. Coquand, and S. Huber, “A Model of Type Theory in Cubical

Sets”, 19th International Conference on Types for Proofs and Programs (TYPES

2013), vol. 26, Leibniz International Proceedings in Informatics (LIPIcs), Schloss

Dagstuhl–Leibniz-Zentrum für Informatik, 2014, pp. 107–128, DOI: 10.4230/

LIPIcs.TYPES.2013.107.

[BD96] I. Beylin and P. Dybjer, “Extracting a proof of coherence for monoidal cate-

gories from a proof of normalization for monoids”, Types for Proofs and Pro-

grams, Springer Berlin Heidelberg, 1996, pp. 47–61.

[Bey97] I. Beylin, “An ALF Proof of Mac Lane’s Coherence Theorem”, Licensiate The-

sis (Revision: 5.26), Department of Computing Science, Chalmers / Göteborg

University, 1997.

[Bro07] L. E. J. Brouwer, “Over De Grondslagen Der Wiskunde”, dut, PhD Thesis,

Universiteit van Amsterdam, 1907.

[Bro08] L. E. J. Brouwer, “De onbetrouwbaarheid der logische principes”, dut, Tijd-

schrift voor Wijsbegeerte 2 (1908), pp. 152–158.

[Bru16] G. Brunerie, “On the homotopy groups of spheres in homotopy type theory”,

arXiv e-print (math.AT), 2016, arXiv:1606.05916.

[Buc19] U. Buchholtz, “Higher Structures in Homotopy Type Theory”, Reflections on

the Foundations of Mathematics: Univalent Foundations, Set Theory and General

Thoughts, Springer International Publishing, 2019, pp. 151–172, DOI: 10.1007/

978-3-030-15655-8_7.

[Buc20] U. Buchholtz, “Higher Algebra in Homotopy Type Theory”, Formal Methods

in Mathematics / Lean Together 2020, URL: https://www2.mathematik.tu-

darmstadt.de/~buchholtz/fmm-leantogether.pdf, accessed: 20.05.2021.

[BvDR18] U. Buchholtz, F. van Doorn, and E. Rijke, “Higher Groups in Homotopy Type

Theory”, arXiv e-print (cs.LO), 2018, arXiv:1802.04315.

[CF19] V. Choudhury and M. Fiore, “The finite-multiset construction in HoTT”, In-

ternational Conference on Homotopy Type Theory (HoTT 2019) at Carnegie

Mellon University, URL: https ://hott .github. io/HoTT- 2019/conf- slides/

Choudhury.pdf, accessed: 20.05.2021.

[CFC58] H. B. Curry, R. Feys, and W. Craig, Combinatory Logic: Volume I, Studies in

logic and the foundations of mathematics, North-Holland Pub. Co, 1958.

https://doi.org/10.4230/LIPIcs.TYPES.2013.107
https://doi.org/10.4230/LIPIcs.TYPES.2013.107
https://arxiv.org/abs/arXiv:1606.05916
https://doi.org/10.1007/978-3-030-15655-8_7
https://doi.org/10.1007/978-3-030-15655-8_7
https://www2.mathematik.tu-darmstadt.de/~buchholtz/fmm-leantogether.pdf
https://www2.mathematik.tu-darmstadt.de/~buchholtz/fmm-leantogether.pdf
https://arxiv.org/abs/arXiv:1802.04315
https://hott.github.io/HoTT-2019/conf-slides/Choudhury.pdf
https://hott.github.io/HoTT-2019/conf-slides/Choudhury.pdf

REFERENCES 267

[CM95] G. Carlsson and R. J. Milgram, “Stable Homotopy and Iterated Loop Spaces”,

Handbook of Algebraic Topology, North-Holland, 1995, pp. 505–583, DOI: 10.101

6/B978-044481779-2/50014-6.

[Coh+18] C. Cohen, T. Coquand, S. Huber, and A. Mörtberg, “Cubical Type Theory: A

Constructive Interpretation of the Univalence Axiom”, 21st International Con-

ference on Types for Proofs and Programs (TYPES 2015), vol. 69, Leibniz Interna-

tional Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum

für Informatik, 2018, 5:1–5:34, DOI: 10.4230/LIPIcs.TYPES.2015.5.

