
https://doi.org/10.1007/s12095-021-00513-y

Deciding EA-equivalence via invariants

Nikolay Kaleyski1

Received: 1 December 2020 / Accepted: 3 July 2021 /
© The Author(s) 2021

Abstract
We define a family of efficiently computable invariants for (n,m)-functions under EA-
equivalence, and observe that, unlike the known invariants such as the differential spectrum,
algebraic degree, and extended Walsh spectrum, in the case of quadratic APN functions over
F2n with n even, these invariants take on many different values for functions belonging to
distinct equivalence classes. We show how the values of these invariants can be used con-
structively to implement a test for EA-equivalence of functions from F

n
2 to F

m
2 ; to the best

of our knowledge, this is the first algorithm for deciding EA-equivalence without resorting
to testing the equivalence of associated linear codes.

Keywords Vectorial Boolean functions · Almost perfect nonlinear (APN) functions ·
Extended affine equivalence (EAequivalence) · CCZ-equivalence

Mathematics Subject Classification 2010 11T06 · 94C10 · 94A60

1 Introduction

Let F2n denote the finite field with 2n elements for some positive integer n, and let F∗
2n

denote its multiplicative group. The vector space of dimension n over F2 will be denoted
by F

n
2. An (n,m)-function, or vectorial Boolean function, is any mapping from F

n
2 to F

m
2

or, equivalently, from F2n to F2m . We typically assume that m = n, i.e. we concentrate on
functions from a finite field of characteristic two to itself; however, the approach given in
the present paper can be applied to an arbitrary pair of dimensions (n,m).

In the particular case of n = m, we can conveniently represent (n, n)-functions
by univariate polynomials over F2n ; more precisely, any (n, n)-function F can be writ-
ten as F(x) = ∑2n−1

i=0 cix
i for some coefficients ci ∈ F2n . This form, called the

univariate representation of F , always exists, and is unique. In the general case, any

This article belongs to the Topical Collection: Sequences and Their Applications III
Guest Editors: Chunlei Li, Tor Helleseth and Zhengchun Zhou

Some of the results in this paper for the particular case of n = m have been partially presented at
Sequences and Their Applications (SETA) 2020.

� Nikolay Kaleyski
nikolay.kaleyski@uib.no

1 Department of Informatics, University of Bergen, Bergen, Norway

Published online: 27 July 2021

Cryptography and Communications (2022) 14:271–290

http://crossmark.crossref.org/dialog/?doi=10.1007/s12095-021-00513-y&domain=pdf
http://orcid.org/0000-0002-9695-1454
mailto: nikolay.kaleyski@uib.no

(n, m)-function F can be represented uniquely as a multivariate polynomial of the form
F(x) = ∑

u∈Fn
2
au

∏n
i=1 x

ui

i for au ∈ F
m
2 , where vi denotes the i-th component of the vec-

tor v = (v1, v2, . . . , vn) ∈ F
n
2. We will not concern ourselves too deeply with the choice of

representation here, as it is typically only important when defining and classifying (n,m)-
functions. However, when illustrating some of the concepts of the EA-equivalence test with
examples, we will mostly use (n, n)-functions and the univariate representation.

As suggested above, the finite field F2n can be identified with the vector space Fn
2, and so

the elements of F2n can be identified with binary vectors of n bits; thus, (n,m)-functions can
be understood as transformations that take an n-bit sequence as input, and produce an m-bit
sequence as output. Thanks to this interpretation, vectorial Boolean functions naturally find
applications in the theory and practice of various areas of mathematics and computer sci-
ence. In particular, vectorial Boolean functions are used in modern block ciphers in the role
of so-called “S-boxes”, or “substitution boxes”, and typically constitute the only non-linear
part of the cipher. Consequently, the security of the cipher directly depends on the prop-
erties of the underlying S-boxes, which motivates the study of vectorial Boolean functions
with respect to their cryptographic properties. It is also intuitively clear that (n, n)-functions
constitute one of the most practically significant cases, since in cryptography one typically
wants to replace a bit sequence with a different bit sequence of the same length.

A basic property of any (n,m)-function, which also has cryptographic implications, is
its algebraic degree. Given an (n,m)-function with ANF F(x) = ∑

u∈Fn
2
u

∏n
i=1 x

ui

i , the

algebraic degree of F is defined as the largest degree of any term x
ui

i that has a non-zero
coefficient au. In other words, the algebraic degree of F is the multivariate degree of its
ANF. Thus, for instance, F(x) = x1x2x4 + x2x3 would have algebraic degree 3. In the case
of an (n, n)-function given by its univariate representation, the algebraic degree also has a
natural interpretation. Given a positive integer i, the binary weight of i is the number of
non-zero entries in its binary representation; for example, 19 is written as 10011 in binary,
and hence has binary weight 3. The algebraic degree of F(x) = ∑2n−1

i=0 cix
i is the largest

binary weight of any exponent i with ci �= 0. Functions of algebraic degree 1, 2, and 3,
are called affine, quadratic, and cubic, respectively. An affine function A with A(0) = 0 is
called linear. An affine (n, n)-function A satisfies A(x)+A(y)+A(z) = A(x + y + z) for
any x, y, z ∈ F2n ; similarly, a linear (n, n)-function L satisfies L(x) + L(y) = L(x + y)

for any x, y ∈ F2n . It is desirable for vectorial Boolean functions used as S-boxes to have a
high algebraic degree, since the latter indicates a good resistance to higher-order differential
attacks [10, 14].

