
University of Bergen

Master Thesis in Applied and Computational
Mathematics

Acoustic and Boundary Layer
Comparisons Between

Navier-Stokes and Svärd’s
Modified Navier-Stokes Equations

Author:
Karl Munthe

December 22, 2021

2

Abstract

In this thesis we examine the validity and predictive value of the
Navier-Stokes-Svärd equations, first introduced in [22]. We compare the acoustic
attenuation between the Navier-Stokes and Navier-Stokes-Svärd equations. The
comparison is done by numerically solving both equations with initial conditions
small enough such that non-linearities are negligible (i.e., linear theory is still
valid). The numerical solution is then compared against analytically solution to
the linearized Navier-Stokes and Navier-Stokes-Svärd equations as well as
experimental results found in the literature. Additionally, we examine the
boundary layer obtained from the Navier-Stokes-Svärd equations and compare it
with the Blasius boundary layer.

The acoustic simulations show that if both systems are in the linear regime, the
difference between the models is much smaller than what can be measured with
equipment being used in experimental acoustics today. The boundary layer
simulations also show a good agreement between the Blasius boundary layer and
the boundary layer obtained from the Navier-Stokes-Svärd equations.

3

4

Acknowledgements

First and foremost I want to express my gratitude to Professor Magnus Svärd
who has guided me through this masters thesis. Thank you for your guidance
and interesting discussions.

Furthermore, I would like to thank my friends Calvin, Devan, Evan, and Gracy
for introducing me to science. Had it not been for you, I would probably never
had studied science at all. My life has become much richer after receiving a
formal education in physics and math and I am extremely grateful for the
inspiration and motivation you guys gave me to pursue a masters in
mathematics. Additionally, I want to thank Professor Nancy Emery from the
University of Colorado, Boulder, who was the first professor I had who really
showed me how interesting and awesome nature really is.

Last but not least, I want to thank my family and partner, Birgitte, for
supporting me in all my endeavours. Without your continued support I would
never have come this far.

5

6

Contents

Introduction 13
Outline . 14

0 Useful Equations, Operators, and Identities 17
0.1 Equations . 17
0.2 Operators . 18
0.3 Identities . 21

1 Elementary Physics 23
1.1 Simple Harmonic Motion . 23
1.2 Entropy . 24
1.3 The Newtonian Viscous Stress Tensor 25
1.4 Small, Irrotational, and Isentropic Sound Waves 26

2 Mathematical Entropy 29
2.1 Mathematical Entropy Function . 29
2.2 Mathematical Entropy Function for Euler Equations 32
2.3 Euler Entropy Equation . 36
2.4 Navier-Stokes Entropy Diffusion . 38
2.5 Navier-Stokes-Svärd Entropy Diffusion 41

3 Sound Absorption Coefficient 43
3.1 Coefficient of Absorption for Navier-Stokes 44
3.2 Coefficient of Absorption for Navier-Stokes-Svärd 45

4 Spectral Methods 47
4.1 Finite Difference Methods via Interpolation 47
4.2 Semi-Discrete Domain . 49
4.3 Discrete Domain . 54

4.3.1 Odd Number of Grid Points 54
4.3.2 Even Number of Grid Points 55

7

8 CONTENTS

4.4 Convergence . 60

5 Fourth Order Runge-Kutta Method 63

6 Code Verification 69
6.1 Method of Manufactured Solution 69

6.1.1 Errors by Method of Manufactured Solution 71

7 Acoustic Attenuation Simulation Results 75
7.1 Post Simulation Analysis . 75
7.2 Sources of Errors . 76
7.3 Numerical Results . 77

8 Boundary Layer 83
8.1 Incompressible Navier-Stokes-Svärd Equations 83
8.2 Boundary Layer Equation for Laminar Flow 85

8.2.1 Blausius Solution to a Boundary Layer of a Flat Plate . . . 88

9 Non-Dimensional Boundary Layer Simulation 91
9.1 Numerical Solution of Blasius Boundary Layer 92
9.2 Finite Volume Method . 92
9.3 Boundary Conditions, Initial Conditions, and Fluid Properties . . . 96
9.4 Grid Transformation . 96
9.5 Numerical Results . 97

Conclusion and Outlook 101

Appendix 102
Appendix A . 102
Appendix B . 103

Bibliography 107

List of Figures

4.1 Complex roots of 10 point sinc function 53
4.2 Complex roots of 11 point sinc function 54
4.3 11 point sinc function and its derivative 56
4.4 10 point sinc function and its derivative 58
4.5 Spectral difference matrix . 59

5.1 Stability region for the fourth order Runkge-Kutta method 67

6.1 Spectral Convergence of Navier-Stokes equations 72
6.2 Spectral Convergence of Navier-Stokes-Svärd equations 73

7.1 Occurance of non-linearities . 78
7.2 semi-log plot of numerical and theoretical absorption sound

absorption for Oxygen with p0 = 105. 79
7.3 semi-log plot of numerical and theoretical absorption sound

absorption for Oxygen with p0 = 103. 80
7.4 semi-log plot of numerical and theoretical absorption sound

absorption for Argon with p0 = 105. 80
7.5 semi-log plot of numerical and theoretical absorption sound

absorption for Argon with p0 = 103. 81

9.1 The first eight attempts of the shooting method for solving Blasius’s
ODE. 93

9.2 Plots of f , df/dη, ηdf/dη − f , and d2f/dη2 93
9.3 The grid used to solve for the boundary profile of the NSS equations. 98
9.4 Numerical NSS Boundary layer plotted on the analytical Blasius

solution . 99
9.5 Numerical NSS Boundary layer plotted on the analytical Blasius

solution . 99

9

10 LIST OF FIGURES

List of Tables

6.1 Error using manufactured solution for Navier-Stokes 71
6.2 Error using manufactured solution for Navier-Stokes-Svärd 72

7.1 Oxygen with background pressure at 105 Pa 78
7.2 Oxygen with background pressure at 103 Pa 79
7.3 Argon with background pressure at 105 Pa 79
7.4 Argon with background pressure at 103 Pa 80

9.1 Error between Blasius and NSS equations 98

11

12 LIST OF TABLES

Introduction

Fluid mechanics is the study of the behavior of gases and liquids and is used in
all domains of modern society. It is important for the understanding of everything
from bodily fluids to spaceships. One of the earliest and most popular set of fluid
equations model adiabatic and inviscid flow and are known as the Euler equations:

∂ρ

∂t
+∇ · (ρu) = 0

∂(ρu)

∂t
+∇ · (ρu⊗ u) +∇p = 0

∂E

∂t
+∇ · (Eu + pu) = 0,

where ρ is the density, u is the velocity, p is the pressure, and E is the total energy.
Since most fluid phenomena occur in the presence of viscosity and/or heat transfer
there have been attempts at modelling these effects as well. The most well-known
and widely used model is the Navier-Stokes (NS) equations. In the absence of
body forces, the NS equations are:

∂ρ

∂t
+∇ · (ρu) = 0

∂(ρu)

∂t
+∇ · (ρu⊗ u) +∇p = ∇ · σ

∂E

∂t
+∇ · (Eu + pu) = ∇ · (σ · u) +∇ · (κ∇T)

where κ is the thermal diffusivity and σ is the viscous stress tensor. For a
Newtonian fluid, the viscous stress tensor, σ, is

σ = ζ∇ · uI + µ

(
∇u + (∇u)> − 2

3
(∇ · u)I

)
.

Despite the success of the Navier-Stokes equations, there is still no well-posedness
proof (no proof of existence, uniqueness, or stability). In fact, the well-posedness
of the incompressible Navier-Stokes equations has been questioned in [26]. Other

13

14 LIST OF TABLES

attempts have therefore been made to model viscosity and heat transfer for fluid
flow. This thesis will focus on is the Navier-Stokes-Svärd equations (NSS) first
proposed in [22], which among other things, introduced mass diffusion. For other
mass diffusive models, see the citations in [22]. The NSS equations are:

∂ρ

∂t
+∇ · (ρu) = ∇ · (ν∇ρ)

∂(ρu)

∂t
+∇ · (ρu⊗ u) +∇p = ∇ · (ν∇(ρu))

∂E

∂t
+∇ · (Eu + pu) = ∇ · (ν∇E).

The difference between the NSS and NS equations is solely in the diffusive terms.
The NSS equations are conservative and the non-linear phenomena are a result of
the convective terms which are the exact same as the NS equations (and Euler
equations) indicating that all the non-linear phenomena generated by the NS
equations must also be generated by the NSS equations. The equations differ in
how they diffuse ρ, u, and E, and all the equations in the NSS system are
parabolic, while the NS system has one hyperbolic and two parabolic equations.

This thesis will examine the validity and predictive value of the NSS equations.
Specifically we will compare how the NSS and NS equations predict acoustic
attenuation. This is done by comparing the numerical solution to the analytical
solution of the linearized equations and to experimental results found in the
literature. Additionally, we compare the Blasius boundary layer with the NSS
equations on a domain approximating the assumptions used to derive the Blasius
boundary layer.

The acoustic simulations of both the NS and NSS equations show an
experimentally indistinguishable difference in their predictions of acoustic
attenuation for acoustic waves in the linear regime. The boundary layer
simulations of the NSS equations show a good agreement with the Blasius
boundary layer.

All the code written for this thesis has been written from scratch by the author
and can be found here: https://github.com/KarlMunthe/MasterThesis.

Thesis Outline
Chapter 1: derive core equations that will be used in the succeeding chapters.
The equations used in derivations for the NSS equations that are not needed in

LIST OF TABLES 15

derivations for the NS equations will derived. (Equations needed for the NS
equations can be found in [13], [12], or [1]).

Chapter 2: explain the concept of entropy for a system of conservation laws
from a mathematical point of view and derive the mathematical equivalent of the
second law of thermodynamics. Furthermore, we will derive the physically
relevant entropy vector and equations for both the NS and NSS systems and
prove that they satisfy the second law of thermodynamics.

Chapter 3: derive the coefficient of absorption for both the NS and NSS
systems with help from the entropy equations derived in chapter 2.

Chapter 4: present the spectral methods and derive the n’th order difference
matrix for an equispaced grid.

Chapter 5: introduce the basic ideas behind time discretization techniques and
derive the fourth order Runge-Kutta method.

Chapter 6: show that the scheme used to solve the NS and NSS systems
converges with a spectral convergence rate by help of the method of the method
of manufactured solution.

Chapter 7: discuss various sources of errors and then present the results of the
sound wave simulations.

Chapter 8: show that the incompressible NS and NSS equations are the same.
Then we will derive the boundary layer equations and then derive the Blasius
ordinary differential equation.

Chapter 9: present the results from the numerical solution to the
non-dimensionalized boundary layer problem and compare the boundary layer
obtained from the NSS system with the boundary layer solved by the Blasius
equations.

16 LIST OF TABLES

Chapter 0

Useful Equations, Operators, and
Identities

This chapter presents useful equations, operators, and identities that will be used
throughout this thesis. For a derivation and/or explanation of the various
equations consult [14] and [13].

0.1 Equations

Throughout this thesis we will use the following notation to describe various
entities. Unless stated otherwise, u is velocity vector, m is momentum vector, ρ
is density, E is total energy, e is internal energy, T is temperature, p is pressure,
cp is heat capacity at constant pressure, cV is heat capacity at constant volume,
γ is heat capacity ratio, R is specific gas constant, µ is the dynamic viscosity, ν is
the kinematic viscosity, β is the linear thermal expansion coefficient, and S is the
specific entropy. The following is a list of standard fluid mechanics equations

17

18 CHAPTER 0. USEFUL EQUATIONS, OPERATORS, AND IDENTITIES

that will be used frequently throughout this thesis.

m = ρu (1)

E = ρ

(
|m|2

2
+ e

)
(2)

e = cV T (3)
p = ρRT (4)

γ =
cp
cV

(5)

R = cp − cV (6)

ν =
µ

ρ
(7)

Tds = ncV dT + pdV (8)

S = cV ln

(
p

ργ

)
(9)

∂T

∂x
=
cβT

cp

∂u

∂x
(10)

Tβ2c2

cp
=
cp
cv
− 1 (11)

0.2 Operators
Definition 0.2.1 (Material derivative). The material derivative of some scalar
function f is the sum of the time derivative of f and the dot product between
gradient of f and the velocity field.

D

Dt
f =

∂

∂t
f + u · ∇f. (12)

Definition 0.2.2 (Tensor product). The tensor product between two vectors, a⊗b,
is a matrix where each entry in a is multiplied by the transpose of b.

a⊗ b =

a1b
>

...
aNb>

 =


a1b1 a1b2 a1b3 · · · a1bN
a2b1 a2b2 a2b3 · · · a2bN
...

aNb1 aNb2 aNb3 · · · aNbN


Definition 0.2.3 (Hadamard product). The Hadamard operator product, ◦, acts
on matrices of the same size. The Hadamard product between two matrices, A and
B, results in a new matrix C which is the same size as A and B but each entry in

0.2. OPERATORS 19

C is the product of the same entry in both A and B. Given two vectors, a and b,
their Hadamard product is

a ◦ b =

 a1b1
...

aNbN


and between two matrices, A and B, is

A ◦B =


A11B11 A12B12 A13B13 · · · A1NB1N

A21B21 A22B22 A23B23 · · · A2NB2N
...

AN1BN1 AN2BN2 AN3BN3 · · · ANNBNN


Definition 0.2.4 (Frobenius inner product/double dot product). The Frobenius
inner product between two matrices, A : B, returns the sum of the product of each
entry in A multiplied by the entry with the same index in B.

A : B =
∑
i

∑
j

AijBij =A11B11 + A12B12 + · · ·+ A1NB1N+

A21B21 + A22B22 + · · ·+ A2NB2N+

...
AN1BN1 + AN2BN2 + · · ·+ ANNBNN .

Note that the Frobenius inner product between two matrices A and B is the
sum of all the entries in the Hadamard product between A and B.
In this thesis we will be working with systems of PDE’s that can be cast in
conservative form. Therefore it is convenient to write the system of equations in
container form

PDE’s are often coupled where parts of the system are scalars, vectors or tensors.
Often the same operation is done on a vector as a tensor. To simplify notation
we introduce the container, which is best explained by an example

Definition 0.2.5 (Container). The Euler equations can be expressed as

∂

∂t
U +

∑
n

∂

∂xn
F = 0

where U = (ρ,m, E)> and

∑
n

∂

∂xn
F =

 ∇ · (m)
∇ · (m⊗ m

ρ
) +∇p

∇ · (Em
ρ

+ pm
ρ

)



20 CHAPTER 0. USEFUL EQUATIONS, OPERATORS, AND IDENTITIES

Since every term has a "∇·", the mathematics becomes simpler if we express this
as

∇� F

where

F =


m

(m⊗ m
ρ

) + pI
Em

ρ
+ pm

ρ

 . (13)

∇� will be defined in the next definition. We will refer to (13) as a container
which is denoted with curly brackets. The container contains three first entries,
m, (m⊗m/ρ) + pI, Em/ρ+ pm/ρ.

Definition 0.2.6 (O divergence). Given a system of PDE’s

∂u

∂t
=


∇ · f1(u)
∇ · f2(u)

...
∇ · fN(u)


we can express this as

∂u

∂t
= ∇� F.

where F = (f1, f2, · · · , fN)>. The rule is that the operator acting on F gets moved
inside such that it acts on all the first indices of F . We emphasize first because
if F is a vector containing vectors and/or tensors then the operator acts on the
vectors and/or tensors in F and not the entries of the vectors and/or tensors in
F .

Definition 0.2.7 (O dot product). Given a vector g and a container
F = (f1, f2, · · · , fN)> the O dot prodcut, �, between the two is as follows

g � F =
∑
n

gfn = g · f1 + g · f2 + · · ·+ g · fN .

fn might not necessarily be a vector, and in the case that it is a scalar, fn, we
multiply fn by a vector with unit entries such that g · fn returns a scalar. Or, we
can dot g with a vector with the same length as g with unit entries such that we
end up with the same scalar. See appendix A for an example.

In this thesis we will abuse notation for containers in the two following ways.
Given a vector g and a container F = (f1, f2, · · · , fN)> the "normal" dot product

0.3. IDENTITIES 21

is

g · F =


g · f1

g · f2
...

g · fN

 . (14)

One can think of the g· being sent into the container and dotted with its entries.
In the case that fn is not a vector the same rules apply as stated in definition 9.5.

Given two containers, G = (g1,g2, · · · ,gN)>, and F = (f1, f2, · · · , fN)> the
double dot product between F and G is

G : F =
∑
n

gnfn = g1 · f1 + g2 · f2 + · · ·+ gN · fN (15)

which technically is not the same as the Frobenius inner product, but is similar
enough so we use the same notation. In the case that fn is not a vector the same
rules apply as stated in definition 9.5.

0.3 Identities
Definition 0.3.1 (Various Product Rules). Given a scalar a and a vector b the
product rule is:

∇ · (ab) = b · ∇a+ a∇ · b. (16)

Given a vector a and a vector b the product rule is:

∇ · (a⊗ b) = (∇ · a)b + a · ∇b. (17)

Given a second order tensor A and a vector b the product rule is:

∇ · (A · b) = b · ∇ · A+ A : ∇b. (18)

22 CHAPTER 0. USEFUL EQUATIONS, OPERATORS, AND IDENTITIES

Chapter 1

Elementary Physics

In this chapter we will outline the most important physical principles and relations
that are necessary for the analysis of acoustic attenuation and boundary layer
simulations of the Navier-Stokes-Svärd equations. All derivations in this chapter
are used for the Navier-Stokes equations as well, except for (1.13). For more
information about these derivations consult [13] and [28].