[Coq] INRIA - The Coq Proof Assistant, URL: https://coq.inria.fr/.

[Coq17] T. Coquand, “Type Theory and Formalisation of Mathematics”, Computer Sci-

ence – Theory and Applications, Springer International Publishing, 2017, pp. 1–

6.

[Dan12] N. A. Danielsson, “Positive h-levels are closed under W”, blog post, URL:

https://homotopytypetheory.org/2012/09/21/positive-h-levels-are-closed-

under-w/, accessed: 20.05.2021.

[DF02] P. Dybjer and A. Filinski, “Normalization and Partial Evaluation”, Applied Se-

mantics, Springer Berlin Heidelberg, 2002, pp. 137–192.

[EH62] B. Eckmann and P. J. Hilton, “Group-like structures in general categories I

multiplications and comultiplications”, Mathematische annalen 145.3 (1962),

pp. 227–255.

[Eps66] D. B. A. Epstein, “Functors between tensored categories”, Inventiones mathe-

maticae 1.3 (1966), pp. 221–228.

[FH18] K.-B. Hou (Favonia) and R. Harper, “Covering Spaces in Homotopy Type

Theory”, 22nd International Conference on Types for Proofs and Programs (TYPES

2016), vol. 97, Leibniz International Proceedings in Informatics (LIPIcs), Schloss

Dagstuhl–Leibniz-Zentrum für Informatik, 2018, 11:1–11:16, DOI: 10 . 4230 /

LIPIcs.TYPES.2016.11.

[Fin+21] E. Finster, S. Mimram, M. Lucas, and T. Seiller, “A cartesian (2,1)-category of

homotopy polynomial functors in groupoids”, Unpublished manuscript, URL:

http://www.lix.polytechnique.fr/Labo/Samuel.Mimram/docs/mimram_

polygpd.pdf.

[Fio+08] M. Fiore, N. Gambino, M. Hyland, and G. Winskel, “The cartesian closed bi-

category of generalised species of structures”, Journal of the London Mathe-

matical Society 77.1 (2008), pp. 203–220, DOI: 10.1112/jlms/jdm096.

https://doi.org/10.1016/B978-044481779-2/50014-6
https://doi.org/10.1016/B978-044481779-2/50014-6
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://coq.inria.fr/
https://homotopytypetheory.org/2012/09/21/positive-h-levels-are-closed-under-w/
https://homotopytypetheory.org/2012/09/21/positive-h-levels-are-closed-under-w/
https://doi.org/10.4230/LIPIcs.TYPES.2016.11
https://doi.org/10.4230/LIPIcs.TYPES.2016.11
http://www.lix.polytechnique.fr/Labo/Samuel.Mimram/docs/mimram_polygpd.pdf
http://www.lix.polytechnique.fr/Labo/Samuel.Mimram/docs/mimram_polygpd.pdf
https://doi.org/10.1112/jlms/jdm096

268 REFERENCES

[Fra73] A. A. Fraenkel, Foundations of set theory, 2nd rev. ed., vol. 67, Studies in logic

and the foundations of mathematics, North-Holland, 1973.

[Fru+18] D. Frumin, H. Geuvers, L. Gondelman, and N. van der Weide, “Finite Sets in

Homotopy Type Theory”, Proceedings of the 7th ACM SIGPLAN International

Conference on Certified Programs and Proofs, CPP 2018, Association for Comput-

ing Machinery, 2018, pp. 201–214, DOI: 10.1145/3167085.

[FS19] M. Fiore and P. Saville, “A type theory for cartesian closed bicategories”,

arXiv e-print (cs.lo), 2019, arXiv:1904.06538.

[Gep19] D. Gepner, “An Introduction to Higher Categorical Algebra”, arXiv e-print

(math.AT), 2019, arXiv:1907.02904.