Two of the most important cryptographic properties of (n,m)-functions are the differen-
tial uniformity and the nonlinearity. Suppose that F is an (n,m)-function for some positive
integers n and m. Let δF (a, b) denote the number of solutions x ∈ F

n
2 to the equation

F(x + a) + F(x) = b for any 0 �= a ∈ F
n
2 and any b ∈ F

m
2 . The multiset {δF (a, b) : 0 �=

a ∈ F
n
2, b ∈ F

m
2 } is called the differential spectrum of F . The largest value in the differential

spectrum is denoted by δF and is called the differential uniformity of F .
The existence of a large number of solutions x to some equation of the form F(x)+F(a+

x)=b for some a �= 0 and b makes the function F vulnerable to differential cryptanalysis [2].
The value of δF should thus be as low as possible. Since x +a is a solution to the afore-
mentioned equation whenever x is, the minimum possible value of δF is 2; the class of (n, n)-
functions attaining this optimal value is called the class of almost perfect nonlinear (APN),
and has been an object of intense study since its introduction by Nyberg in the 90’s [16].

The nonlinearity NL(F) of F is simply the minimum Hamming distance between any
component function of F and any affine (n, 1)-function, the component functions of F being

272 Cryptography and Communications (2022) 14:271–290

the (n, 1)-functions Fc of the form Fc(x) = Trm(cF (x)), where Trm : F2m → F2 is the
absolute trace defined by Trm(x) = ∑m−1

i=0 x2i
for any x ∈ F2n ; when the dimension m is

clear from context, we will sometimes write just Tr instead of Trm. The nonlinearity should
be high in order to resist linear cryptanalysis [15].

When studying “linear properties” of functions, such as their nonlinearity, it is useful
to adapt some linear-algebraic notions from the vector space F

n
2 even in the case when we

are working with the finite field F2n . The linear span of a set S ⊆ F2n is simply the set
of all possible linear combinations of the elements in S, i.e. if S = {s1, s2, . . . , sk} for
some positive integer k and for si ∈ F2n , then Span(S) = {c1s1 + c2s2 + · · · + cksk :
c1, c2, . . . , ck ∈ F2}; obviously, the span can be defined in the same way in the case of the
vector space F

n
2. Having formalized the linear span, it is straightforward to carry over other

notions from F
n
2, such as that of linear independence, and that of a basis of F2n (being a

linearly independent set B ⊆ F2n with Span(B) = F2n).
A useful tool for analyzing vectorial Boolean functions is the Walsh transform, which is

an integer valued function WF : Fn
2 × F

m
2 → Z associated with F : Fn

2 → F
m
2 , and given

by the prescription

WF (a, b) =
∑

x∈Fn
2

(−1)Trm(bF(x))+Trn(ax)

for a ∈ F
n
2, b ∈ F

m
2 . In the case of (n, n)-functions, we can more succinctly write

WF (a, b) =
∑

x∈F2n

χ(bF (x) + ax),

where χ(x) = (−1)Tr(x). The values of WF are called Walsh coefficients, and the multiset
{WF (a, b) : a ∈ F

n
2, b ∈ F

m
2 } is called the Walsh spectrum of F . The multiset of the absolute

values of F , i.e. the multiset {|WF (a, b)| : a ∈ F
n
2, b ∈ F

m
2 }, is called the extended Walsh

spectrum of F .
Due to the huge number of (n,m)-functions even for small values of n and m, their clas-

sification is typically only performed up to some equivalence relation that preserves the
properties being studied. In the case of cryptographically optimal vectorial Boolean func-
tions, the most general equivalence relation preserving both the differential uniformity and
the nonlinearity is the so-called Carlet-Charpin-Zinoviev-equivalence, or CCZ-equivalence
[9]. Two (n,m)-functions F and G are said to be CCZ-equivalent if there is an affine per-
mutation A of Fn

2 × F
m
2 mapping the graph �F = {(x, F (x)) : x ∈ F

n
2} of F to the graph

�G of G.
Testing whether two given functions F and G are CCZ-equivalent is usually done by

means of the equivalence of linear codes [5, 13]. More precisely, a particular linear code
CF is associated with F , and a particular linear code CG is associated with G; F and G are
then CCZ-equivalent if and only if CF and CG are equivalent. Testing whether two given
linear codes are equivalent has the advantage that it is usually already implemented in most
mathematical software, such as the Magma programming language that we use for most of
our computations [4].