1.1 Simple Harmonic Motion
It is well known that the energy of small and linear waves is expressed in terms of
the potential and kinetic energy as follows

E =
1

2
mu2 +

1

2
kx2 (1.1)

where m is mass, u is velocity, k is some proportionality constant, and x is
displacement. Assuming the waves are so small that energy dissipation is
negligible we can assume the energy to be constant. Moreover, we assume that x,
and therefore u, is a simple sinusoidal function. Setting x = A sin(kx−ωt) we get

E =
1

2
m(−Aω cos(kx− ωt))2 +

1

2
k(A sin(kx− ωt))2

since u is the time derivative of the displacement. Now we simply integrate over
one temporal wavelength and get

E =

∫ λ

0

1

2
m(−Aω cos(kx− ωt))2dx+

∫ λ

0

1

2
k(A sin(kx− ωt))2dx

=
1

4
mA2ω2 +

1

4
kA2.

23

24 CHAPTER 1. ELEMENTARY PHYSICS

Since m and ω are all constants we can safely assume that the energy is
proportional to the amplitude squared, namely

E ∝ A2.

Moreover, ω can be derived by Newton’s second law and one finds that ω2 = k/m.
The magnitude of the kinetic energy, KE, must be equal to the magnitude of the
potential energy, PE. Therefore, the total energy can be expressed as twice the
kinetic or potential energy.

E = 2KE = 2PE

According to Landau and Lifshitz [13], the decay of mechanical energy is

E = C exp

(
d

dt
ln(KE)t

)
= C exp

(
d
dt
KE

KE
t

)
= C exp (Γt) . (1.2)

1.2 Entropy
We will now derive the entropy function. Since the derivation mostly contains
substitutions of thermodynamic relations we will show the substitutions needed in
order to get to the next line to the right of the equation. Here, n is the number of
moles m is mass. We begin with the fundamental thermodynamic relation:

Tds = ncV dT + pdV, V =
m

ρ

ds = ncV
dT

T
− mp

Tρ2
dρ, pV = nRT ⇔ mp

ρT
= nR

= ncV
dT

T
− nRdρ

ρ
,

∫ t

t0

dt

s = ncV ln(T)− nR ln(ρ) + C, R = cp − cv ⇔ R = cV (γ − 1)

= ncV ln(T)− ncV ln(ργ−1) + C, T =
p

ρR

= ncV ln

(
p

ργ
1

R

)
+ C

S = cV ln

(
p

ργ

)
(1.3)

where S = s/n and is referred to as the specific entropy. We have used the definite
integral because entropy is a relative quantity, meaning that there is no absolute
zero measure of entropy in the continuum realm. From (1.3) we can deduce that
in isentropic phenomena (no change in entropy), p = p0ρ

γ.

1.3. THE NEWTONIAN VISCOUS STRESS TENSOR 25

1.3 The Newtonian Viscous Stress Tensor
The viscous stress tensor for a Newtonian fluid is

σ = λ(∇ · u)I + µ(∇u + (∇u)T). (1.4)

(A rigorous derivation of (1.5) can be found in [1] and a less detailed but more
intuitive approach can be found in [12]). The first term arises because for any
parcel of fluid there will always be a perpendicular force acting on the surface
of the parcel. The second term is the deformation tensor and describes how the
parcel deforms when subjected to stresses. The first term determines the change
of volume and the second term determines the change of shape. The viscous stress
tensor, σ, for the Newtonian fluid can be expressed as the sum of the trace of
the viscous stress tensor and everything that isn’t the trace of the viscous stress
tensor. The trace of the first term on the right side is simply three times the value
λ and the trace on the second term is simply the divergence of the velocity field,
which is straight forward to show in indicial notation:

µ(∇u + (∇u)>) = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
tr(µ(∇u + (∇u)>)) = µ

3∑
i=j=1

(
∂ui
∂xj

+
∂uj
∂xi

)
= 2µ

(
∂u1

∂x1

+
∂u2

∂x2

+
∂u3

∂x3

)
= 2µ∇ · u

so the trace of σ is simply

tr(σ) = (3λ+ 2µ)(∇ · u).

Now the viscous stress tensor for a Newtonian fluid can be expressed simply as the
sum of the trace with everything else.

σ = tr(σ) + (σ − tr(σ))

=

(
λ+

2

3
µ

)
∇ · uI + µ

(
∇u + (∇u)> − 2

3
(∇ · u)I

)
= ζ∇ · uI + µ

(
∇u + (∇u)> − 2

3
(∇ · u)I

)
(1.5)

ζ = (λ + 2
3
µ) and is referred to as the second viscosity, bulk viscosity, or volume

viscosity and is significant when the volume changes significantly. Often this can

26 CHAPTER 1. ELEMENTARY PHYSICS

be set to equal zero, which is called Stokes assumption. The last term in the
parenthesis can be checked to be valid by recognizing that the term in the
parenthesis must vanish if you sum over all indices when i = j (the diagonal). In
doing so the viscous stress tensor vanishes when a fluid is at rest.

1.4 Small, Irrotational, and Isentropic Sound
Waves

In the limit of smaller and longer waves the viscosity becomes negligible and the
physics described by the Navier-Stokes equations approximate the Euler equations.
Moreover, these waves behave like isentropic waves (constant entropy). The Euler
equations with constant entropy are

∂ρ

∂t
+∇ · (ρu) = 0 (1.6)

∂(ρu)

∂t
+∇ · (ρu⊗ u) +∇p = 0 (1.7)

p = p0ρ
γ.

(1.7) can be recast by using the product rules, (16) and (17), and inserting the
u · ∂tρ from (1.7) resulting in:

ρ
∂

∂t
u + ρu∇ · u +∇p = 0.

Now we decompose the density and pressure, ρ, p, into the background pressure
and density, ρ0, p0, and the density and pressure fluctuation, ρ′, p′, and assume
that the fluctuations and their derivatives are small. These assumptions allow us
to linearize (1.6) and (1.7) as follows:

∂ρ′

∂t
+ ρ0∇ · u = 0

∂u

∂t
+

1

ρ0

∇p′ = 0

p = p0ρ
γ

expressing velocity in terms of the velocity potential, ∇φ = u, and assuming we
can change order of derivation, (1.6) becomes:

∂ρ′

∂t
+ ρ0∇2φ = 0 (1.8)

1.4. SMALL, IRROTATIONAL, AND ISENTROPIC SOUND WAVES 27

and (1.7) becomes:

∇∂φ
∂t

+
1

ρ0

∇p′ = 0

∂φ

∂t
+

1

ρ0

p′ = C. (1.9)

We can set C = 0 and use the the thermodynamic relation

p′ =

(
∂p

∂ρ0

)
s

ρ′,

such that (1.9) becomes
∂ρ′

∂t
= − ρ0(

∂p
∂ρ0

)
s

∂2φ

∂t2
. (1.10)

Inserting (1.10) into the (1.8) we end up with:

− ∂2φ

∂t2
+ c2∇ · ∇φ = 0 (1.11)

where c2 = ∂p/∂ρ is the speed of sound squared. (1.11) is the wave equation and
has the solution φ = f(x− ct). We will now calculate u and p′.

u = ∇φ = ḟ(x− ct)

p′ = −ρ0
∂φ

∂t
= ρ0cḟ(x− ct)

u =
p′

ρ0c

u =
cρ′

ρ0

(1.12)

where we’ve used the fact that p′ = c2ρ′ to get to the last equation. Rearranging
(1.12) we obtain

∂ρ

∂x
=
ρ0

c

∂u

∂x
(1.13)

which will be of relevance when computing the NSS absorption coefficient.

28 CHAPTER 1. ELEMENTARY PHYSICS

Chapter 2

Mathematical Entropy

Mathematical entropy theory is a theory developed to find scalar functions from
conservation laws that satisfy various entropy properties from physics. In
addition to deriving the classic entropy equations from physics, the mathematical
procedure allows one to find other entropy solutions which is helpful when, for
example, proving uniqueness. One of the important reasons for finding entropy
solutions is the ability to generate an entropy inequality satisfying the second law
of thermodynamics. This condition is necessary (but not sufficient) for proving
well-posedness of a PDE or a system of PDE’s. In this chapter we will give an
outline of the basic theory behind mathematical entropy and then find the
entropy equation for the Euler, Navier-Stokes, and Navier-Stokes-Svärd
equations. For an introduction to mathematical entropy theory, we recommend
[5]. For a more in depth writing about entropy and their use in developing
numerical schemes, we recommend [25]. The content of this chapter is based on
the paper [25].

2.1 Mathematical Entropy Function

Given a system of conservation laws of Υ : Rd → Rd and f : Υ→ Rd where d ∈ N:

∂

∂t
Υ +

N∑
n=1

∂

∂xn
f(Υ) = 0, (2.1)

we can apply the chain rule and obtain

∂

∂t
Υ +∇Υf ·

N∑
n=1

∂

∂xn
Υ = 0. (2.2)

29

30 CHAPTER 2. MATHEMATICAL ENTROPY

We can define its corresponding entropy equation to be a scalar function with the
vector Υ as its input as done in [5]

∂

∂t
φ(Υ) +

N∑
n=1

∂

∂xn
ψ(Υ) = 0.

By applying the chain rule, we see that parts of (2.2) appear in the entropy equation

∇Υφ ·
∂

∂t
Υ +∇Υψ ·

N∑
n=1

∂

∂xn
Υ = 0, (2.3)

where ∇Υ refers to the gradient with respect to the entries in Υ (dependent
variables) in contrast to ∇ which is the gradient with respect to the independent
variables, x. If the two following criteria are fulfilled we can be sure that a solution
to (2.3) exists if a solution to (2.2) exists.

1. ∇Υψ = ∇Υφ · ∇Υf(Υ).

2. φ(Υ) is a convex entropy function of Υ such that

∇∇Υφ : ∇g > 0

where g is a vector modelling the diffusion. (For a thorough introduction to
mathematical entropy functions see the article [25] and the citations therein). The
first criteria allows us to show that Υ will satisfy (2.3) by substituting (2.2) into
(2.3).

∇Υφ ·
∂

∂t
Υ +∇Υψ ·

N∑
n=1

∂

∂xn
Υ = 0

∇Υφ ·
∂

∂t
Υ +∇Υφ · ∇Υf ·

N∑
n=1

∂

∂xn
Υ = 0

∇Υφ ·

(
−∇Υf ·

N∑
n=1

∂

∂xn
Υ

)
+∇Υφ · ∇Υf ·

N∑
n=1

∂

∂xn
Υ = 0.

This shows that there is no diffusion of entropy. The gain (or loss) of entropy in
one part of the fluid is due to loss (or gain) of entropy in another part of the
fluid, just as with the other conserved quantities (density, momentum and
energy). Additionally, this shows us that the mathematical entropy function
φ(Υ) can be found by simply contracting the system of conservation laws with

2.1. MATHEMATICAL ENTROPY FUNCTION 31

∇Υφ as long as the first criteria is fulfilled.

(2.2) as it stands now will not guarantee a unique solution (in the strong sense)
as shocks etc. may appear (as is typical with nonlinear hyperbolic PDE’s). To
circumvent this, we now assume that the conservation laws include friction which
is modelled by dissipative, double spatial derivative (Laplacian) of g(Υ),

∂

∂t
Υ +

N∑
n=1

∂

∂xn
f(Υ) = ε∇ · (∇g(Υ)). (2.4)

The physically relevant solution to (2.2) is obtained by taking the limit as ε → 0
in (2.4). Since the second law of thermodynamics must hold we assume that the
entropy can never increase. We will now show via integration by parts that the
entropy will always be decreasing if the second criteria is fulfilled. We begin by
contracting (2.4) with ∇Υφ

∇Υφ ·
∂

∂t
Υ +∇Υφ ·

N∑
n=1

∂

∂xn
f(Υ) = ∇Υφ · ε∇ · (∇g(Υ))

= ε∇ · (∇Υφ · ∇g(Υ))− ε∇∇Υφ : ∇g(Υ)

≤ ε∇ · (∇Υφ · ∇g(Υ)) (2.5)

where the second criteria ensures that all the terms in ε∇∇Υφ : ∇g(Υ) ≥ 0,
enabling us to obtain the inequality which is referred to as the entropy inequality
and is equivalent to the second law of thermodynamics. By taking the limit as
ε→ 0 of (2.5) we get:

∇Υφ ·
∂

∂t
Υ +∇Υφ ·

N∑
n=1

∂

∂xn
f(Υ) ≤ 0.

For our case, (2.1) is the Euler system of equations and (2.4) is the NS and NSS
system of equations. In the next sections we will derive the entropy equation for
the Euler, NS, and NSS system of equations.

32 CHAPTER 2. MATHEMATICAL ENTROPY

2.2 Mathematical Entropy Function for Euler
Equations

Given the Euler equations,

∂

∂t
ρ+∇ · (ρu) = 0 (2.6)

∂

∂t
(ρu) +∇ · (ρu⊗ u)−∇p = 0 (2.7)

∂

∂t
E +∇ · ((E + p)u) = 0, (2.8)

we can find an entropy function. Since the Euler equations model adiabatic (no
transfer of heat or matter) flow we can deduce the behavior of entropy for inviscid,
adiabatic flows from the fundamental thermodynamic relation. The fundamental
thermodynamic relation is

ρdS =
ρ

T
de− p

ρT
dρ (2.9)

and recasting this will gives us a mathematical entropy function that coincides with
the physical entropy function. To recast (2.9) we begin by using the Euler energy
conservation equation (2.8). By using the relations for energy (2) and internal
energy (3) as well as the product rule, (16), we can recast the 2.8) as

∂

∂t
E +∇ · (Eu + pu) = 0

∂

∂t

(
ρe+ ρ

|u|2

2

)
+∇ ·

(
ρeu + ρ

|u|2

2
u

)
+∇ · (pu) = 0

∂ρ

∂t
e+ ρ

∂e

∂t
+
∂ρ

∂t

|u|2

2
+ ρ

∂

∂t

(
|u|2

2

)
+ e∇ · (ρu) + ρu · ∇e

+ρu · ∇
(
|u|2

2

)
+
|u|2

2
∇ · (ρu) +∇ · (pu) = 0. (2.10)

If we now insert the conservation of mass equation (2.6) into (2.10) we see that
∂t(ρ)e = −e∇ · (ρu) and ∂t(ρ)|u|2/2 = −|u|2/2∇ · (ρu). (2.10) is thus simplified
to:

ρ
∂e

∂t
+ ρu∇e+ ρ

∂

∂t

(
|u|2

2

)
+ ρu · ∇|u|

2

2
+∇ · (pu) = 0. (2.11)

The three right most terms are similar to the terms in the conservation of
momentum equations (2.7). If we dot (2.7) by u and once again use the mass

2.2. MATHEMATICAL ENTROPY FUNCTION FOR EULER EQUATIONS33

conservation equation (2.6) we get:

u · ∂
∂t

(ρu) + u · ∇ · (ρu⊗ u) + (∇p) · u = 0

ρu · ∂u

∂t
+

�
�
��|u|2∂ρ
∂t

+ �������
|u|2∇ · (ρu) + ρu · ∇

(
|u|2

2

)
+ (∇p) · u = 0

ρ
∂

∂t

(
|u|2

2

)
+ ρu · ∇

(
|u|2

2

)
+ (∇p) · u = 0 (2.12)

This is referred to as the mechanical energy and inserting (2.12) into (2.11) we are
left with

ρ
∂e

∂t
+ ρu · ∇e = −p∇ · u (2.13)

which is referred to as the internal energy. Note that the left hand side of (2.13)
is the material derivative, (12), of the internal energy, e. Since the material
derivative is a linear operator it can be used as the differential in the
fundamental thermodynamic relation (2.9) as follows

ρdS =
ρ

T
de− p

ρT
dρ

ρ

(
∂S

∂t
+ u · ∇S

)
=
ρ

T

(
∂e

∂t
+ u · ∇e

)
− p

ρT

(
∂ρ

∂t
+ u · ∇ρ

)
. (2.14)

Now using (2.13) in the first term on the right hand side of (2.14) and

1

ρ

∂ρ

∂t
= −1

ρ
∇ · (ρu) = −u

ρ
· ∇(ρ)−∇ · u

(obtained simply by multiplying the conservation of mass equation (2.6) by 1/ρ)
on the last term on the right hand side of (2.14) we obtain the entropy equation

ρ

(
∂S

∂t
+ u · ∇S

)
= − p

T
∇ · u− p

T

(
−u

ρ
· ∇ρ−∇ · u +

u

ρ
· ∇ρ

)
ρ
∂S

∂t
+ ρu · ∇S = 0. (2.15)

Since (2.15) is simply the material derivative for the entropy, S, multiplied by
the density, ρ, it is constant along streamlines. Intuitively, this is because a
material volume is made up by connecting the particles to each other such that
they encompass a parcel of fluid, so whatever way the boundary particles move
they must, by definition, follow the streamlines. (2.15) also holds for a function
with S as its variable as noted by Harten in [9]

ρ
∂h(S)

∂t
+ ρu · ∇h(S) = ρ

∂h

∂S

DS

Dt
. (2.16)

34 CHAPTER 2. MATHEMATICAL ENTROPY

where D/Dt is there material derivative (12). Now, by multiplying the
conservation of mass equation (2.6) with −h(S) and subtract from it (2.16) we
obtain

−h(S)
∂ρ

∂t
− h(S)∇ · (ρu)− ρ∂h(S)

∂t
+ ρu · ∇h(S) = 0

∂

∂t
(−ρh(S)) +∇ · (−ρuh(S)) = 0. (2.17)

The mathematical entropy for the Euler equations is thus

φ(Υ) = −ρh(S) (2.18)

and

N∑
n=1

∂

∂xn
ψ(Υ) = ∇ · (−ρuh(S)). (2.19)

To find ∇Υφ we simply differentiate with respect to the entries in the vector Υ
(which is the vector [ρ,m>, E]>) and use (1.3) as our entropy S. Since the entries
in Υ are the entities ρ, m, and E, we express S in terms of those entities.

S = cV ln

(
p

ργ

)
, p = (γ − 1)

(
E − |m|

2

2ρ

)

= cV ln

(γ − 1)
(
E − |m|

2

2ρ

)
ργ

 .

The following calculations will become easier if we express the entropy as

S = cV

[
ln(γ − 1) + ln

(
E − |m|

2

2ρ

)
− γ ln(ρ)

]
.