[GJ90] E. Getzler and J. D. S. Jones, “A∞-algebras and the cyclic bar complex”, Illi-

nois J. Math. 34.2 (1990), pp. 256–283, DOI: 10.1215/ijm/1255988267.

[Gor91] M. Gordon, “Introduction to the HOL System”, 1991 International Workshop

on the HOL Theorem Proving System and Its Applications, 1991, pp. 2–3, DOI:

10.1109/HOL.1991.596265.

[Gyl20] H. R. Gylterud, “Multisets in type theory”, Mathematical Proceedings of the

Cambridge Philosophical Society 169.1 (2020), pp. 1–18, DOI: 10.1017/S03050

04119000045.

[Hoq] The HoTT library, URL: https://github.com/HoTT/HoTT.

[HS98] M. Hofmann and T. Streicher, “The groupoid interpretation of type theory”,

Twenty-five years of constructive type theory (Venice, 1995), vol. 36, Oxford Logic

Guides, Oxford Univ. Press, 1998, pp. 83–111.

[Jac51] N. Jacobson, “Semi-Groups and Groups”, Lectures in Abstract Algebra I: Basic

Concepts, Springer New York, 1951, pp. 15–48, DOI: 10.1007/978-1-4684-7301-

8_2.

[Joy81] A. Joyal, “Une théorie combinatoire des séries formelles”, fre, Advances in

Mathematics 42.1 (1981), pp. 1–82, DOI: 10.1016/0001-8708(81)90052-9.

[JS86] A. Joyal and R. Street, “Braided Monoidal Categories”, Macquarie Mathemat-

ics Reports No. 860081 (1986).

[JS93] A. Joyal and R. Street, “Braided Tensor Categories”, Advances in Mathematics

102.1 (1993), pp. 20–78, DOI: 10.1006/aima.1993.1055.

https://doi.org/10.1145/3167085
https://arxiv.org/abs/arXiv:1904.06538
https://arxiv.org/abs/arXiv:1907.02904
https://doi.org/10.1215/ijm/1255988267
https://doi.org/10.1109/HOL.1991.596265
https://doi.org/10.1017/S0305004119000045
https://doi.org/10.1017/S0305004119000045
https://github.com/HoTT/HoTT
https://doi.org/10.1007/978-1-4684-7301-8_2
https://doi.org/10.1007/978-1-4684-7301-8_2
https://doi.org/10.1016/0001-8708(81)90052-9
https://doi.org/10.1006/aima.1993.1055

REFERENCES 269

[KA18] N. Kraus and T. Altenkirch, “Free Higher Groups in Homotopy Type The-

ory”, Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in

Computer Science (2018), DOI: 10.1145/3209108.3209183.

[Kel64] G. M. Kelly, “On MacLane’s conditions for coherence of natural associativ-

ities, commutativities, etc.”, Journal of Algebra 1.4 (1964), pp. 397–402, DOI:

10.1016/0021-8693(64)90018-3.

[KK18] A. Kaposi and A. Kovács, “A Syntax for Higher Inductive-Inductive Types”,

3rd International Conference on Formal Structures for Computation and Deduc-

tion (FSCD 2018), vol. 108, Leibniz International Proceedings in Informatics

(LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2018, 20:1–20:18,

DOI: 10.4230/LIPIcs.FSCD.2018.20.

[KL18] C. Kapulkin and P. L. Lumsdaine, “The Simplicial Model of Univalent Foun-

dations (after Voevodsky)”, arXiv e-print (math.LO), 2018, arXiv:1211.2851.

[Kra15] N. Kraus, “The General Universal Property of the Propositional Truncation”,

20th International Conference on Types for Proofs and Programs (TYPES 2014),

vol. 39, Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–

Leibniz-Zentrum für Informatik, 2015, pp. 111–145, DOI: 10 . 4230 / LIPIcs .

TYPES.2014.111.

[Kra16] N. Kraus, “Constructions with Non-Recursive Higher Inductive Types”, Pro-

ceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science,

LICS ’16, Association for Computing Machinery, 2016, pp. 595–604, DOI: 10.

1145/2933575.2933586.

[KT08] C. Kassel and V. Turaev, Braids and Braid Groups, Springer New York, 2008,

DOI: 10.1007/978-0-387-68548-9.

[Laf03] Y. Lafont, “Towards an algebraic theory of Boolean circuits”, Journal of Pure

and Applied Algebra 184.2 (2003), pp. 257–310, DOI: 10.1016/S0022-4049(03)

00069-0.

[Lap72] M. L. Laplaza, “Coherence for distributivity”, Coherence in Categories, Springer

Berlin Heidelberg, 1972, pp. 29–65.

[LB15] D. R. Licata and G. Brunerie, “A Cubical Approach to Synthetic Homotopy

Theory”, 2015 30th Annual ACM/IEEE Symposium on Logic in Computer Science,

2015, pp. 92–103.

[Lei04] T. Leinster, Higher operads, higher categories, vol. 298, London Mathematical

Society lecture note series, Cambridge University Press, 2004.

https://doi.org/10.1145/3209108.3209183
https://doi.org/10.1016/0021-8693(64)90018-3
https://doi.org/10.4230/LIPIcs.FSCD.2018.20
https://arxiv.org/abs/arXiv:1211.2851
https://doi.org/10.4230/LIPIcs.TYPES.2014.111
https://doi.org/10.4230/LIPIcs.TYPES.2014.111
https://doi.org/10.1145/2933575.2933586
https://doi.org/10.1145/2933575.2933586
https://doi.org/10.1007/978-0-387-68548-9
https://doi.org/10.1016/S0022-4049(03)00069-0
https://doi.org/10.1016/S0022-4049(03)00069-0

270 REFERENCES

[Lei14] T. Leinster, “Rethinking Set Theory”, The American Mathematical Monthly

121.5 (2014), pp. 403–415.

[Lic11] D. R. Licata, “Running Circles Around (In) Your Proof Assistant; or, Quotients

that Compute”, blog post, URL: https://homotopytypetheory.org/2011/04/

23/running-circles-around-in-your-proof-assistant/, accessed: 20.05.2021.

[LS13] D. R. Licata and M. Shulman, “Calculating the Fundamental Group of the Cir-

cle in Homotopy Type Theory”, Proceedings of the 2013 28th Annual ACM/IEEE

Symposium on Logic in Computer Science, LICS ’13, IEEE Computer Society,

2013, pp. 223–232, DOI: 10.1109/LICS.2013.28.

[LS19] P. L. Lumsdaine and M. Shulman, “Semantics of higher inductive types”,

Mathematical Proceedings of the Cambridge Philosophical Society (2019), pp. 1–

50, DOI: 10.1017/s030500411900015x.

[Lur17] J. Lurie, “Higher Algebra”, version dated September 18, 2017, URL: http://

people.math.harvard.edu/~lurie/papers/HA.pdf, accessed: 20.05.2021.

[M-L75] P. Martin-Löf, “An Intuitionistic Theory of Types: Predicative Part”, Logic Col-

loquium ’73, vol. 80, Studies in Logic and the Foundations of Mathematics,

Elsevier, 1975, pp. 73–118, DOI: 10.1016/S0049-237X(08)71945-1.

[Mag95] L. Magnusson, “The Implementation of ALF - a Proof Editor based on Martin-

Löf’s Monomorphic Type Theory with Explicit Substitution”, PhD Thesis, Göte-

borg University and Chalmers University of Technology, 1995.

[May72] J. P. May, The Geometry of Iterated Loop Spaces, 1st ed. 1972., vol. 271, Lecture

Notes in Mathematics, Springer Berlin Heidelberg : Imprint: Springer, 1972.

[ML63] S. Mac Lane, “Natural associativity and commutativity”, Rice University Stud-

ies 49.4 (1963), pp. 28–46.

[ML76] S. Mac Lane, “Topology and logic as a source of algebra”, Bull. Amer. Math.