2.2. MATHEMATICAL ENTROPY FUNCTION FOR EULER EQUATIONS35

We now find the various values of the gradient of (2.18), ∇Υφ.

∂φ

∂ρ
= −h(S)− ρ∂h

∂S

∂S

∂ρ

= −h(S)− ρ∂h
∂S

cV

(
1

E − m2

2ρ

|m|2

2ρ2
− γ

ρ

)
∂φ

∂m
= −ρ∂h

∂S

∂S

∂m

= −ρ∂h
∂S

cV

(
1

E − |m|2
2ρ

(
−m

ρ

))
∂φ

∂E
= −ρ∂h

∂S

∂S

∂E

= −ρ∂h
∂S

cV

(
1

E − |m|2
2ρ

)

Now using the fact that
1

E − |m|2
2ρ

=
γ − 1

p

we can express our entropy vector, ∇Υφ, as

∇Υφ = −cV
γ − 1

p

∂h

∂S

 |m|
2

2ρ
+ p

γ−1

(
h

cV
∂h
∂S

− γ
)

−m
ρ

 .
Using the following equation for internal energy,

p

γ − 1
= ρcV T ⇔ −cV

γ − 1

p
= − 1

ρT

we can recast the entropy vector as

∇Υφ = − 1

ρT

∂h

∂S

 |m|
2

2ρ
+ ρcV T

(
h

cV
∂h
∂S

− γ
)

−m
ρ


= − 1

T

∂h

∂S

 |u|
2

2
+ cV T

(
h

cV
∂h
∂S

− γ
)

−u
1

 .

36 CHAPTER 2. MATHEMATICAL ENTROPY

For the Navier-Stokes system the only entropy is h(S) = S, [11], and in that case
the entropy vector simplifies to

∇Υφ = − 1

T

 |u|
2

2
+ cV T

(
S
cV
− γ
)

−u
1

 . (2.20)

In [9] Harten proves that the entropy function must satisfy the inequality

ḧ(S)

ḣ(S)
<

1

γ

to guarantee that (1.3), φ(Υ), is convex, and in the case for physical entropy where
h(S) = S this inequality is automatically satisfied. To double check our work we
can contract the Euler equations with (2.20) and see if we obtain (2.17), which is
the subject of the next section.

2.3 Euler Entropy Equation
The Euler equations take the form

∂

∂t
Υ +∇� f(Υ) = 0.

where we have used definition 0.2.6. Contracting with the entropy vector, (2.20),
we obtain

∇Υφ ·
∂

∂t
Υ +∇Υφ · ∇ � f(Υ) = 0 (2.21)

Calculating this is relatively straight forward and the two dimensional case is done
in [9] and we use the approach used in [24]. Here we present the three dimensional
case. We begin by calculating the two terms on the left hand side of (2.21). We
need ∇Υφ, ∂tu, and ∇ � f(Υ) and we will calculate them in that order. We’ve
already calculated ∇Υφ above (equation (2.20)). ∂t[ρ, ρu, E]> is

∂

∂t

 ρ
ρu

ρcV T + ρ |u|
2

2

 =

 ∂tρ
∂tρu + ρ∂tu

∂tρcV T + ρcV ∂tT + ∂tρ
|u|2

2
+ ρ∂t

|u|2
2


and ∇� f(Υ) is

∇�f(Υ) =


∇ · (ρu)

∇ · (ρu⊗ u) +∇p
∇ ·
(
ρ |u|

2

2
u
)

+∇ρ · cV Tu + ρcV∇T · u + ρcV T∇ · u +∇p · u + p∇ · u

 .

2.3. EULER ENTROPY EQUATION 37

To calculate the entropy equation we need help from the entropy function, S =
cV ln(p/ργ) and two vector calculus identities. Differentiating S we get

Ṡ = ˙ln

(
p

ργ

)
=
ṗ

p
− γ ρ̇

ρ
, p = ρRT ⇒ ṗ = ρ̇RT + ρRṪ

=
Ṫ

T
− (γ − 1)

ρ̇

ρ

γρ̇ =
Ṫ

T
ρ+ ρ̇− ρṠ

where the dot above the function represents differentiation with respect to
independent variables (in this case meaning either x or t). Two helpful vector
calculus identities are

u · ∇ · (ρu⊗ u) = ∇ · (ρ|u|2u)− ρu⊗ u : ∇u (2.22)

and
|u|2

2
∇ · (ρu) = ∇ · (ρ|u|2u)− ρu · ∇

(
|u|2

2

)
. (2.23)

Note that
ρu⊗ u : ∇u = ρu · ∇

(
|u|2

2

)
. (2.24)

Now it is straight forward to calculate the terms on the left hand side of (2.21).
Beginning with the first term we get

∇Υφ ·
∂

∂t

 ρρu
E

 = − 1

T

 |u|
2

2
+ cV T

(
S
cV
− γ
)

−u
1

 ·
 ∂tρ

∂tρu + ρ∂tu

∂tρ
|u|2

2
+ ρ∂t

|u|2
2

+ ∂tρcV T + ρcV ∂tT


=

∂

∂t
(ρS) (2.25)

and the second term on the left hand side of (2.21) is

∇Υφ� (∇� f(Υ)) =

= − 1

T

 |u|
2

2
+ cV T

(
S
cV
− γ
)

−u
1

�


∇ · (ρu)
∇ · (ρu⊗ u) +∇p(

∇ ·
(
ρ |u|

2

2
u
)

+∇ρ · cV Tu + ρcV∇T · u
+ ρcV T∇ · u +∇p · u + p∇ · u)


(2.26)

= ∇ · (ρSu).

38 CHAPTER 2. MATHEMATICAL ENTROPY

A more detailed calculation of (2.26) is done in Appendix A. The Euler entropy
equation is thus

∂

∂t
(ρS) +∇ · (ρSu) = 0.

Integrating over a fluid volume and applying the divergence theorem we obtain∫
V

∂

∂t
(ρS)dV +

∮
∂V

(ρSu) · n̂dS = 0.

The subject of the next two sections will be the the calculations of the diffusive
terms of entropy for the NS and NSS systems.

2.4 Navier-Stokes Entropy Diffusion
The following equations have already been calculated for the two dimensional case
in [9]. The diffusive terms in the Navier-Stokes equations are

∇� F =


0
∇ · σ

∇ · (σ · u) +∇ · (κ∇T)


If we insert the Newtonian viscous stress tensor (1.5) we can equate this to

∇� F =


0

∇ ·
((
ζ − 2

3
µ
)

(∇ · u)I + µ(∇u + (∇u)>)
)

∇ ·
((
ζ − 2

3
µ
)

(∇ · u)I · u + µ(∇u + (∇u)>) · u +∇ · (κ∇T)
)
 .

Using the product rule integration by parts we can compactly express it as

∇Υφ� (∇� F) = ∇ · (∇Υφ · F)−∇∇Υφ : F.

Integrating over a control volume and applying the divergence theorem we obtain
the perhaps more familiar form∫

V

∇Υφ� (∇� F) =

∮
∂V

∇Υφ · (F · n̂)dS −
∫
V

∇∇Υφ : FdV (2.27)

where n̂ is a unit vector pointing perpendicularly outward from the surface of the
volume of fluid. We will now ccalculate the two terms on the right hand side of
(2.27). ∇∇Υφ is

∇∇Υφ =

cV
∇T
T
− cV (γ − 1)∇ρ

ρ
+ u·∇u

T
− |u|

2

2T 2∇T
−∇u

T
+ u

T 2 ⊗∇T
− 1
T 2∇T

 . (2.28)

2.4. NAVIER-STOKES ENTROPY DIFFUSION 39

Calculating ∇Υφ · (F · n̂) (the abuse of notation is explained by equation 14) gives
us

∇Υφ · (F · n̂) = − 1

T

 |u|
2

2
+ cV T

(
S
cV
− γ
)

−u
1

 ·


0
σ

σ · u + κ∇T

 · n̂


= −κ∇T
T
· n̂.

Calculating ∇∇Υφ : F ((the abuse of notation is explained by 15) gives us

∇∇Υφ : ∇F =

cV
∇T
T
− cV (γ − 1)∇ρ

ρ
+ u·∇u

T
− |u|

2

2T 2∇T
−∇u

T
+ u

T 2 ⊗∇T
− 1
T 2∇T

 :


0
σ

σ · u + κ∇T


= σ :

∇u

T
+ κ
|∇T |2

T 2

where we have used the fact that

σ :
u

T 2
⊗∇T = (σ · u) · ∇T

T 2
.

If we now insert the Newtonian viscous stress tensor for σ we can express (2.29)
as

σ :
∇u

T
+κ
|∇T |2

T 2
=

[(
ζ − 2

3
µ

)
∇ · uI + µ(∇u + (∇u)>)

]
:
∇u

T
+κ
|∇T |2

T 2
(2.29)

Since the entropy diffusion must be non-negative for the second law of
thermodynamics to hold and obtain the entropy inequality, (2.5), we must use
two vector-calculus identities and some algebraic manipulation to prove that the
diffusive terms in the Navier-Stokes entropy equation is non-negative. First we
split the second term in (2.29) into its diagonal and not diagonal parts and
distribute the ∇u/T term(

ζ − 2

3
µ

)
∇ · uI :

∇u

T
+ 2µ∇uI :

∇u

T
+ µ(∇u + (∇u)>(1− I) :

∇u

T
+ κ
|∇T |2

T 2(
ζ +

4

3
µ

)
∇ · uI :

∇u

T
+ µ(∇u + (∇u)>(1− I) :

∇u

T
+ κ
|∇T |2

T 2
. (2.30)

(1− I) is a matrix with zero in its diagonal entries and one in all the other entries.
Now we use the two following vector calculus identities on the three first terms

∇ · uI : ∇u = (∇ · u)2

40 CHAPTER 2. MATHEMATICAL ENTROPY

and

(∇u + (∇u)>)(1− I) : ∇u =

(
1

2

(
∇u + (∇u)>

)
+

1

2

(
∇u + (∇u)>

))
(1− I) : ∇u

=

(
1

2

(
∇u + (∇u)>

)
: ∇u +

1

2

(
∇u + (∇u)>

)
: (∇u)>

)
(1− I)

=

[
1

2
∇u : ∇u + (∇u)> : ∇u +

1

2
(∇u)> : (∇u)>

]
(1− I)

=
1

2

[(
∇u + (∇u)>

)
: (∇u +

(
∇u)>

)]
(1− I)

=
1

2

(
∇u + (∇u)>

):2
(1− I)

where we have used the fact that the double dot product, :, is a linear operator
and the fact that the double dot product is transpose invariant, meaning that
A : B> = A> : B if either A and/or B are symmetric. In our case this means that
(∇u + (∇u)>) : ∇u = ((∇u)> +∇u) : (∇u)> since (∇u + (∇u)>) is symmetric.
We can now recast (2.30) as

1

T

[(
ζ +

4

3
µ

)
(∇ · u)2 +

µ

2
(∇u + (∇u)>):2(1− I) + κ

|∇T |2

T

]
.

which shows that all the terms are non-negative, satisfying the second law of
thermodynamics. The integral form of the entropy equation for the Navier-Stokes
equations is∫
V

∂

∂t
(ρS)dV +

∮
∂V

(ρSu) · n̂dS =

∮
∂V

κ∇T · n̂dS

+
1

T

∫
V

[(
ζ +

4

3
µ

)
(∇ · u)2 +

µ

2
(∇u + (∇u)>):2(1− I)

+ κ
|∇T |2

T

]
dV

and when assuming an infinitely big or periodic domain (which is relevant for this
thesis) we can neglect the boundary integral terms, leaving us with∫
V

∂(ρS)

∂t
dV =

1

T

∫
V

[(
ζ +

4

3
µ

)
(∇ · u)2 +

µ

2
(∇u + (∇u)>):2(1− I) + κ

|∇T |2

T

]
dV.

(2.31)
where the vertical bars, | · |, denote the Euclidean norm.

2.5. NAVIER-STOKES-SVÄRD ENTROPY DIFFUSION 41

2.5 Navier-Stokes-Svärd Entropy Diffusion
Now we look at the diffusive terms on the Navier-Stokes-Svärd equations, which
are

∇� (ν∇Υ) = ∇�


ν∇ρ

ν∇(ρu)
ν∇E

 .

and by using the product rule as well as (2) and (3) we can recast it as

∇�


ν∇ρ

ν(u⊗∇ρ+ ρ∇u)

ν(∇ρ |u|
2

2
+ ρ∇ |u|

2

2
+∇ρcV T + ρcV∇T)

 .

Parts of these calculations can be found in [22]. By integration by parts we can
express them as∫

V

∇Υφ�∇� (ν∇Υ)dV =

∮
∂V

∇Υφ · (ν∇Υ · n̂)dS −
∫
V

∇∇Υφ : (ν∇Υ)dV.

The first term on the right hand side is the exact same as (2.25) except we now
differentiate with respect to the spatial variables and it equates to

∇Υφ · (ν∇Υ · n̂) =

= − 1

T

 |u|
2

2
+ cV T

(
S
cV
− γ
)

−u
1

 ·
ν


∇ρ
u⊗∇ρ+ ρ∇u

∇ρ |u|
2

2
+ ρ∇ |u|

2

2
+∇ρcV T + ρcV∇T

 · n̂


= ν∇(ρS) · n̂.

To calculate the second term on the right hand side we use (2.28) obtained in the
previous section.

∇∇Υφ : ν∇(Υ)dx =−
1

2T
∇|u|2 + |u|2

2T 2∇T − cV
T
∇T + cV

ρ
(γ − 1)∇ρ

1
T
∇u− u

T 2 ⊗∇T
1
T 2∇T

 : ν


∇ρ

u⊗∇ρ+ ρ∇u

∇ρ |u|
2

2
+ ρ∇ |u|

2

2
+∇ρcV T + ρcV∇T


(2.32)

= νρ
cV
ρ2

(γ − 1)|∇ρ|2 +
νρ

T
|∇u|2 + νρ

cV
T 2
|∇T |2.

The steps of this calculation are shown in Appendix B. (The abuse of notation
is explained by equations (14) and (15)). Here all the terms are non-negative,

42 CHAPTER 2. MATHEMATICAL ENTROPY

satisfying the second law of thermodynamics and allowing for entropy inequality
(2.5). The integral form of the Navier-Stokes-Svärd entropy equation can thus be
expressed as∫
V

∂

∂t
(ρS)dV +

∮
∂V

(ρSu) · n̂dS =

∮
∂V

ν∇(ρS) · n̂dS

+

∫
V

[
νρ
cV
ρ2

(γ − 1)|∇ρ|2 +
νρ

T
|∇u|2 + νρ

cV
T 2
|∇T |2

]
dV

And again, assuming an infinitely big (or periodic) domain we can neglect the
boundary terms leaving us with∫

V

∂(ρS)

∂t
dV =

∫
V

[
νρ
cV
ρ2

(γ − 1)|∇ρ|2 +
νρ

T
|∇u|2 + νρ

cV
T 2
|∇T |2

]
dV. (2.33)

Chapter 3

Sound Absorption Coefficient

The following derivations are from Landau and Lifschitz [13]. In this chapter
we will calculate the amount of energy dissipated due to viscosity and thermal
conductivity. To do so we assume that all the energy that is dissipated, is dissipated
from the mechanical energy, which is the sum of the kinetic and potential energy.
The maximum amount of work occurs when the process is reversible which means
that the entropy must stay constant. This leads us to the following energy relation

Emech = E − E(S)

where E is the total energy, and is a constant, and E(S) is the energy when the
system is at thermal equilibrium but with the same amount of entropy as the total
energy. Taking the time derivative of this we get

dEmech
dt

= −∂E
∂S

dS

dt

where S is the entropy of any given volume, not just a unit volume, and is equal
to
∫

(ρS)dV . ∂SE is the temperature if the system was in a thermodynamic
equilibrium,

T0 =
∂E

∂S

which allows us to express the time derivative of mechanical energy as

dEmech
dt

= −T0
d

dt

∫
ρsdV (3.1)

43

44 CHAPTER 3. SOUND ABSORPTION COEFFICIENT

3.1 Coefficient of Absorption for Navier-Stokes
We will now calculate the coefficient of absorption for the Navier-Stokes equation.
Using the entropy equation (2.31), (3.1) can be expressed as

dEmech
dt

= −T0
1

T

∫
V

[(
ζ +

4

3
µ

)
(∇ · u)2 +

µ

2
(∇u + (∇u)>):2(1− I) + κ

|∇T |2

T

]
dV.

If we now assume that the temperature fluctuation is small we can treat it as a
constant and set T ≈ T0 leaving us with

dEmech
dt

= −
∫
V

[(
ζ +

4

3
µ

)
(∇ · u)2 +

µ

2
(∇u + (∇u)>):2(1− I) + κ

|∇T |2

T

]
dV.

If we assume that the sound wave is a plane wave (a wave where the field variables
only change in one spatial direction and are constant in the others) the PDE
reduces to a one dimensional problem

dEmech
dt

= −
∫ (

ζ +
4

3
µ

)(
∂u

∂x

)2

+
κ

T

(
∂T

∂x

)2

dV

= −
(
ζ +

4

3
µ

)∫ (
∂u

∂x

)2

dV − κ

T

∫ (
∂T

∂x

)2

dV.