Soc. 82.1 (1976), pp. 1–40, DOI: 10.1090/S0002-9904-1976-13928-6.

[ML98] S. Mac Lane, Categories for the working mathematician, 2nd ed., vol. 5, Graduate

texts in mathematics, Springer, 1998.

[MSS02] M. Markl, S. Shnider, and J. Stasheff, Operads in Algebra, Topology, and Physics,

vol. 96, Mathematical surveys and monographs, American Mathematical So-

ciety, 2002.

[NG14] R. Nederpelt and H. Geuvers, Type Theory and Formal Proof: An Introduction,

Cambridge University Press, 2014, DOI: 10.1017/CBO9781139567725.

https://homotopytypetheory.org/2011/04/23/running-circles-around-in-your-proof-assistant/
https://homotopytypetheory.org/2011/04/23/running-circles-around-in-your-proof-assistant/
https://doi.org/10.1109/LICS.2013.28
https://doi.org/10.1017/s030500411900015x
http://people.math.harvard.edu/~lurie/papers/HA.pdf
http://people.math.harvard.edu/~lurie/papers/HA.pdf
https://doi.org/10.1016/S0049-237X(08)71945-1
https://doi.org/10.1090/S0002-9904-1976-13928-6
https://doi.org/10.1017/CBO9781139567725

REFERENCES 271

[Pic20] S. Piceghello, “Coherence for Monoidal Groupoids in HoTT”, 25th Interna-

tional Conference on Types for Proofs and Programs (TYPES 2019), vol. 175, Leib-

niz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-

Zentrum für Informatik, 2020, 8:1–8:20, DOI: 10.4230/LIPIcs.TYPES.2019.8.

[RS17] E. Riehl and M. Shulman, “A type theory for synthetic∞-categories”, Higher

Structures 1(1) (2017), pp. 147–224.

[Sav20] P. Saville, “Cartesian closed bicategories: type theory and coherence”, arXiv

e-print (math.CT), 2020, arXiv:2007.00624.

[Shu15] M. Shulman, “The Univalent Perspective on Classifying Spaces”, blog post,

URL: https : // golem . ph . utexas . edu / category / 2015 / 01 / the _ univalent _

perspective_on_c.html, accessed: 20.05.2021.

[Shu17a] M. Shulman, “Brouwer’s fixed-point theorem in real-cohesive homotopy type

theory”, arXiv e-print (math.CT), 2017, arXiv:1509.07584.

[Shu17b] M. Shulman, “Homotopy Type Theory: A Synthetic Approach to Higher Equal-

ities”, Categories for the Working Philosopher, Oxford University Press, 2017,

pp. 36–57.

[Soj15] K. Sojakova, “Higher Inductive Types as Homotopy-Initial Algebras”, SIG-

PLAN Not. 50.1 (2015), pp. 31–42, DOI: 10.1145/2775051.2676983.

[Soj16] K. Sojakova, “The Equivalence of the Torus and the Product of Two Circles

in Homotopy Type Theory”, ACM Trans. Comput. Logic 17.4 (2016), DOI: 10.

1145/2992783.

[Sta63a] J. D. Stasheff, “Homotopy associativity of H-spaces. I”, Transactions of the

American Mathematical Society 108.2 (1963), pp. 275–292.

[Sta63b] J. D. Stasheff, “Homotopy Associativity of H-Spaces. II”, Transactions of the

American Mathematical Society 108.2 (1963), pp. 293–312.

[Str93] T. Streicher, “Investigations Into Intensional Type Theory”, Habilitation The-

sis, Ludwig-Maximilians-Universität München, 1993.

[Tro11] A. S. Troelstra, “History of constructivism in the 20th century”, Set Theory,

Arithmetic, and Foundations of Mathematics, 2011, pp. 150–179.

[Uni13] The Univalent Foundations Program, Homotopy Type Theory: Univalent Foun-

dations of Mathematics, URL: https://homotopytypetheory.org/book, 2013.