Using (10), and then (11), we can simplify further:

dEmech
dt

= −
(
ζ +

4

3
µ

)∫ (
∂u

∂x

)2

dV − Tκβ2c2

c2
p

∫ (
∂u

∂x

)2

dV

= −
(
ζ +

4

3
µ

)∫ (
∂u

∂x

)2

dV − κ

cp

(
cp
cv
− 1

)∫ (
∂u

∂x

)2

dV

= −
(

4

3
µ+ ζ + κ

(
1

cv
− 1

cp

))∫ (
∂u

∂x

)2

dV (3.2)

If we assume the velocity, u is a sinusoidal wave of the form u0 cos(kx − ωt) the
integral term in (3.2) can be expressed as∫ (

∂u

∂x

)2

dV = u2
0k

2

∫
sin2(kx− ωt)dV

and taking the time average after one period we end up with

u2
0k

2

∫
sin2(kx− ωt)dV = u2

0k
2 1

2
V (3.3)

3.2. COEFFICIENT OF ABSORPTION FOR NAVIER-STOKES-SVÄRD 45

where V is the volume of the fluid. Inserting (3.3) into (3.2) we get

dEmech
dt

= −
(

4

3
µ+ ζ + κ

(
1

cv
− 1

cp

))
u2

0k
2 1

2
V.

which is the mean value of the energy dissipation. We can now calculate Γ in (1.2)
using the fact that ρu2

0V/2 is the total mechanical energy (1.1):

ΓNS =

1
2
k2u2

0V
(

4
3
µ+ ζ + κ

(
1
cv
− 1

cp

))
1
2
ρu2

0V

=
k2

ρ

(
4

3
µ+ ζ + κ

(
1

cv
− 1

cp

))
. (3.4)

Using the relation

k =
2πf

c
=
ω

c

we can express (3.4) in terms of the angular frequency as well

ΓNS =
ω2

c2ρ

(
4

3
µ+ ζ + κ

(
1

cv
− 1

cp

))
. (3.5)

For an ideal monoatomic gas we can use the following two values γ = 5/3 and
κ = 5cpµ/2γ to calculate Γ.

ΓNS =
ω2

c2ρ

7

3
µ (3.6)

3.2 Coefficient of Absorption for Navier-Stokes-
Svärd

By the (almost) same procedure as in the previous section we can calculate the
coefficient of absorption for the NSS equations. Using (2.33) we can express (3.1)
as

dEmech
dt

= −T0

∫
V

[
νρ
cV
ρ2

(γ − 1)|∇ρ|2 +
νρ

T
|∇u|2 + νρ

cV
T 2
|∇T |2

]
dV.

As in the precious section, we assume that the sound wave can be moddeled as a
plane wave, T ≈ T0, and that ν = µ/ρ, simplifying the equation as follows

dEmech
dt

= −
∫
V

[
T0µ

cV
ρ2

(γ − 1)

(
∂ρ

∂x

)2

+ µ

(
∂u

∂x

)2

+ µ
cV
T

(
∂T

∂x

)2
]
dV. (3.7)

46 CHAPTER 3. SOUND ABSORPTION COEFFICIENT

Now using (1.13) and (10), (3.7) reduces to

dEmech
dt

= −µ
[
T
cV (γ − 1)

ρ2

ρ2
0

c2
+ 1 + T

cV c
2β2

c2
p

] ∫
V

(
∂u

∂x

)2

dx

and by assuming that ρ ≈ ρ0 we can simplify further

dEmech
dt

= −µ
[
T
cV (γ − 1)

c2
+ 1 + T

cV c
2β2

c2
p

] ∫
V

(
∂u

∂x

)2

dx.

Now, using (11), (3.3) and then cV (γ − 1) = R, and 1− cV /cp = 1− 1/γ

dEmech
dt

= −µ
(
T
cV (γ − 1)

c2
+ 1 + cV

(
1

cV
− 1

cp

))
1

2
k2u2

0V

= −µ
(
TR

c2
+ 2− 1

γ

)
1

2
k2u2

0V.

The absorption coefficient, Γ in (1.2), is thus

1
2
k2u2

0V
(
µ
(
TR
c2

+ 2− 1
γ

))
1
2
ρu2

0V
=
k2

ρ

(
µ

(
TR

c2
+ 2− 1

γ

))
and expressing this in terms on angular frequency we get

ΓNSS =
ω2

c2ρ

(
µ

(
TR

c2
+ 2− 1

γ

))
.

For an ideal monoatomic gas we can again use the values γ = 5/3 and c2 = γRT .
Γ becomes

ΓNSS = 2
ω2

c2ρ
µ.

Comparing with (3.6) we see that ΓNS is 7/6 times greater than ΓNSS, which was
first pointed out in [16].

Chapter 4

Spectral Methods

The content in this chapter is mainly based on the outstanding book "Spectral
Method in Matlab" by Lloyd Nicholas Trefethen [27] with supplementary insights
from [10] and [6].

4.1 Finite Difference Methods via Interpolation
Given a PDE such as

∂u

∂t
+
∂F

∂x
=
∂2G

∂x2

one can solve it numerically using the finite difference method

∂u

∂t
+DF = D2G

where D and D2 are finite difference matrices that approximate the first and
second order derivative respectively and u is the vector with unknowns such that
[u]i ≈ u(xi). Normally, finite-difference stencils are derived by Taylor series. Given
a point f(xn) one can approximate a nearby point by using its derivative as follows

f(xn+h) = f(xn)+h
∂f(xn)

∂x
+O(h2) and f(xn−h) = f(xn)−h∂f(xn)

∂x
+O(h2)

which can be combined to approximate the derivative as

∂f(xn)

∂x
=
f(xn + h)− f(xn − h)

2h
+O(h).

This is referred to as the three point stencil. The O(h) is the truncation error,
i.e., the error of the derivative approximation is proportional to h. One can
obtain higher order stencils (meaning smaller truncation error) by combining

47

48 CHAPTER 4. SPECTRAL METHODS

more Taylor series. One can also create a stencil that approximates higher order
derivatives by combining higher order Taylor series. (For a thorough introduction
to finite difference methods we recommend the book [8]).

An alternative way of computing the finite difference stencil is by first making a
polynomial interpolation of the grid function and then differentiating it. We will
now demonstrate that by Lagrangian interpolation we can find the coefficients of
the finite difference scheme given an equispaced grid. Given three points
(x1, x2, x3) with corresponding values (f1, f2, f3) we can interpolate the points
using Lagrangian interpolation as follows

p(x) = f1
(x− x2)(x− x3)

(x1 − x2)(x1 − x3)
+ f2

(x− x1)(x− x3)

(x2 − x1)(x2 − x3)
+ f3

(x− x1)(x− x2)

(x3 − x1)(x3 − x2)
.

Upon differentiation we get

d

dx
p(x) = f1

2x− (x3 + x2)

(x1 − x2)(x1 − x3)
+ f2

2x− (x1 + x3)

(x2 − x1)(x2 − x3)
+ f3

2x− (x1 + x2)

(x3 − x1)(x3 − x2)

and evaluating this at x = x2 we get

d

dx
p(x2) = f1

x2 − x3

(x1 − x2)(x1 − x3)
+ f2

2x2 − (x1 + x3)

(x2 − x1)(x2 − x3)
+ f3

x2 − x1

(x3 − x1)(x3 − x2)

and using the fact that the difference between two neighboring x’s is a step of size
h, we can recast this expression as

d

dx
p(x2) = f1

−h
(−h)(−2h)

+ f2
0

(h)(−h)
+ f3

h

(2h)(h)

=
f3 − f1

2h

or written in a more familiar manner

d

dx
p(x2) =

f(x+ h)− f(x− h)

2h
.

Note that the middle term equates to zero because the x’s are equispaced allowing
us to express x1 and x3 as (x2 − h) and (x2 + h) respectively, which in turn
enables us to express the numerator as 2x2− (x2− h+ x2 + h) = 0. The accuracy
of this stencil is O(h2). This method of generating finite difference stencils also
applies to higher order stencils. When the number of grid points used in the
creation of a finite difference stencil, it approaches the spectral method. One can
either calculate the stencil for larger and larger Lagrange interpolants and see what

4.2. SEMI-DISCRETE DOMAIN 49

the stencil converges to, or one can interpolate using trigonometric functions and
benefit from their periodicity. The latter approach is the approach we will use in
this thesis. We will first show how to interpolate functions in the semi-discrete
domain (discrete in space and continuous frequency) with help from the Dirac
distribution and then find the periodic interpolants and their derivatives in a fully
discrete domain.

4.2 Semi-Discrete Domain
Given a set of points {xn}, and their corresponding function values f(xn), on an
evenly spaced grid, we can interpolate these points using trigonometric functions.
First, we interpolate our function using the discrete delta distribution

δ(xn) =

{
1, xn = 0

0, xn 6= 0
.

This is equivalent to "measuring" the function at discrete points to obtain a list
of pairs of points corresponding to the input space and output space, (x, f(x)).
Then take the Fourier transform of all discrete delta distributions. The Fourier
transform of a single discrete delta distribution is

δ̂ =
h√
2π

N∑
n=1

δ(xn) exp(−iωxn) =
h√
2π
.

To get a smooth and analytical interpolate, we take the inverse Fourier transform.
The inverse Fourier transform of a delta distribution is:

p(x) =
1√
2π

∫ π
h

−π
h

δ̂ exp(iωx)dω

=
h

2π

1

ix
[exp(iωx)]

π
h

−π
h

=
h

πx
sin
(π
h
x
)

=
sin
(
π
h
x
)

π
h
x

,
π

h
=
N

2

=
sin
(
N
2
x
)

N
2
x

.

This is known as the sinc function, which, like the delta distribution, is
translationally invariant. That is, if you have some points (x, f(x)) you can

50 CHAPTER 4. SPECTRAL METHODS

simply interpolate one point at a time without the interpolation of one point
ruining the interpolation of any other point. In other words, the interpolation of
one point is independent of all the other points. (This is not the case for the
Lagrange interpolant). To demonstrate translational invariance, we first show
that the sinc function can be expressed as as series of cosine functions and then
show that those cosine functions exactly cancel each other at all points except
when x = 0. We begin by a famous equality discovered by Euler in [4], namely

sin(x)

x
= lim

N→∞

N∏
n=1

cos
(x

2n

)
.

Using the trigonometric identity

cos(θ1) cos(θ2) =
1

2
(cos(θ1 + θ2) + cos(θ1 − θ2)),

any product of cosines can be turned into a sum of cosines. For the product of N
cosines we can express the same function as the sum of 2N−1 cosines as follows

N∏
n=1

cos(θn) =
1

2N−1

2N−1∑
n=1

cos(Pn(θ)),

where Pn(θ) is 2N−1 permutations of the sum of N θ’s. For example, if N = 3,
then

Pn(θ) = {θ1 + θ2 + θ3, θ1 + θ2 − θ3, θ1 − θ2 + θ3, θ1 − θ2 − θ3}.

Note that θ1 always comes with positive sign while all the others change signs. We
now set θn = x/2n and ignore x to simplify notation. The first term in Pn(θ) (the
one with all positive values) is a geometric series

P1(θ) =
1

2
+

1

22
+

1

23
+ · · ·+ 1

2N−2
+

1

2N−1
+

1

2N

which can be solved using the following formula for a geometric series

N∑
n=1

rn = r
1− rN+1

1− r

and we obtain

P1(θ) =
1

2
+

1

22
+

1

23
+ · · ·+ 1

2N−2
+

1

2N−1
+

1

2N
= 1−

(
1

2

)N
. (4.1)

4.2. SEMI-DISCRETE DOMAIN 51

Recasting (4.1) with a common denominator of 2N

P1(θ) =
2N−1 + 2N−2 + 2N−3 + · · ·+ 22 + 2 + 1

2N
=

2N − 1

2N
(4.2)

we obtain a straightforward way of expressing all the values of Pn(θ) by using
(4.2). The next term in Pn(θ), P2(θ), will be the same, except the last term will
be negative, giving us

P2(θ) =
2N−1 + 2N−2 + 2N−3 + · · ·+ 22 + 2− 1

2N
= P1(θ)− 2

2N
=

2N − 3

2N

and P3(θ) will be

P3(θ) =
2N−1 + 2N−2 + 2N−3 + · · ·+ 22 − 2 + 1

2N
= P1(θ)− 4

2N
=

2N − 5

2N

and so on, giving us the following values

Pn

(x
2n

)
=

{(
2N − 1

2N

)
x,

(
2N − 3

2N

)
x,

(
2N − 5

2N

)
x, · · · ,

(
5

2N

)
x,

(
3

2N

)
x,

(
1

2N

)
x

}
=

{(
2n− 1

2N

)
x

}
, n = 2N−1, 2N−1 − 1, 2N−1 − 2, · · · , 3, 2, 1. (4.3)

We can now express the sinc function both as a product of cosines and as a sum
of cosines as follows

sin(x)

x
= lim

N→∞

N∏
n=1

cos
(x

2n

)
= lim

N→∞

1

2N−1

2N−1∑
n=1

cos

(
2n− 1

2N
x

)
and since we will eventually use this equality in a computer using finite precision
arithmetic, we use the approximation,

sin(x)

x
≈

N∏
n=1

cos
(x

2n

)
=

1

2N−1

2N−1∑
n=1

cos

(
2n− 1

2N
x

)
where the error can be made sufficiently small by increasing N . Consequently

sin
(

2N−1

2
x
)

2N−1

2
x

=
1

2N−1

2N−1∑
n=1

cos

(
2n− 1

2N

(
2N−1

2
x

))

=
1

2N−1

2N−1∑
n=1

cos

(
2n− 1

4
x

)
.

52 CHAPTER 4. SPECTRAL METHODS

We will now show that for an even or odd number of equidistant points, N , between
0 and 2π the following equation

sin
(
N
2
x
)

N
2
x

=
1

N

N∑
n=1

cos

(
2n− 1

4
x

)
(4.4)

equates to one at x = 0 and zero at all the other points. We begin by writing the
first, middle, and last values of the series (4.4)

sin
(
N
2
x
)

N
2
x

=
1

N

[
cos

(
1

4
x

)
+ cos

(
3

4
x

)
+ cos

(
5

4
x

)
+ · · ·

+ cos

(
N − 1

4
x

)
+ cos

(
N + 1

4
x

)
+ · · ·

+ cos

((
N

2
− 5

4

)
x

)
+ cos

((
N

2
− 3

4

)
x

)
+ cos

((
N

2
− 1

4

)
x

)]
.

(4.5)

Now, using the fact that the nodes are equally spaced, we can express the discrete
x values as

xn =

{
2π

N
, 2

2π

N
, 3

2π

N
, · · · , (N − 2)

2π

N
, (N − 1)

2π

N
,N

2π

N

}
= n

2π

N
, n = {1, · · · , N}

and inserting xn into (4.5) we obtain

sin
(
N
2

(x− xn)
)

N
2

(x− xn)
=

1

N

[
cos
(
n
π

2N

)
+ cos

(
n
π

2N
3
)

+ cos
(
n
π

2N
5
)

+ · · ·

+ cos
(
n
π

2
− n π

2N

)
+ cos

(
n
π

2
+ n

π

2N

)
+ · · ·

+ cos
(
nπ − n π

2N
5
)

+ cos
(
nπ − n π

2N
3
)

+ cos
(
nπ − n π

2N

)]
.

We now see that if n is an odd number then the last term cancels with the first
term and the second to last term with the second and so on, for all values of xn
except for xn = 0 in which case all the N cosines equate to 1 and we are left with
N/N = 1. See figure (4.1) for a visual representation of the cancellation. Turning
to the case when n is an even number, the first and last terms cancel with the
terms in the middle. Finally, given an odd number of points the only difference is
that we have one more cosine term which sits in the middle and is cos(nπ/2)
which is zero for all integer n’s, as seen in figure (4.2). This gives insight into

4.2. SEMI-DISCRETE DOMAIN 53

Figure 4.1: The cancelation of the sinc function on the complex unit circle where
n = 1 and N = 10.

the interpolation of points using trigonometric functions. For each interpolation
point, f(xn), one multiplies each point with a sin(xnN/2)/(xnN/2) and one will
be left with whatever value is at that point and zero everywhere else.

A small detail that has been tacitly ignored is that although we have been using
discrete spatial points, we have applied the continuous Fourier transform (i.e., we
have been using infinitely many frequencies). This is obviously not possible on
today’s computers but the continuous math has given us a good preparation for
the discrete case.

54 CHAPTER 4. SPECTRAL METHODS

Figure 4.2: The cancelation of the sinc function on the complex unit circle where
n = 1 and N = 11.

4.3 Discrete Domain

4.3.1 Odd Number of Grid Points

To analyze finitely many frequencies we use the discrete inverse Fourier transform.
The interpolant now takes the form

p(x) =
1

N

N
2∑

ω=−N
2

exp(iωx)

and is calculated using the formula for a geometric series, yielding

p(x) =
1

N

sin
(
N
2
x
)

sin
(
x
2

) .
Differentiating p(x) we get

d

dx
p(x) =

cos
(
N
2
x
)

2 sin
(
x
2

) − 1

2N

sin
(
N
2
x
)

sin2
(
x
2

) cos
(x

2

)

4.3. DISCRETE DOMAIN 55

and inserting x = n · 2π/N and using the relation N/2 = π/h we get the following
scheme

d

dx
p(x) =

{
0, n = 0
1
2
(−1)n 1

sin(nh2)
, n 6= 0

.

In matrix form this takes the form

D =



0 −1
2

csc
(
h
2

)
1
2

csc
(

2h
2

)
· · · 1

2
csc
(

2h
2

)
−1

2
csc
(
h
2

)
−1

2
csc
(
h
2

) 1
2

csc
(

2h
2

)
1
2

csc
(

2h
2

) −1
2

csc
(

3h
2

)
−1

2
csc
(

3h
2

)
... −1

2
csc
(
h
2

)
−1

2
csc
(
h
2

)
1
2

csc
(

2h
2

)
−1

2
csc
(

3h
2

)
. . . −1

2
csc
(
h
2

)
0


(4.6)

where D is referred to as the differentiation matrix. The function p(x) and dp/dx
can be seen in figure (4.3). The spectral difference matrix, D, is symmetric with
zeros on its main diagonal. Thus, numerically differentiating the function evaluated
at each grid point is equivalent to taking a convolution of the discrete function with
the derivative of the interpolant. Matrix operators for n’th order derivatives can
be constructed by taking the product of the first order derivative n times. Hence,
the second order derivative is

d2

dx2
p(x) = D2p(x). (4.7)

4.3.2 Even Number of Grid Points
For an even number of grid points the interpolant takes the form

p(x) =
1

N

N
2∑

ω=−N
2

+1

exp(iωx). (4.8)

This is slightly different compared to the case with an odd number of grid points.
For an even number of grid points we obtain an odd number of non-constant
complex exponential functions, exp(0) being the constant exponential function.
Differentiating this interpolant as it stands will give the wrong result because
when evaluating the highest frequency, N/2, there is no negative counterpart to
turn it into an pure and real cosine wave. In other words, for all values of ω except
for ω = N/2, (4.8) will give us two values we can combine as follows

exp(iωx) + exp(−iωx) = 2 cos(ωx)

56 CHAPTER 4. SPECTRAL METHODS

Figure 4.3: p(x) and its derivative with and odd number of grid points. p(x) is
the blue function and its derivative is the red function. Note how the red function
dp/dx is periodic.

and the derivative will be
−2ω sin(ωx).

For the highest frequency, N/2, we get

exp

(
i
N

2
x

)
whose derivative is

i
N

2
exp

(
i
N

2
x

)
since there is no exp(−iN/2x) term. To fix this problem, we evaluate the grid
function at zero as well as at 2π instead of just evaluating it at 2π. Since these
points are the same we must divide them by 2. Our new interpolant can be neatly
written as

p(x) =
1

N

1

2

−N
2
−1∑

ω=−N
2

exp(iωx) +
1

2

−N
2∑

ω=−N
2

+1

exp(iωx)

 . (4.9)

4.3. DISCRETE DOMAIN 57

By algebraic manipulation we can express (4.9) in a more compact form. We begin
by writing the first, middle, and last terms in the sums

p(x) =
1

N

[
1

2

(
ei(−

N
2)x + ei(−

N
2

+1)x + ei(−
N
2

+2)x + · · ·+ ei(0)x + · · ·+ ei(
N
2
−2)x + ei(

N
2
−1)x

)
+

1

2

(
ei(−

N
2

+1)x + ei(−
N
2

+2)x + · · ·+ ei(0)x + · · · ei(
N
2
−2)x + ei(

N
2
−1)x + ei(

N
2)x
)]

=
1

N

[
1

2
e−i

1
2
x
(
ei(−

N
2

+ 1
2)x + ei(−

N
2

+ 3
2)x + ei(−

N
2

+ 5
2)x + · · ·+ ei(

1
2)x + · · ·

+ ei(
N
2
− 3

2)x + ei(
N
2
− 1

2)x
)

+
1

2
ei

1
2
x
(
ei(−

N
2

+ 1
2)x + ei(−

N
2

+ 3
2)x + · · ·

+ ei(−
1
2)x + · · ·+ ei(

N
2
− 5

2)x + ei(
N
2
− 3

2)x + ei(
N
2
− 1

2)x
)]
. (4.10)

Here we can see that the first term in the first sum of (4.10) is the same as the
last term in the second sum and the second term in the first sum the same as the
second to last term in the second sum and so on. This lets us write our interpolate
as

p(x) =
1

N
cos
(x

2

) N
2
− 1

2∑
ω=−N

2
+ 1

2

exp(iωx).

This sum is a geometric series and can be recast by multiplying the numerator and
denominator by exp(−i/2x) and some algebraic manipulation

p(x) =
1

N
cos
(x

2

) exp
(
i
(
−N

2
+ 1

2

)
x
)
− exp

(
i
(
N
2

+ 1
2

)
x
)

1− exp(ix)

=
1

N
cos
(x

2

) exp
(
−iN

2
x
)
− exp

(
iN

2
x
)

exp
(
−i1

2
x
)
− exp

(
i1

2
x
)

=
1

N
cos
(x

2

) sin
(
N
2
x
)

sin
(
x
2

) .
This is the discrete and periodic interpolant. To get the difference operator, we
differentiate p(x).

d

dx
p(x) =

1

2
cos

(
N

2
x

)
1

tan
(
x
2

) − 1

2N
sin

(
N

2
x

)(
1

tan2
(
x
2

) + 1

)
and inserting x = {n · 2π/N}, where n = 0, 1, 2, · · · , N we get

d

dx
p(x) =

1

2
(−1)n

1

tan
(
n π
N

) − 1

2N
sin(nπ)

(
1

tan2
(
nπ

2

) + 1

)

58 CHAPTER 4. SPECTRAL METHODS

and using the relation N/2 = π/h we get the following scheme

d

dx
p(x) =

{
0, n = 0
1
2
(−1)n 1

tan(nh2)
, n 6= 0

.

In matrix form this takes the form

D =



0 −1
2

cot
(
h
2

)
1
2

cot
(

2h
2

)
· · · 1

2
cot
(

2h
2

)
−1

2
cot
(
h
2

)
−1

2
cot
(
h
2

) 1
2

cot
(

2h
2

)
1
2

cot
(

2h
2

) −1
2

cot
(

3h
2

)
−1

2
cot
(

3h
2

)
... −1

2
cot
(
h
2

)
−1

2
cot
(
h
2

)
1
2

cot
(

2h
2

)
−1

2
cot
(

3h
2

)
. . . −1

2
cot
(
h
2

)
0


.

(4.11)
A graphical representation of p(x) and dp/dx can be seen in figure (4.4). The rows

Figure 4.4: p(x) and its derivative with and even number of grid points (10 points).
p(x) is the blue function and its derivative is the red function. Note how the
derivative of p(x) is not periodic. Compare with figure (4.3).

of the difference matrix is simply the the derivative of the interpolant centered at
the corresponding grid point. Figure (4.5) shows the idea, and hopefully shows

4.3. DISCRETE DOMAIN 59

that taking the derivative of a periodic function is equivalent to a convolution with
dp/dx. The same visualization can be done for higher order derivatives and for an
odd number of grid points. Since the basis functions for p(x) with an even number

Figure 4.5: An alternative visualization of the spectral difference matrix for the
first derivative for an even number of grid points. The height of each point
corresponds to the value in the difference matrix. There are two things to note
here. The only entries in the matrix that are zero are on the diagonal, which are
marked with a circular dot, and the function in one row is the same function as in
the row above just shifted one grid point to the right.

of grid points are cos(ωx) and sin(ωx), ω ∈ {−N/2 + 1, N/2} we cannot simply
multiply the matrix operator for the first derivative with itself n times to obtain
the n’th order derivative matrix as we did when we were dealing with an odd
number of grid points. To see why, assume that our interpolant is just the highest
frequency wave of the basis functions, p(x) = cos(x · N/2). Upon differentiating
two times we would get

d2

dx2
p(x) = cos(x · (−N/2))

but this is not one of the basis functions for p(x). In other words

d2

dx2
p(x) 6= D2p(x).

60 CHAPTER 4. SPECTRAL METHODS

Therefore we must redo the same calculations as when finding the first derivative
once more. This results in

d2

dx2
p(x) =

1

2N

sin
(
Nx
2

) (
tan2

(
x
2

)
+ 1
)2

tan3
(
x
2

) −
cos
(
Nx
2

)
2

(
1 +

1

tan2
(
x
2

))

− N

4

sin
(
Nx
2

)
tan
(
x
2

) − sin
(
Nx
2

)
2N

(
1 +

1

tan
(
x
2

))

and gives us the following scheme

d2

dx2
p(x) =

{
− π2

3h2
− 1

6
, n = 0

− (−1)n

2 sin2(nh2)
, n 6= 0

.

which can be expressed in matrix form as

D2 =



− π2

3h2
− 1

6
1
2

csc2
(
h
2

)
−1

2
csc2

(
2h
2

)
· · · −1

2
csc2

(
2h
2

)
1
2

csc2
(
h
2

)
1
2

csc2
(
h
2

) −1
2

csc2
(

2h
2

)
−1

2
csc2

(
2h
2

) 1
2

csc2
(

3h
2

)
1
2

csc2
(

3h
2

)
... 1

2
csc2

(
h
2

)
1
2

csc2
(
h
2

)
−1

2
csc2

(
2h
2

)
1
2

csc2
(

3h
2

)
. . . 1

2
csc2

(
h
2

)
− π2

3h2
− 1

6


(4.12)

For intervals other than [0, 2π] we simply multiply the difference operator with a
scaling factor s. Given an interval [a, b], s is obtained by the following formula

s =
2π

b− a
.

For the unit interval, x ∈ [0, 1], then the n’th order derivative is multiplied with
(2π)n. So the operator for the first derivative is multiplied with 2π, and the
second derivative operator with (2π)2 and so on. This is intuitive because the sinc
function, sin(nx)/(nx), becomes steeper when its roots are closer to each other.

4.4 Convergence
Now that we have derived our spectral difference matrix, it is straightforward to
see that it is a dense matrix, and more importantly, this is the same matrix you
would obtain in the limit of higher and higher order Taylor series. The truncation
error of a finite difference scheme using n + 1 points is O(hn). By taking this to

4.4. CONVERGENCE 61

the limit as n + 1 → N + 1 the truncation error is then O(hN) and using the
fact that h = 1/N we get O(N−N) or O(h1/h) which is referred to as exponential
convergence. This only holds if the solution is infinitely differentiable. The solution
to some initial boundary value problems are not infinitely differentiable and the
smoothness of the solution becomes the limiting factor of convergence.

62 CHAPTER 4. SPECTRAL METHODS

Chapter 5

Fourth Order Runge-Kutta
Method

The theory in this chapter is based on [8], [27], and [21]. Now that we have
introduced spectral methods to discretize our PDE in space we have the following
system of coupled ODE’s

du

dt
= Qf(u(t), t) (5.1)

where Q is a difference operator. The coupling occurs for two reasons. The first
reason is because f(u, t) itself depends nonlinearly on u and the second is due to
the difference matrix. To analyze the stability of the time discretization scheme
we must try to diagonalize (5.1). This is generally not possible for non-linear
PDE’s, but the linear theory gives good intuition for the stability of time
discretization techniques. For a diagonalization of the linearized Navier-Stokes
equations see [17].

Throughout the rest of this chapter we will assume that we are dealing with the
linearized NS and NSS equations. The diagonalizationo of (5.1) can be expressed
as

dv

dt
= Qg(v)

where v and g are the diagonalizations of u and f respectively. The second reason
of coupling is due to the differentiation matrices. As an example, consider the
transport equation ∂tu + ∂xu which can be discretized in space by a first order

63

64 CHAPTER 5. FOURTH ORDER RUNGE-KUTTA METHOD

periodic central difference stencil as follows

∂v

∂t
+Qv =

∂

∂t


v1

v2

v3
...
vN

+
1

2h


0 1 0 · · · · · · −1
−1 0 1 0 · · · 0
0 −1 0 1 · · · 0
.
−1 0 · · · 0 1 0




v1

v2

v3
...
vN



=
∂

∂t


v1

v2

v3
...
vN

+
1

2h


v2 − vN
v3 − v1

v4 − v2
...

vN−1 − v1


where we have obtained a system of coupled ODE’s. Diagonalizing Qg for the
periodic case this is simple since the difference matrix approximating the first
derivative is skew-symmetric and the difference matrix approximating the second
derivative is symmetric. Both skew-symmetric and symmetric matrices can be
diagonalized such that we get T−1QT = Λ⇔ Q = TΛT−1, where Λ is a diagonal
matrix. This leaves us with the following system of ODE’s

∂v

∂t
= TΛT−1g

∂w

∂t
= h

where w = T−1v, h = ΛT−1g and the diagonal entries of Λ are λ1, λ2, · · · , λN
(and are the eigenvalues of Q). We have now obtained a system of N decoupled
ODE’s and can solve for w(t+ ∆t) as follows

w(t+ ∆t) = w(t) +

∫ t+∆t

t

h(u(t), t)dτ.

Often we don’t know the solution to this integral and we need to discretize in time
to solve it numerically resulting in the following equation

w(t+ ∆t) = w(t) + ∆t
∑
i

ωih(w(t+ αi), t+ βi)

where ωi are the weights and αi and βi determine where h is to be evaluated.
There are many ways to express the last term on the right hand side and in this
thesis we will choose the fourth order Runge-Kutta method (RK4). We will not go
into the same amount of detail as we did in the spectral methods chapter because

65

most of the accuracy improvements gained from solving PDE’s numerically arise
from the spatial discretization methods (especially for non-linear PDE’s). That
is to say that the errors resulting from the spatial discretization are often much
greater than from time discretization. The fourth order Runge-Kutta method is

w(t+ ∆t) = w(t) + ∆t(ah1 + bh2 + ch3 + dh4) (5.2)

where

h1 = h(w, t)

h2 = h

(
w +

∆t

2
h1, t+

∆t

2

)
h3 = h

(
w +

∆t

2
h2, t+

∆t

2

)
h4 = h(u + ∆th3, t+ ∆t).

and the weights a, b, c, d in (5.2) are to be determined. Using the first order Taylor
expansion we can express h2 as follows

h2 = h(w, t) +
∆t

2

d

dt
(h(w, t)) +O(∆t2).

Remember, after we have discretized in space w becomes a function of time only.
Now that we have expressed h2 we can express h3 and h4. We will drop the O(∆t2)
term. h3 and h4 are

h3 = h(w, t) +
∆t

2

dh2

dt

= h(w, t) +
∆t

2

d

dt

(
h(w, t) +

∆t

2

d

dt
(h(w, t))

)
= h(w, t) +

∆t

2

d

dt
h(w, t) +

∆t2

4

d2

dt2
h(w, t)

h4 = h(w, t) + ∆t
dh3

dt

= h(w, t) + ∆t
d

dt

(
h(w, t) +

∆t

2

d

dt
h(w, t) +

∆t2

4

d2

dt2
h(w, t)

)
= h(w, t) + ∆t

d

dt
h(w, t) +

∆t2

2

d2

dt2
h(w, t) +

∆t3

4

d

dt
h(w, t))

66 CHAPTER 5. FOURTH ORDER RUNGE-KUTTA METHOD

We can now insert h1, h2, h3, and h4 into (5.2) yielding

w(t+ h) = w(t) + a∆th(w, t) + b∆th(w, t) + b
∆t2

2

d

dt
(h(w, t)) + c∆thf(w, t)

+ c
∆t2

2

d

dt
h(w, t) + c

∆t3

4

d2

dt2
h(w, t) + d∆th(w, t) + d∆t2

d

dt
h(w, t)

+ d
∆t3

2

d2

dt2
h(w, t) + d

∆t4

4

d

dt
h(w, t)

= ∆th(a+ b+ c+ d) +
∆t2

2

d

dt
h(w, t)(b+ c+ 2d) +

∆t3

4

d2

dt2
h(w, t)(c+ 2d)

+ d
∆t4

4

d3

dt3
h(w, t).

If we compare this with the fifth order Taylor series of w(t+ h), namely

w(t+ h) = w + ∆t
∂w

∂t
+

∆t2

2!

∂2w

∂t2
+

∆t3

3!

∂3w

∂t3
+

∆t4

4!

∂4w

∂t4
+O(∆t5)

= w + ∆th(w, t) +
∆t2

2!

∂

∂t
h(w, t) +

∆t3

3!

∂2

∂t2
h(w, t) +

∆t4

4!

∂3

∂t3
h(w, t) +O(∆t5)

we get the four following equations

a+ b+ c+ d = 1

1

2
(b+ c) + d =

1

2
1

4
c+

1

2
d =

1

6
1

4
d =

1

24

which gives us

a =
1

6
, b =

1

3
, c =

1

3
, d =

1

6
.

Technically, our calculations for the RK4 method only show O(∆t3) convergence
since we only expanded h2 with a first order Taylor expansion. Had we expanded
h2 using a fourth order Taylor expansion we would get additional equations which
would show a O(∆t5) order convergence. It turns out that, a, b, c, and d would
be the exact same as we derived above. For the full proof of the fifth order
convergence, consult [15]. Now that we have a temporal approximation we make
the ansatz that

u′ + δn+1 = un+1 = f(u′ + δn) = f(u′) + ḟ(u′)δn +O(δ2
n)

δn+1 = ḟ(u′)δn +O(δ2
n)

67

where u′ is a fixed point such that f(u′) = u′ and δn is to be viewed as a small step
away from the fixed point. The difference equation is stable if ḟ(un) < 1 where
ḟ(un) ∈ C. The stability region of the Runge Kutta method is thus stable when

ḟ(un) = 1 + z +
z2

2
+
z3

6
+
z4

24
< 1

where z ∈ C. ḟ(un) = 1 is shown in figure 5.1 with the eigenvalues of the spectral
difference matrices approximating the first and second derivatives. Note that the
first derivatives have purely imaginary eigenvalues and the second derivative has
purely real eigenvalues.

Figure 5.1: Stability region of the fourth order Runge-Kutta method including
eigenvalues of the 11 point first and second order spectral difference operators.

68 CHAPTER 5. FOURTH ORDER RUNGE-KUTTA METHOD

Chapter 6

Code Verification

In this chapter we will verify that our code has the correct convergence rate by
use of the method of manufactured solution.

6.1 Method of Manufactured Solution
Given a time dependent PDE

∂u

∂t
+Qu = S (6.1)

where Q is some difference operator and S is a source term which we assume is
given. By measuring the error between the analytical solution and the numerical
solution we can check if the convergence rate is correct. This is often referred to
as the method of exact solutions. But, in the case where we do not know the
analytical solution (such as for the NS and NSS equations) we need to construct
our own solution. This is done by determining a solution, v, and constructing a
source term such that it satisfies the PDE. Doing this for (6.1) we get

∂v

∂t
+Qv = R.

R will almost certainly not be equal to S, but the source term does not affect
stability, which we will prove shortly. The following definition and proof are
adapted from [8].

Definition 6.1.1. An initial value problem (IVP) is considered to be well posed if
there is a unique solution satisfying

‖u(·, t)‖ ≤ ‖f(·)‖K exp(αt)

where the K and α are constants independent of f(x).

69

70 CHAPTER 6. CODE VERIFICATION

Theorem 6.1.1. Adding a source term to some well posed initial value problem,
the contribution of the source term will not affect the well posedness. Here û and
F̂ are the Fourier transform of u and F respectively.
Proof.