[UniMath] The UniMath library, URL: https://github.com/UniMath/UniMath.

https://doi.org/10.4230/LIPIcs.TYPES.2019.8
https://arxiv.org/abs/arXiv:2007.00624
https://golem.ph.utexas.edu/category/2015/01/the_univalent_perspective_on_c.html
https://golem.ph.utexas.edu/category/2015/01/the_univalent_perspective_on_c.html
https://arxiv.org/abs/arXiv:1509.07584
https://doi.org/10.1145/2775051.2676983
https://doi.org/10.1145/2992783
https://doi.org/10.1145/2992783
https://homotopytypetheory.org/book
https://github.com/UniMath/UniMath

272 REFERENCES

[vAS15] M. van Atten and G. Sundholm, “L.E.J. Brouwer’s ‘Unreliability of the logical

principles’. A new translation, with an introduction”, arXiv e-print (math.HO),

2015, arXiv:1511.01113v1.

[vD15] F. van Doorn, “Constructing the Propositional Truncation using Non-recursive

HITs”, arXiv e-print (math.LO), 2015, arXiv:1512.02274.

[vD18] F. van Doorn, “On the Formalization of Higher Inductive Types and Synthetic

Homotopy Theory”, arXiv e-print (math.AT), 2018, arXiv:1808.10690.

[vDvRB17] F. van Doorn, J. von Raumer, and U. Buchholtz, “Homotopy Type Theory

in Lean”, Interactive Theorem Proving, Springer International Publishing, 2017,

pp. 479–495.

[Voe06] V. Voevodsky, “A very short note on homotopy λ-calculus”, unpublished

(2006), URL: https://www.math.ias.edu/~vladimir/Site3/Univalent_Found

ations_files/Hlambda_short_current.pdf, accessed: 20.05.2021.

[Voe14] V. Voevodsky, “The equivalence axiom and univalent models of type theory.

(Talk at CMU on February 4, 2010)”, arXiv e-print (math.LO), 2014, arXiv :

1402.5556.

[VvdW20] N. Veltri and N. van der Weide, “Constructing Higher Inductive Types as

Groupoid Quotients”, arXiv e-print (cs.LO), 2020, arXiv:2002.08150.

[Whi78] G. W. Whitehead, Elements of homotopy theory, vol. 61, Graduate texts in math-

ematics, Springer, 1978.

https://arxiv.org/abs/arXiv:1511.01113v1
https://arxiv.org/abs/arXiv:1512.02274
https://arxiv.org/abs/arXiv:1808.10690
https://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/Hlambda_short_current.pdf
https://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/Hlambda_short_current.pdf
https://arxiv.org/abs/arXiv:1402.5556
https://arxiv.org/abs/arXiv:1402.5556
https://arxiv.org/abs/arXiv:2002.08150

	Introduction
	Homotopy Type Theory
	Coherence Theorems in Category Theory
	Goals and Structure of the Thesis

	Homotopy Type Theory
	Types, Terms and Judgments
	Functions and Pairs
	Inductive Types
	Identity Types
	Equivalences and Paths in the Universe
	Higher Inductive Types

	Coherence for Monoidal Groupoids
	Motivation
	Classical Monoidal Categories
	Monoidal Groupoids
	Lists as Monoidal Groupoids
	A Free Functor to Monoidal Groupoids
	The Proof of Coherence
	Discussion
	Figures in Proofs

	Coherence for Symmetric Monoidal Groupoids
	Symmetric Monoidal Groupoids
	Symmetric Lists
	Coherence for Symmetric Monoidal Groupoids
	Discussion
	Figures in Proofs

	Finite Types and Symmetric Monoidal Structures
	Finite Types
	Deloopings of Symmetric Groups
	An Equivalence slist(1) del
	A Degreewise Equivalence delBS
	Discussion and Conclusions
	Figures in Proofs

	Directions for Further Research
	Alternative Formulations of Coherence Statements
	Other Monoidal Structures

	Formalization in Coq
	Coherence for Monoidal Groupoids
	Coherence for Symmetric Monoidal Groupoids
	Finite Types and Symmetric Monoidal Structures

	References