∂u(x, t)

∂t
= F (x, t)

u(x, tn+1)− u(x, tn)

k
= F (x, tn)

û(ω, tn+1) = û(ω, tn) + kF̂ (ω, tn), û(ω, tn) = û(ω, tn−1) + kF̂ (ω, tn−1)

= û(ω, tn−1) + k(F̂ (ω, tn) + F̂ (ω, tn−1))

...

= û(ω, t0) + k
n∑
i=0

F̂ (ω, ti)

Now, if we take the norm of both sides, use the triangle inequality, and Parsevals
relation we get

‖u(·, tn+1)‖ = ‖û(·, tn+1)‖

= ‖û(·, t0) + k
n∑
i=0

F̂ (·, ti)‖

≤ ‖û(·, t0)‖+ ‖k
n∑
i=0

F̂ (·, ti)‖

= ‖f‖+ k‖
n∑
i=0

F̂ (·, ti)‖

≤ ‖f‖+ k(n+ 1) max
0≤i≤n

‖F̂ (·, ti)‖

≤ K‖f‖
assuming that ‖f‖ 6= 0. In plain English: a source term will always have a norm
that can be made smaller than or equal to the norm of the PDE without the source
term.

The procedure of the method of manufactured solution is as follows: First we
determine a solution v, then we insert it into our equation and calculate the source
term, R. Since the source term doesn’t affect stability, we have a analytical solution
we can compare our approximation to. This method of determining a solution and
then calculating the source term is referred to as the Method of Manufactured
solution. For more information about on the method of manufactured solution
consult [19].

6.1. METHOD OF MANUFACTURED SOLUTION 71

6.1.1 Errors by Method of Manufactured Solution

When constructing a manufactured solution one must keep in mind to have the
same boundary conditions and make sure to keep in mind various assumptions that
were assumed when making the equations. In this case, we have periodic boundary
conditions and assume that density can only have positive values. It isn’t necessary
to strive for any sort of physical realism in the solutions and the solutions must
be at least as differentiable as the highest derivative in the equations. With this
in mind we chose the following solutions for the NS and NSS equations.

ρ = cos(2π(x+ t)) + sin(2π(x+ t)) + 2

m = cos(2π(x+ t))− sin(2π(x+ t))

E = − cos(2π(x+ t)) + sin(2π(x+ t))

with the following constants in SI units

µ = 1

κ = 1

cp = 2

cV = 1

We obtained the following errors for both equations after running the code with
time step 10−6 seconds for 10−2 seconds, 104 steps in total. The error is calculated
using the following formula

error =

√√√√ N∑
n=0

h(un − u)2

and the results for the NS and NSS equations are tabulated and plotted in tables
6.1 and 6.2 and figures 6.1 and 6.2 respectively. Notice in the figures that for each
increase in the number of grid points, N , the error decreases at a greater rate than
in the previous increase in N until it hits the rounding error at around 10−14. This
is the telltale sign of spectral convergence and differs from normal finite difference
schemes where the rate of change of the error would not change for each increase
of N (it would be constant).

Table 6.1: Error using manufactured solution for Navier-Stokes

72 CHAPTER 6. CODE VERIFICATION

N h ρ error m error E error
11 1/10 1.916 · 10−3 1.535 · 10−2 2.050 · 10−2

21 1/20 2.861 · 10−5 6.009 · 10−5 8.810 · 10−5

41 1/40 2.219 · 10−9 3.404 · 10−9 8.434 · 10−9

81 1/80 1.129 · 10−14 3.610 · 10−14 2.797 · 10−14

161 1/160 1.841 · 10−14 3.641 · 10−13 3.118 · 10−13

Figure 6.1: Plot of the error of the Navier-Stokes equations.

Table 6.2: Error using manufactured solution for Navier-Stokes-Svärd
N h ρ error m error E error
11 1/10 6.137 · 10−3 9.146 · 10−3 3.476 · 10−2

21 1/20 4.344 · 10−5 3.476 · 10−5 4.470 · 10−5

41 1/40 2.601 · 10−9 3.515 · 10−9 8.902 · 10−9

81 1/80 5.710 · 10−15 1.780 · 10−14 1.655 · 10−14

161 1/160 1.879 · 10−14 5.125 · 10−14 4.747 · 10−14

6.1. METHOD OF MANUFACTURED SOLUTION 73

Figure 6.2: Plot of the error of the Navier-Stokes-Svärd equations.

74 CHAPTER 6. CODE VERIFICATION

Chapter 7

Acoustic Attenuation Simulation
Results

In this chapter we will describe the procedures used to analyze the data obtained
from our simulations of acoustic attenuation. We will then explain various sources
of errors and present our results. The scheme used was

∂

∂t
u+Q1f = Q2g

where u = (ρ,m,E)> and Q1f = D1(ρ,m2 + p, (E+ p)m/ρ)> for both the NS and
NSS system. Q2g = (0, µ4/3D2(m/ρ), µ4/6D2(m/ρ)2 + D1(κD1T))> for the NS
system and Q2g = D1νD1(ρ,m,E)> for the NSS system. Q1 and Q2 are difference
operators approximating the first and second derivative and D1 and D2 are the
difference matrices obtained from (4.6), (4.11) and (4.7), (4.12) respectively. The
fourth order Runge Kutta method was used in time.

7.1 Post Simulation Analysis

After having run the simulation we have had to analyse the data to obtain the
rate of decay obtained from the two fluid models. The data we have chosen to
extract is the work,

∫
ρu2/2, because it was used when deriving the absorption

coefficient. We divided the work data into chunks such that one data chunk
approximately equals one full period of sound. One would expect the frequency
to be the same as two times the speed of sound. For example, in oxygen,
c ≈ 312m/s so one would expect that the period would be approximately
1.6 · 10−3s−1 but according to the simulations it is closer to 1.3 · 10−3s−1. Thus,
we did not know the period a priori and had to measure it directly from the
simulation.

75

76 CHAPTER 7. ACOUSTIC ATTENUATION SIMULATION RESULTS

Finding the approximate rate of decay was done in the following four step
process.

1. We integrated ρu2/2 in space giving us a scalar work value at each time step.

2. We divided the work from step 1 into chunks that contained approximately
one wavelength in time of work.

3. We created a vector with the maximum value of each wavelength from the
chunks obtained in step 2.

4. We took the natural logarithm of the vector from step 3 (since we are
assuming exponential decay) and then computed a linear regression of the
points giving us an approximation of the coefficient of absorption.

7.2 Sources of Errors
When conducting experiments, both numerically and physically, with gases there
are numerous sources of errors. Here we will list a few of these sources for the
simulations run in this thesis. The list is most definitely not complete and we
have therefore been conservative when trying to find a suitable value for the error
estimate.

Conservation Accuracy

For a differentiation matrix with entries with more than 15 significant figures we
must consider what we call conservation accuracy. Conservation accuracy is
defined as the maximum value of the vector obtained when multiplying a
constant vector with the differentiation matrix. For matrices with less than 15
significant figures (if you are using double precision) the conservation accuracy
will be 0 since multiplying a constant vector with the differentiation matrix will
exactly equate to zero. If the entries have more than 15 significant figures (as in
spectral methods), which we will refer to discretely irrational matrices, then they
will be rounded up or down and unless you are exceedingly lucky you will not
have a conservation accuracy of 0. Multiplying a 10 × 10 discretely irrational
differentiation matrix with with a vector with one in all its entries we get a new
vector with entries of magnitude 10−15 due to floating point arithmetic. If we
increase the differentiation matrix (which occurs when you increase points on the
grid) by one order of magnitude then we lose one order of magnitude in
conservation accuracy. If we have a differentiation matrix of the size 10n × 10n

we will in the worst case lose n orders of magnitude in conservation accuracy.

7.3. NUMERICAL RESULTS 77

Similarly, if the constant vector has entries of magnitude 10n then we will also
lose n orders of magnitude in conservation accuracy in the worst case scenario.
In our case, the background pressure is 105 Pa setting a limit to our conservation
accuracy at 10−15+5 = 10−10.

Rounding Error in Small Magnitudes

The magnitude of work is approximately 10−8. This small value puts a limiting
factor on how accurate our simulations can be. We use double precision accuracy
which has an precision of at least 10−15 decimal points. This means that in the
case when the work is of order 10−8 we can at best get a 7 significant digit accuracy.

7.3 Numerical Results
We ran a total of four simulations. Two simulations of oxygen with background
pressures of p0 = {103, 105} and two simulations of argon with the same
background pressures. We simulated sound waves for oxygen to compare with
the results of [3] and for argon to compare with [7]. In both cases temperature
was set to 273.15 Kelvin. The initial values were

ρ =
p0

RT0

+ 10−6 sin(2πx)

p = ργ

u = 0

E = ρcV T0

The reason we chose the amplitude of the fluctuation of ρ to be 10−6 was because
the simulation run with a fluctuation amplitude of 10−5 showed non-linearities as
can be seen in figure 7.1. When p0 = 103 the simulations were run such that the
wave oscillated 100 times and when p0 = 105 the simulations were runu such that
the wave oscillated 1000 times. Note that the sound waves used in [3] and [7] have
greater amplitude and a higher frequency which both contribute to making the
waves nonlinear and. The simulations were run on a 12 point grid (the calculations
were done with 11 points and the 12th point was added for periodicity). For
oxygen, the following fluid values were used

µ = 20.64 · 10−6

κ = 26.58 · 10−3

cp = 915

cV = 659,

78 CHAPTER 7. ACOUSTIC ATTENUATION SIMULATION RESULTS

Figure 7.1: Non-linearities occurring when fluctuation amplitude is 10−5.

and for argon we used the following fluid values

µ = 22.61 · 10−6

κ = 1.78 · 10−2

cp = 520

cV = 313.

All the coefficients are in SI units. The numerical absorption coefficient was
calculated three times in each test. The first 10% of the wave was removed to
account for inaccuracies in the initial condition. Then, the remaining data was
divided into three even parts and the numerical absorption coefficient was
calculated for each part. The data for oxygen is presented in tables 7.2 and 7.1
and the last third of the simulation is plotted in figures 7.3 and 7.2 for the
oxygen simulations with background pressure at 103 and 105 respectively. The
data for argon is presented in tables 7.4 and 7.3 and the last third of the
simulation is plotted in figures 7.5 and 7.4 for the argon simulations with
background pressure at 103 and 105 respectively.

Table 7.1: Oxygen with background pressure at 105 Pa

7.3. NUMERICAL RESULTS 79

NS NSS
Theoretical −1.0712351 · 10−3 −1.1395689 · 10−3

1/3 −1.0708588 · 10−3 −1.1391873 · 10−3

2/3 −1.0709171 · 10−3 −1.1392333 · 10−3

3/3 −1.0709835 · 10−3 −1.1392861 · 10−3

Figure 7.2: Plot of numerical absorption coefficient obtained from the last third
of the data with p0 = 105.

Table 7.2: Oxygen with background pressure at 103 Pa
NS NSS

Theoretical −1.0712351 · 10−1 −1.1395689 · 10−1

1/3 −1.0677959 · 10−1 −1.1358931 · 10−1

2/3 −1.0677645 · 10−1 −1.1358495 · 10−1

3/3 −1.0677069 · 10−1 −1.1357976 · 10−1

Table 7.3: Argon with background pressure at 105 Pa
NS NSS

Theoretical −1.1782598 · 10−3 −1.0093966 · 10−3

1/3 −1.1779069 · 10−3 −1.0090695 · 10−3

2/3 −1.1778993 · 10−3 −1.0090807 · 10−3

3/3 −1.1779807 · 10−3 −1.0091486 · 10−3

80 CHAPTER 7. ACOUSTIC ATTENUATION SIMULATION RESULTS

Figure 7.3: Plot of numerical absorption coefficient obtained from the last third
of the data with p0 = 103.

Figure 7.4: Plot of numerical absorption coefficient obtained from the last third
of the data with p0 = 105.

7.3. NUMERICAL RESULTS 81

Table 7.4: Argon with background pressure at 103 Pa
NS NSS

Theoretical −1.178258 · 10−1 −1.0093966 · 10−1

1/3 −1.1743132 · 10−1 −1.0060407 · 10−1

2/3 −1.1738801 · 10−1 −1.0056609 · 10−1

3/3 −1.1747385 · 10−1 −1.0063710 · 10−1

Figure 7.5: Plot of numerical absorption coefficient obtained from the last third
of the data with p0 = 103.

Although [3] and [7] have not used error bars or written anything about the
accuracy of their results we believe that we are within the accuracy of their
measuring devices because. Both [3] and [7] used higher frequencies and
amplitudes than in our simulations which, according to our simulations give rise
to non-linearities and non-linearities might increase the absorption coefficient.
Our results show that the difference between the NS and NSS equations is less
than can be measured experimentally and the difference between the numerical
and linear solutions is similar. We thus conclude that none of the equations can
be said to be invalid based on their ability to predict acoustic attenuation in the
linear regime.

82 CHAPTER 7. ACOUSTIC ATTENUATION SIMULATION RESULTS

Chapter 8

Boundary Layer

Boundary layers are the parts of the fluid close to a boundary where viscosity
plays a significant role. One example is the boundary layer that develops on the
wing of a plan. Since viscosity plays a significant role, it is common to assume an
incompressible fluid. In this chapter we will show that the NS and NSS systems
simplify to the same system of equations under the assumption of incompressibility.
The incompressible NS and NSS equations are used in the derivation of boundary
layer equations. Additionally, we will show how the boundary layer equations were
first solved analytically, and then solve them numerically.

8.1 Incompressible Navier-Stokes-Svärd
Equations

To derive the boundary layer equations we must first derive the incompressible
NS and NSS equations from the compressible NS and NSS equations. (For the
NS equations this is standard theory and derivations of the incompressible NS
equations can be found in [12]). We begin with the NS equations. The compressible
NS equations (excluding the energy equation) are

∂ρ

∂t
+∇ · (ρu) = 0. (8.1)

∂(ρu)

∂t
+∇ · (ρu⊗ u) +∇p = ∇ ·

((
ζ − 2

3
µ

)
∇ · uI + µ

(
∇u + (∇u)>

))
.

(8.2)

Incompressiblility allows us to equate all gradients of ρ to zero (also the time
derivative). The conservation of mass equation, (8.1), can then be simplified as

83

84 CHAPTER 8. BOUNDARY LAYER

follows

�
�
�∂ρ

∂t
+∇ · (ρu) = 0

ρ∇ · u + ����∇ρ · u = 0

∇ · u = 0. (8.3)

Now, the conservation of momentum equation (8.2) can be simplified by setting
all gradients of ρ to zero as well as every term containing the divergence of u due
to (8.3). Thus, we can recast (8.2) as follows

∂(ρu)

∂t
+∇ · (ρu⊗ u) +∇p = ∇ ·

(
���������
(
ζ − 2

3
µ

)
∇ · uI + µ

(
∇u + (∇u)>

))
ρ
∂u

∂t
+

�
�
�

u
∂ρ

∂t
+ ������

(∇ · ρu)u + ρu · ∇u +∇p = µ∇ · (∇u + (∇ · u)>)

ρ
∂u

∂t
+ ρu · ∇u +∇p = µ∇ · ∇u + ������

µ∇(∇ · uI)

∂u

∂t
+ u · ∇u +

1

ρ
∇p = ν∇ · ∇u.

The NS conservation of mass and momentum equations have thus been simplified
to

∇ · u = 0 (8.4)
∂u

∂t
+ u · ∇u +

1

ρ
∇p = ν∇ · ∇u. (8.5)

We will now show that the NSS equations will simplify to these equations as well
under the incompressibility assumption. The conservation of mass and momentum
equations for the NSS system are

∂ρ

∂t
+∇ · (ρu) = ∇ · (ν∇ρ) (8.6)

∂(ρu)

∂t
+∇ · (ρu⊗ u) +∇p = ∇ · (ν∇(ρu)). (8.7)

Assuming constant ρ, the conservation of mass equation, (8.6), simplifies as follows

�
�
�∂ρ

∂t
+∇ · (ρu) = ������∇ · (ν∇ρ)

ρ∇ · u + ����u · ∇ρ = 0

∇ · u = 0,

8.2. BOUNDARY LAYER EQUATION FOR LAMINAR FLOW 85

compare with with (8.4). Now the conservation of momentum equation (8.7) can
be simplified by using the chain rule and neglecting all terms that contain either
the gradient of ρ or the divergence of u.

∂ρu

∂t
+∇ · (ρu⊗ u) +∇p = ∇ · (ν∇(ρu))

ρ
∂u

∂t
+

�
�
�

u
∂ρ

∂t
+ ������

(∇ · ρu)u + ρu · ∇u +∇p = ∇ · (ν(�����∇ρ⊗ u + ρ∇(u)))

ρ
∂u

∂t
+ ρu · ∇u +∇p = ������∇(νρ) · ∇u + νρ∇ · ∇u

ρ
∂u

∂t
+ ρu · ∇u +∇p = µ∇ · ∇u

∂u

∂t
+ u · ∇u +

1

ρ
∇p = ν∇ · ∇u.

compare with (8.5). Thus, the incompressible NSS equations are the exact same
as the incompressible NS equations.

8.2 Boundary Layer Equation for Laminar Flow

Boundary layers can be analyzed under two more assumption (in addition to
incompressibility). Namely, the assumption that the flow is steady (independent
of time) and two dimensional. For more information about boundary layers and
the following calculations we recommend [12]. The steady, incompressible and
two dimensional NS- or NSS equations can be expressed as

∂u

∂x
+
∂v

∂y
= 0 (8.8)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
(8.9)

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
. (8.10)

Prandtl first derived the two dimensional steady boundary layer equations in [18]
by using two assumptions (in addition to incompressibility) which are:

1. The length of the boundary, L, is a lot bigger than the boundary layer itself
δ, namely L >> δ.

2. The convective terms and the diffusive terms are of the same magnitude,
namely u · ∇u ∼ ν∇ · ∇u.

86 CHAPTER 8. BOUNDARY LAYER

These two assumptions allow us to use scale analysis to determine the order of
magnitude of the relevant terms

u ∼ U∞, x ∼ L, y ∼ δ

∂u

∂x
∼ U∞

L
,

∂u

∂y
∼ U∞

δ
,

∂2u

∂x2
∼ U∞

L2
,

∂2u

∂y2
∼ U∞

δ2
.

By the first assumption we can deduce that∣∣∣∣U∞δ2

∣∣∣∣ >> ∣∣∣∣U∞L2

∣∣∣∣⇒ ∣∣∣∣∂2u

∂y2

∣∣∣∣ >> ∣∣∣∣∂2u

∂x2

∣∣∣∣
so the majority of the diffusion is due to ∂2

yu in (8.9). Moreover, (8.8) indicates
that ∂xu is of the same order of magnitude as ∂yv, namely

∂u

∂x
∼ U∞

L
∼ ∂v

∂y
∼ U∞

δ
⇒ v ∼ δ

U∞
L
. (8.11)

and since δ << L, it is safe to assume that the majority of the convection occurs
due to the u∂xu term in (8.9). Using the second assumption and looking at the
terms that contribute most to convection and diffusion, namely u∂xu and ∂2

yu we
can determine their appropriate magnitudes.

U2
∞
L
∼ νU∞

δ2
⇒ δ2

L2
∼ ν

LU∞
⇒ δ

L
∼
√

ν

U∞L
∼ 1√

Re
(8.12)

where Re is Reynolds number. Now we can write out our Navier-Stokes equation
in non-dimensional form

U∞
L

+
1√
Re

U∞
δ

= 0

U2
∞
L

+
1√
Re

U2
∞
δ

= −1

ρ

∂p

∂x
+ ν

(
U∞
L2

+
U∞
δ2

)
(8.13)

1√
Re

U2
∞
L

+
1

Re

U2
∞
δ

= −1

ρ

∂p

∂y
+

1√
Re

(
U∞
L2

+
U∞
δ2

)
and in the second equation, (8.13), 1/

√
Re appeared in the diffusive terms because

νv ∼ νU∞
δ

L
∼ U∞√

Re
.

by the similarities found in (8.11) and (8.12). From (8.12) we can deduce that

1

δ
√
Re
∼ 1

L

8.2. BOUNDARY LAYER EQUATION FOR LAMINAR FLOW 87

which allows us to rewrite our equations and neglect the terms with Re in the
denominator and U∞/L2 in favor of U∞/δ2.

U∞
L

+
U∞
L

= 0

U2
∞
L

+
U2
∞
L

= −1

ρ

∂p

∂x
+ ν

(
�
�
�U∞

L2
+
U∞
δ2

)

�
�
�
�
�1√

Re

U2
∞
L

+
�
�
�
�1

Re

U2
∞
δ

= −1

ρ

∂p

∂y
+

�����������1√
Re

(
U∞
L2

+
U∞
δ2

)
.

Converting back to normal variables we get

∂u

∂x
+
∂v

∂y
= 0

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

∂2u

∂y2

1

ρ

∂p

∂y
= 0,

and because the ∂yp/ρ term is indepeendent of the two other equations it too can
be neglected. Thus, the boundary layer equations are

∂u

∂x
+
∂v

∂y
= 0

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ ν

∂2u

∂y2
.

Now we must determine the boundary conditions. We know that for y = 0 we must
use the no slip boundary condition and that x = x0 we can simply set the flow
velocity to uin. But we need a condition at the top. Assuming that the fluid is also
irrotational and barotropic (p = p(ρ)) we can use the steady Bernoulli equation.
Also, since we assume the boundary layer is thin, we drop the body term. This
leaves us with

p

ρ
+

1

2
U2
∞ = C

where U∞ is the free stream velocity. Differentiating both sides with respect to x
we get

−1

ρ

∂p

∂x
= U∞

∂U∞
∂x

which closes the system of PDE’s because we assume that U∞ is given and then
we simply have two coupled PDE’s of u and v.

88 CHAPTER 8. BOUNDARY LAYER

8.2.1 Blausius Solution to a Boundary Layer of a Flat Plate
The solution to the Boundary layer equations for a semi-infinte flat plate with a
constant free-stream velocity was first done by Blasius in [2] and we will outline
his process here. In the case of constant free-stream velocity the pressure gradient
equation reduces to

− 1

ρ

∂p

∂x
= U∞

∂U∞
∂x

= 0. (8.14)

since U∞ is constant. So the boundary equations reduce to

∂u

∂x
+
∂v

∂y
= 0 (8.15)

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂2y
. (8.16)

Now (8.15) tells us that the fluid is incomprerssible, meaning that we can solve for
a stream function. Using the stream function equations

u =
∂Ψ

∂y
and v = −∂Ψ

∂x

(8.15) and (8.16) can be expressed as

∂2Ψ

∂y∂x
− ∂2Ψ

∂x∂y
= 0 (8.17)

∂Ψ

∂y

∂2Ψ

∂y∂x
− ∂Ψ

∂x

∂2Ψ

∂y2
= ν

∂3Ψ

∂y3
. (8.18)

Blasius assumed that if the free stream velocity is zero then the boundary layer,
δ(x), is zero. Thus, Blasius guessed that the stream function must take the form

Ψ = U∞δ(x)f(η).

When x → 0 then δ(x) → 0 which in turn means that Ψ → 0. f(η) must now
be chosen to help satisfy (8.15). Using the fact that the system of equations is
unchanged under the following transformation

x′ = C2x. y′ = Cy, u′ = u, v′ =
v

C
,

where C is some positive constant, we must look for a variable which is also
unchanged under this transformation. One variable that Blasius guessed might
work was

η =
y

δ(x)
= y

√
U∞
νx

8.2. BOUNDARY LAYER EQUATION FOR LAMINAR FLOW 89

which is unchanged under the transformation. We are now ready to calculate the
derivatives needed in equations (8.17) and (8.18). To aid us with these calculations
we use the following equality

dη

dx
= − y

δ2

dδ

dx
= −η

δ

dδ

dx
.

The relative derivatives for (8.17) and (8.18) are

∂Ψ

∂y
= U∞

df

dη

∂2Ψ

∂y2
= U∞

d2f

dη2

1

δ

∂3Ψ

∂y3
= U∞

d3f

dη3

1

δ2

∂Ψ

∂x
= −U∞

dδ

dx

(
df

dη
η − f

)
∂2Ψ

∂y∂x
=

∂2Ψ

∂x∂y
= −U∞

d2f

dη2

η

δ

dδ

dx
.

The last equation obviously ensures us that (8.17) is satisfied. Plugging these
values into (8.18) we get

−U∞
df

dη
U∞

d2f

dη2

η

δ

dδ

dx
+ U∞

dδ

dx

(
df

dη
η − f

)
U∞

d2f

dη2

1

δ
= νU∞

d3f

dη3

1

δ2

−U∞
df

dη

d2f

dη2
η
dδ

dx
+ U∞

df

dη

d2f

dη2
η
dδ

dx
− U∞

dδ

dx

d2f

dη2
f =

ν

δ

d3f

dη3

−U∞
dδ

dx

d2f

dη2
f =

ν

δ

d3f

dη3
(8.19)

Now using the fact that

δ(x) =

√
νx

U∞
⇒ dδ

dx
=

1

2

1

δ

ν

U∞
,

(8.19) becomes

−U∞
1

2

1

δ

ν

U∞

d2f

dη2
f =

ν

δ

d3f

dη3

1

2

d2f

dη2
f =

d3f

dη3

d3f

dη3
+

1

2
f
d2f

dη2
= 0. (8.20)

90 CHAPTER 8. BOUNDARY LAYER

Thus, the nonlinear coupled PDE’s (8.15) and (8.16) have been reduced to a
nonlinear ordinary differential equation (ODE) (8.20). To figure out the
boundary conditions, we note that that u = v = 0 when y = 0 due to the no slip
boundary condition, which means that

u =
∂Ψ

∂y
⇔ df(0)

dη
= 0

and for the v component we get

v = −∂Ψ

∂x
= U∞

dδ

dx
((0)η − f) = −U∞

dδ

dx
f = 0⇔ f(0) = 0

and finally we know that at the top of the boundary equation the velocity must
equal that of the free stream velocity so we can write

lim
η→∞

df(η)

dη
= 1.

The way to interpret lim η →∞ is to assume a fixed point in space (x, y) and let
δ(x) go to zero, and in doing so the boundary layer is beneath the fixed point so
its velocity must be the free stream velocity. Or, you can do the opposite, fix the
boundary layer at some distance x and then let y go to infinity, and then again we
are far above the boundary layer so the velocity must equal the freestream velocity.
Thus, the ODE is

d3f

dη3
+

1

2
f
d2f

dη2
= 0

with the following boundary conditions

f(0) = 0,
df(0)

dη
= 0,

df(∞)

dη
= 1. (8.21)

The non-linearity leads us to solve the equation numerically, which is the subject
of the next chapter.

Chapter 9

Non-Dimensional Boundary Layer
Simulation

To simulate a boundary layer predicted by the NSS equations we create a
rectangular domain where an inlet and outlet boundary are imposed on the
western and eastern boundaries respectively (i.e., the fluid is moving from left to
right). The southern boundary simulates an adiabatic flat plate so the
momentum in x and y direction (m and n, respectively) are set to zero and ∂nρ
and ∂nT are set to zero. On the norther boundary we impose a far field boundary
condition. On the western, northern, and eastern boundaries we use the injection
method by injecting the solution of the Blasius equation (8.20). On the southern
boundary we also use the injection method and set ∂nρ, ∂nT , m, and n to zero.
Since the western, northern, and eastern boundary conditions are not the correct
boundary conditions for the NSS equations we expect the errors will propagate
out from the boundaries but decrease the further away from the boundary they
travel. Therefore, all comparisons between the Blasius solution and the NSS
solution are done in the middle between the two boundaries.
The outline of this chapter is as follows

1. Numerically solve the Blasius ODE (8.20).

2. Derive the finite volume method.

3. Set boundary conditions, initial conditions, and non-dimensional fluid
properties.

4. Transform grid to obtain a higher resolution near the flat plate and lower
resolution far away from the boundary.

5. Simulate and compare the solutions of Blasius equation and NSS equations.

91

92 CHAPTER 9. NON-DIMENSIONAL BOUNDARY LAYER SIMULATION

9.1 Numerical Solution of Blasius Boundary
Layer

The Blasius ODE (8.20) is a third order non-linear ODE with two initial conditions
and one boundary condition (8.21). We solve the nonlinear ODE using the shooting
method, which turns an ODE with boundary conditions into an ODE with initial
conditions (For an introduction to the shooting method we recommend [20]). We
first transform (8.20) into a system of first order ODE’s

ḟ1 = f2

ḟ2 = f3

ḟ3 = −1

2
f1f3.

The root finding method used to determine the appropriate initial condition was
the bisection method because it is guaranteed to converge as long as the two
initial values are on each side of the root. Since the boundary condition was
set for df/dη we solved for df/dη and numerically integrated to obtain f . The
error tolerance between the true boundary condition and the numerical boundary
condition was set to 10−15 and the fourth order Runge-Kutta method was used as
the time discretization method. Figure 9.1 shows some of the attempts. Figure
9.2 shows f, df/dη, d2f/dη2, and ηdf/dη − f . f is the stream function, df/dη is
the non-dimensional velocity, and d2f/dη2 is the shear stress. We now have u and
v

u

U∞
=
∂Ψ

∂y
=
df

dη

v

U∞
= −∂Ψ

∂x
=
dδ

dx

(
df

dη
η − f

)
.

Now that we have the numerical approximation of the Blasius solution we can set
boundary conditions and initial conditions for the NSS equations.

9.2 Finite Volume Method
We have chosen the finite volume method (FVM) as our numerical scheme because
it is the method used to derive a convergent scheme for the NSS system in [23].
The explanations in this section are based on the book [8]. For the following PDE

∂

∂t
u+∇ · f = ∇ · ∇g

9.2. FINITE VOLUME METHOD 93

Figure 9.1: The first eight attempts of the shooting method for solving Blasius’s
ODE.

Figure 9.2: Plots of the stream function f , the x-component of the velocity, df/dη,
the y-component of the velocity, ηdf/dη − f , and the shear stress d2f/dη2

94 CHAPTER 9. NON-DIMENSIONAL BOUNDARY LAYER SIMULATION

where u : R → R, f : Rd → Rd, and g : R → R where d ∈ N. We can integrate
over each control volume, denoted V∫

V

∂

∂t
udV +

∫
V

∇ · fdV =

∫
V

∇ · ∇gdV

and apply the divergence theorem to the spatial fluxes.∫
V

∂

∂t
udV +

∮
∂V

f · n̂dS =

∮
∂V

∇g · n̂dS

where n̂ is a unit vector pointing orthogonally outward from the surface of the
volume. For the time derivative, we assume that the fluid in the volume is
approximately constant such that the midpoint of the fluid multiplied by the
volume is a good approximation of the integral of time derivative of the volume.
This assumption holds if fluxes in the fluid are very small or the volumes
containing the fluid are very small or both.

V
∂

∂t
u+

∮
∂V

f · n̂dS =

∮
∂V

∇g · n̂dS.

If we now assume that our volume is a polygon with N sides we can express the
surface integral as the sum of flux over all the sides

V
∂

∂t
u+

N∑
n=1

f(B) · n̂dSn =
N∑
n=1

∇g(B) · n̂dSn

where f(B) and g(B) are f and g evaluated at the boundaries of the control volume
respectively. Since we are working with discrete points we must approximate
f · n̂ and ∇g · n̂ at the interface between the volumes. A common choice is to
approximate the flux linearly. This is done as follows

fn+ 1
2
≈ fn + fn+1

2
(9.1)

and
∂

∂x
gn+ 1

2
≈ gn+1 − gn
xn+1 − xn

(9.2)

where xn are points on an arbitrary affine coordinate system. This enables us to
recast our scheme in the following semi-discrete form

V
∂

∂t
Υ +

N∑
n=1

f + fadj
2

n̂dSn =
N∑
n=1

g − gadj
x− xadj

n̂dSn

∂

∂t
Υ = − 1

V

N∑
n=1

f + fadj
2

n̂dSn +
1

V

N∑
n=1

g − gadj
x− xadj

n̂dSn

9.2. FINITE VOLUME METHOD 95

where the subscript adj denotes the adjacent volume. In this thesis we will
numerically solve the two dimensional NSS system on a rectangular grid. The
two dimensional NSS equations are

∂

∂t


ρ
m
n
E

+
∂

∂x


m

m2

ρ
+ p

mn
ρ

Em
ρ

+ pm
ρ

+
∂

∂y


n
mn
ρ

n2

ρ
+ p

E n
ρ

+ pn
ρ

 =
∂

∂x

ν ∂∂x

ρ
m
n
E


+

∂

∂y

ν ∂∂y

ρ
m
n
E


 .

After applying the divergence theorem for a rectangular grid, we get the following
scheme

∂

∂t


ρ
m
n
E

 =− 1

V




m
m2

ρ
+ p

mn
ρ

Em
ρ

+ pm
ρ


east

−


m

m2

ρ
+ p

mn
ρ

Em
ρ

+ pm
ρ


west



− 1

V




n
mn
ρ

n2

ρ
+ p

E n
ρ

+ pn
ρ


north

−


n
mn
ρ

n2

ρ
+ p

E n
ρ

+ pn
ρ


south



+
1

V

ν ∂∂x

ρ
m
n
E


east

− ν ∂
∂x


ρ
m
n
E


west



+
1

V

ν ∂∂y

ρ
m
n
E


north

− ν ∂
∂y


ρ
m
n
E


south



where east, west, north, and south are the boundaries of the control volume. The
nodal finite volume method was used, meaning that the centers of the volumes
are known values and the boundaries of the volumes are not (in contrast with
cell-centered finite volume schemes). The various entities ρ, m, n, E, and p were
evaluated at the boundaries using 9.1 for the convective terms and 9.2 for the
diffusive terms. The time discretization method used was the fourth order Runge-
Kutta method.

96 CHAPTER 9. NON-DIMENSIONAL BOUNDARY LAYER SIMULATION

9.3 Boundary Conditions, Initial Conditions,
and Fluid Properties

To simulate a boundary layer developed by convection from west to east over a
semi-infinite plate we create a rectangular domain. Inlet and outlet boundaries
are set on the western and eastern boundaries respectively. The northern
boundary is treated as a far field boundary and the southern boundary is has
boundary conditions of an adiabatic wall with no slip condition. The western,
northern, and eastern boundaries are Dirichlet boundaries where we set the
Blasius boundary solution obtained from section 9.1. The southern boundary is a
Robin boundary where ∂nρ and ∂nT are set to zero, satisfying the adiabatic wall,
and the x and y components of momentum are set to zereo in accordance with
the no slip condition. All boundary conditions were imposed by the injection
method. For the eastern, northern, and western boundaries, we calculated
η = y

√
U∞/νx at each point set the the corresponding value for u and v. ρ and

T were assumed to be constant in accordance with the assumptions used to
derive the Blasius boundary layer.
The initial condition was calculated the same was as the boundary conditions.
Namely, we calculated η = y

√
U∞/νx for each point on the grid and then

determined the corresponding value of u and v at that point. ρ was the same for
each grid point and E = ρcV T + ρ(u2 + v2)/2 at each grid point. We used the
nondimensionalized fluid properties.

T = 1, p = 1, µ = 1, cp = 2, cV = 1

9.4 Grid Transformation

Boundary layers are known to exhibit steep gradients near the wall, which in this
case is the southern boundary. At the northern far-field boundary the gradients are
almost zero (which is supported by the plots depicted in figure 9.2). Therefore, we
have transformed our grid such that the volumes close to the southern boundary
are small and the volumes increase in size the further away they are from the
southern boundary. To keep the second order convergence rate we need to apply
an affine transformation (preserving parallelism and lines). We have chosen the
following transformation

y′ = A+B exp(αy).

where A, B, and α are constants. y′ must equal y at the boundaries, y0 and
yN . The coefficients A and B are then easily obtained by the following system of

9.5. NUMERICAL RESULTS 97

algebraic equations [
y0

yN

]
=

[
1 exp(αy0)
1 exp(αyN)

] [
A
B

]
.

A and B are thus computed to be

A =
y0 exp(αyN)− yN exp(αy0)

exp(αyN)− exp(αy0)

B =
yN − y0

exp(αyN)− exp(αy0)
.

Note that α is a coefficient that determines how quickly the volumes change and
it can be tuned to obtained the desired grid. α has no affect on A or B. The
transformed grid is thus

y′ =
y0 exp(αyN)− yN exp(αy0)

exp(αyN)− exp(αy0)
+

(
yN − y0

exp(αyN)− exp(αy0)

)
exp(αy) (9.3)

and x remains unchanged.

9.5 Numerical Results
The simulation was run on the grid x ∈ [9, 11] with 33 cells and y ∈ [0, 200] with
128 cells. y was transformed using (9.3) and α was set to 1/30 (y0 and yN are
0 and 200 respectively). Figure 9.3 depicts the transformed grid. The smallest
volume had a measure of approximately 2.1 · 10−4. The time step, ∆t, was set
to 10−5 and the simulation was run until the l2 norm of the difference between
the error in ρ from one time step to the next was less than 10−14. The error was
calculated as follows

error =
√∑

h(ρ(t−∆t)− ρ(t))2 (9.4)

where ρt−∆t and ρt−∆t is ρ at times t and t−∆t respectively. h is the measure of
the size of each cell. This informed us that we had reached a steady state solution.
The solution seemed to converge uniformly to to a steady state solution. The
errors in table 9.5 are the l2 norm of difference between the Blasius solution and
the NSS solution at x = 10, i.e., in the middle between the eastern and western
boundaries.

error =
√∑

h(fBlas − fNSS)2 (9.5)

where h is the volume size of each cell and f is either ρ, u, v, T or a combination of
those values. fBlas is the solution to the Blasius equations and fNSS is the solution
to the NSS equations.

98 CHAPTER 9. NON-DIMENSIONAL BOUNDARY LAYER SIMULATION

Figure 9.3: The grid used to solve for the boundary profile of the NSS equations.

Table 9.1: Error between Blasius and NSS equations
variables error

ρ 0.00202
u 0.00362
v 0.0142

Internal energy 0.00503
Mechanical energy 0.00322

Internral energy was calculated as ρcV T and Mechanical energy was calculated as
ρ(u2 + v2)/2. The differences between the Blasius solution and the NSS solution
are less than one percent except for v. This indicates a good match between the
NSS equations and the Blasius equations. Figures 9.4 and 9.5 depict the Blasius
solution and the NSS solution for u and v respectively

9.5. NUMERICAL RESULTS 99

Figure 9.4: Numerical NSS Boundary layer plotted on the analytical Blasius
solution

Figure 9.5: Numerical NSS Boundary layer plotted on the analytical Blasius
solution

100 CHAPTER 9. NON-DIMENSIONAL BOUNDARY LAYER SIMULATION

Conclusion and Outlook

In this thesis we have tested the validity of the NSS equations compared to the
NS equations and experimental results found in the literature. The fluids being
simulated were pure argon and oxygen. We found that for acoustic attenuation,
the difference between the two systems in the linear regime is smaller than what
can be measured using modern acoustic measuring devices. Further research
should examine simulations of other gases and experiments should be conducted
in the linear regime. Also, changes in pressure, temperature, density etc. should
be examined to see if a combination of changes to those values increase the
absorption coefficient without making the wave non-linear. This would help
bridge the gap between accurate computer simulations and accurate physical
experiments.

For the boundary layer case, the NSS equations were in good agreement with the
Blasius solution, but further research should run the simulations on different
grids and experiment with the dimensionalized equations. Additionally, the
computer simulations should be compared with experimental results. The
Blasius boundary layer for a flat plate is one of the simplest boundary layers.
Therefore, more research should be done on more complicated boundary layers
such as a boundary layer that does not assume constant temperature or
boundary layers on a non-flat plate, such as the Falkner–Skan boundary layer.
Finally, the NS equations should also be compared to the Blasius boundary layer
to compare efficiency and accuracy between the NS and NSS equations.

101

102 CHAPTER 9. NON-DIMENSIONAL BOUNDARY LAYER SIMULATION

Appendix A
Here we provide a detailed calculation of (2.26) where we use the notation explained
in definition .− |u|

2

2T
− cV

(
S
cV
− γ
)

u
T

− 1
T

�


∇ · (ρu)
∇ · (ρu⊗ u) +∇p(

∇ ·
(
ρ |u|

2

2
u
)

+∇ρ · cV Tu + ρcV∇T · u
+ ρcV T∇ · u +∇p · u + p∇ · u)


The first row is

− |u|
2

2T
∇ · (ρu)− S∇ · (ρu) + cV γ∇ · (ρu). (A.1)

Using the relation the product rule and the following relation

γ∇ρ =
∇T
T
ρ+∇ρ− ρ

cV
∇S

we can recast (A.1) as

− |u|
2

2T
∇ · (ρu)− S∇ · (ρu) + cV γρ∇ · u + cV u

∇T
T
ρ+ cV∇ρ · u− u · ρ∇S. (A.2)

The product of the middle entries are

ρ|u|2

T
∇ · (ρu) +

|u|2

T
∇ · (ρu) +

u

T
∇p (A.3)

and the product of the last entries are

−|u|
2

2T
∇·(ρu)− ρu

2T
·∇|u|2−cV∇ρ·u−

cV ρ

T
∇T ·u−cV ρ∇·u−

u

T
·∇p− p

T
∇·u. (A.4)

The first terms in (A.2) and (A.4) cancel with the second term in (A.3) and the
first and last term in (A.3) cancels the second and second to last term in (A.4)
respectively. The second to last and third to last terms in (A.2) cancel with third
and fourth term in (A.4) respectively. After all the cancellations we are left with

−S∇ · (ρu) + cV γρ∇ · u− u · ρ∇S − cV ρ∇ · u +
p

T
∇ · u.

Now, using the fact that γcV = cp, R = cp− cV , and p/T = ρR we aree simply left
with

−∇ · (ρuS)

9.5. NUMERICAL RESULTS 103

Appendix B
Here we provide a detailed calculation of (2.32).−

1
2T
∇|u|2 + |u|2

2T 2∇T − cV
T
∇T + cV

ρ
(γ − 1)∇ρ

1
T
∇u− u

T 2 ⊗∇T
1
T 2∇T

 : ν


∇ρ

u⊗∇ρ+ ρ∇u

∇ρ |u|
2

2
+ ρ∇ |u|

2

2
+∇ρcV T + ρcV∇T


where we start by taking the dot product of each row. To simplify notation we
multiply ν at the end. The dot product of the first rows are

− ∇ρ
2T
· ∇|u|2 +

|u|2

2T 2
∇T · ∇ρ− cV

T
∇T · ∇ρ+

cV
ρ

(γ − 1)∇ρ · ∇ρ (B.1)

the product of the second row is

1

T
∇u : (u⊗∇ρ) +

ρ

T
∇u : ∇u− u

T 2
⊗∇T : (u⊗∇ρ)− ρ u

T 2
⊗∇T : ∇u.

We can recast the the tensor product terms as dot products as follows

1

2T
∇|u|2 · ∇ρ+

ρ

T
∇u : ∇u− |u|

2

T 2
∇T · ∇ρ− ρ

2T 2
∇|u|2 · ∇T (B.2)

and the product of the last rows are

1

T 2
∇T · ∇ρ |u|

2

2
+
ρ

T
∇|u|

2

2
· ∇T +

cV
T
∇ρ · ∇T +

ρcV
T
∇T · ∇T. (B.3)

Now we can see all the terms that cancel out. The first and third term in (B.1)
cancel out with the first term in (B.2) and third term in (B.3) respectively. The
second term of (B.1) and first term of (B.3) cancel with the third term of (B.2).
And finally, the second term in (B.3) cancels with the last term in (B.2). We are
therefor left with

νρ
cV
ρ2

(γ − 1)|∇ρ|2 +
νρ

T
|∇u|2 + νρ

cV
T 2
|∇T |2

104 CHAPTER 9. NON-DIMENSIONAL BOUNDARY LAYER SIMULATION

Bibliography

[1] Rutherford Aris. Vectors, Tensors and the Basic Equations of Fluid
Mechanics. DOVER PUBN INC, Jan. 1990. 320 pp. isbn: 0486661105.
url: https :
//www.ebook.de/de/product/3303126/rutherford_aris_vectors_
tensors_and_the_basic_equations_of_fluid_mechanics.html.

[2] Paul Richard Heinrich Blasius. “Grenzschichten in Flüssigkeiten mit kleiner
Reibung”. In: Z. Angew. Math. Phys. (1908).

[3] Sally G. Ejakov et al. “Acoustic attenuation in gas mixtures with nitrogen:
Experimental data and calculations”. In: The Journal of the Acoustical
Society of America 113.4 (Apr. 2003), pp. 1871–1879. doi:
10.1121/1.1559177.

[4] Leonhard Euler. “On the sums of series of reciprocals”. In: (June 2005). arXiv:
math/0506415 [math.HO].

[5] Lawrence Evans. Partial differential equations. Providence, R.I: American
Mathematical Society, 2010. isbn: 0821849743.

[6] Bengt Fornberg. A Practical Guide to Pseudospectral Methods. Cambridge
University Press, Jan. 1996. doi: 10.1017/cbo9780511626357.

[7] Martin Greenspan. “Propagation of Sound in Five Monatomic Gases”. In:
The Journal of the Acoustical Society of America 28.4 (July 1956),
pp. 644–648. doi: 10.1121/1.1908432.

[8] Bertil Gustafsson. High Order Difference Methods for Time Dependent
PDE. Springer-Verlag GmbH, Dec. 2007. isbn: 3540749934. url:
https://www.ebook.de/de/product/8900071/bertil_gustafsson_
high_order_difference_methods_for_time_dependent_pde.html.

[9] Amiram Harten. “On the symmetric form of systems of conservation laws
with entropy”. In: Journal of Computational Physics 49.1 (Jan. 1983),
pp. 151–164. doi: 10.1016/0021-9991(83)90118-3.

[10] Jan Hesthaven. Spectral methods for time-dependent problems. Cambridge:
Cambridge University Press, 2007. isbn: 9780511618352.

105

https://www.ebook.de/de/product/3303126/rutherford_aris_vectors_tensors_and_the_basic_equations_of_fluid_mechanics.html
https://www.ebook.de/de/product/3303126/rutherford_aris_vectors_tensors_and_the_basic_equations_of_fluid_mechanics.html
https://www.ebook.de/de/product/3303126/rutherford_aris_vectors_tensors_and_the_basic_equations_of_fluid_mechanics.html
https://doi.org/10.1121/1.1559177
https://arxiv.org/abs/math/0506415
https://doi.org/10.1017/cbo9780511626357
https://doi.org/10.1121/1.1908432
https://www.ebook.de/de/product/8900071/bertil_gustafsson_high_order_difference_methods_for_time_dependent_pde.html
https://www.ebook.de/de/product/8900071/bertil_gustafsson_high_order_difference_methods_for_time_dependent_pde.html
https://doi.org/10.1016/0021-9991(83)90118-3

106 BIBLIOGRAPHY

[11] T.J.R. Hughes, L.P. Franca, and M. Mallet. “A new finite element
formulation for computational fluid dynamics: I. Symmetric forms of the
compressible Euler and Navier-Stokes equations and the second law of
thermodynamics”. In: Computer Methods in Applied Mechanics and
Engineering 54.2 (Feb. 1986), pp. 223–234. doi:
10.1016/0045-7825(86)90127-1.

[12] Pijush Kundu. Fluid mechanics. Amsterdam: Academic Press, 2015. isbn:
9780124059351.

[13] E. M. Lifshitz L D Landau. Fluid Mechanics. Elsevier Science Techn., Sept.
2013. 554 pp. url: https://www.ebook.de/de/product/22314839/l_d_
landau_e_m_lifshitz_fluid_mechanics.html.

[14] L. D. Landau. Statistical physics. Amsterdam London: Elsevier Butterworth
Heinemann, 1980. isbn: 9780750633727.

[15] Ling-Hsiao Lyu. Numerical Simulation of Space Plasmas (I) Lecture Notes.
2016. url: http://www.ss.ncu.edu.tw/~lyu/lecture_files_en/lyu_
NSPP_Notes/lyu_NSPP_Content.html.

[16] Melissa Morris. “Analysis of an alternative Navier-Stokes system:
Attenuation of sound waves”. en. In: (2021). doi:
10.13140/RG.2.2.29383.01442.

[17] Jan Nordström and Magnus Svärd. “Well-Posed Boundary Conditions for
the Navier–Stokes Equations”. In: SIAM Journal on Numerical Analysis 43.3
(Jan. 2005), pp. 1231–1255. doi: 10.1137/040604972.

[18] Ludwig Prandtl. “Über Flüssigkeitsbewegung bei sehr kleiner Reibung”. In:
Verhandlinger 3. Int. Math. Kongr. Heidelberg (1904).

[19] KAMBIZ SALARI and PATRICK KNUPP. Code Verification by the Method
of Manufactured Solutions. Tech. rep. June 2000. doi: 10.2172/759450.

[20] Tim Sauer. Numerical analysis. Harlow, Essex: Pearson, 2014. isbn:
9781292023588.

[21] Steven Strogatz. Nonlinear dynamics and chaos : with applications to
physics, biology, chemistry, and engineering. Boulder, CO: Westview Press,
a member of the Perseus Books Group, 2015. isbn: 9780813349107.

[22] Magnus Svärd. “A new Eulerian model for viscous and heat conducting
compressible flows”. In: Physica A: Statistical Mechanics and its
Applications 506 (Sept. 2018), pp. 350–375. doi:
10.1016/j.physa.2018.03.097.

https://doi.org/10.1016/0045-7825(86)90127-1
https://www.ebook.de/de/product/22314839/l_d_landau_e_m_lifshitz_fluid_mechanics.html
https://www.ebook.de/de/product/22314839/l_d_landau_e_m_lifshitz_fluid_mechanics.html
http://www.ss.ncu.edu.tw/~lyu/lecture_files_en/lyu_NSPP_Notes/lyu_NSPP_Content.html
http://www.ss.ncu.edu.tw/~lyu/lecture_files_en/lyu_NSPP_Notes/lyu_NSPP_Content.html
https://doi.org/10.13140/RG.2.2.29383.01442
https://doi.org/10.1137/040604972
https://doi.org/10.2172/759450
https://doi.org/10.1016/j.physa.2018.03.097

BIBLIOGRAPHY 107

[23] Magnus Svärd. “Analysis of an alternative Navier-Stokes system: Weak
entropy solutions and a convergent numerical scheme”. en. In: (2021). doi:
10.13140/RG.2.2.16184.47366.

[24] Magnus Svärd. “Weak solutions and convergent numerical schemes of
modified compressible Navier–Stokes equations”. In: Journal of
Computational Physics 288 (May 2015), pp. 19–51. doi:
10.1016/j.jcp.2015.02.013.

[25] Eitan Tadmor. “Entropy stability theory for difference approximations of
nonlinear conservation laws and related time-dependent problems”. In: Acta
Numerica 12 (May 2003), pp. 451–512. doi: 10.1017/s0962492902000156.

[26] Terence Tao. “Finite time blowup for an averaged three-dimensional Navier-
Stokes equation”. In: (Feb. 2014). arXiv: 1402.0290 [math.AP].

[27] Lloyd N. Trefethen. Spectral Methods in MATLAB. CAMBRIDGE, July
2000. 183 pp. isbn: 0898714656. url:
https://www.ebook.de/de/product/6906321/lloyd_n_trefethen_
spectral_methods_in_matlab.html.

[28] Hugh Young. Sears and Zemansky’s university physics : with modern physics.
Boston: Pearson, 2016. isbn: 9781292100319.

https://doi.org/10.13140/RG.2.2.16184.47366
https://doi.org/10.1016/j.jcp.2015.02.013
https://doi.org/10.1017/s0962492902000156
https://arxiv.org/abs/1402.0290
https://www.ebook.de/de/product/6906321/lloyd_n_trefethen_spectral_methods_in_matlab.html
https://www.ebook.de/de/product/6906321/lloyd_n_trefethen_spectral_methods_in_matlab.html

	Introduction
	Outline

	Useful Equations, Operators, and Identities
	Equations
	Operators
	Identities

	Elementary Physics
	Simple Harmonic Motion
	Entropy
	The Newtonian Viscous Stress Tensor
	Small, Irrotational, and Isentropic Sound Waves

	Mathematical Entropy
	Mathematical Entropy Function
	Mathematical Entropy Function for Euler Equations
	Euler Entropy Equation
	Navier-Stokes Entropy Diffusion
	Navier-Stokes-Svärd Entropy Diffusion

	Sound Absorption Coefficient
	Coefficient of Absorption for Navier-Stokes
	Coefficient of Absorption for Navier-Stokes-Svärd

	Spectral Methods
	Finite Difference Methods via Interpolation
	Semi-Discrete Domain
	Discrete Domain
	Odd Number of Grid Points
	Even Number of Grid Points

	Convergence

	Fourth Order Runge-Kutta Method
	Code Verification
	Method of Manufactured Solution
	Errors by Method of Manufactured Solution

	Acoustic Attenuation Simulation Results
	Post Simulation Analysis
	Sources of Errors
	Numerical Results

	Boundary Layer
	Incompressible Navier-Stokes-Svärd Equations
	Boundary Layer Equation for Laminar Flow
	Blausius Solution to a Boundary Layer of a Flat Plate

	Non-Dimensional Boundary Layer Simulation
	Numerical Solution of Blasius Boundary Layer
	Finite Volume Method
	Boundary Conditions, Initial Conditions, and Fluid Properties
	Grid Transformation
	Numerical Results

	Conclusion and Outlook
	Appendix
	Appendix A
	Appendix B

	Bibliography