Unfortunately, computationally testing CCZ-equivalence in this way can reliably be
performed only when the dimensions m and n are relatively small; in the case of (n, n)-
functions, this means n ≤ 9, since for higher values of n, the memory consumption becomes
overwhelming, and the test cannot be performed in a lot of cases. Furthermore, the cur-
rent implementation of Magma can give false negatives due to insufficient memory; in
other words, if the equivalence test outputs “false”, we have no reliable way of determining

273Cryptography and Communications (2022) 14:271–290

whether this is due to insufficient memory, or due to a successfully completed exhaus-
tive search proving the inequivalence of the linear codes (and hence, vectorial Boolean
functions) in question.

Ruling out e.g. CCZ-equivalence can be facilitated by means of invariants, i.e. properties
or statistics that are preserved under CCZ-equivalence. The differential spectrum and the
extended Walsh spectrum are invariant under CCZ-equivalence, i.e. if two (n,m)-functions
F and G are CCZ-equivalent, then their differential spectra and extended Walsh spectra
are the same. Unfortunately, the Walsh spectra and differential spectra of all known APN
functions are the same (with some rare exceptions in the case of the Walsh spectrum), ren-
dering these invariants nearly useless in practice. Other invariants, such as the �-rank and
�-rank have been introduced [12], that can take different values for distinct CCZ-classes
of functions, and can therefore be used to rule out CCZ-equivalence in some cases. The
major drawback of these invariants is that they require significant computational resources,
meaning that, on the one hand, their calculation takes a long time, e.g. around ten days for
a single �-rank over F210 , and, on the other hand, computing these invariants for F2n with
n > 10 is impossible at the moment due to overwhelming memory requirements.

A special case of CCZ-equivalence is extended affine equivalence, or EA-equivalence.
Two (n,m)-functions F and G are said to be EA-equivalent if there exist affine functions
A1 : Fm

2 → F
m
2 , A2 : Fn

2 → F
n
2, and A : Fn

2 → F
m
2 such that

A1 ◦ F ◦ A2 + A = G, (1)

with A1 and A2 being bijective. We will refer to A1 as the outer permutation and to A2 as the
inner permutation throughout the paper. CCZ-equivalence is strictly more general than EA-
equivalence combined with taking inverses [7], but in certain cases, such as for quadratic
and monomial functions, checking whether two functions (or, potentially, their inverses)
are EA-equivalent is enough to decided CCZ-equivalence: two quadratic APN functions are
CCZ-equivalent if and only if they are EA-equivalent [18]; and two power functions are
CCZ-equivalent if and only if they are cyclotomic equivalent [11]. Recall that two power
functions F(x) = xd and G(x) = xe over F2n are said to be cyclotomic equivalent if
e ≡ 2kd mod (2n − 1) or e−1 ≡ 2kd mod (2n − 1); furthermore, cyclotomic equivalence
is a special case of EA-equivalence and taking inverses. This is particularly interesting when
one takes into account that all known APN functions (which fall into more than 20000
distinct CCZ-equivalence classes) are CCZ-equivalent to a monomial or quadratic function,
with only a single exception in dimension n = 6. Thus, from a practical point of view, being
able to test functions for EA-equivalence is virtually as useful as being able to test them for
CCZ-equivalence, at least as far as the classification of APN functions is concerned.

Surprisingly, despite its simple definition, the only known algorithm to date for compu-
tationally testing the EA-equivalence of two given functions is one by means of associated
linear codes, much like in the case of CCZ-equivalence [13]; the associated codes used
in this approach are of a somewhat more complicated form than the ones used in the
CCZ-equivalence test, and so this approach is even more restrictive with respect to compu-
tational resources and memory requirements. Indeed, testing EA-equivalence for quadratic
functions (which coincides with CCZ-equivalence) is typically done by testing them for
CCZ-equivalence. Algorithms for testing the EA-equivalence of two functions in some
other special cases (grouped under the umbrella term “restricted EA-equivalence”) have
previously been studied in [3], [8], and [17].

Since EA-equivalence is a special case of CCZ-equivalence, any CCZ-invariant is also an
EA-invariant. As mentioned above, the extended Walsh spectrum and differential spectrum
are practically useless in the case of APN functions, as they almost always take the same

274 Cryptography and Communications (2022) 14:271–290

value in the APN case, while the �- and �-rank involve somewhat laborious computations.
EA-equivalence being less general than CCZ-equivalence, it is natural to expect to have
properties that are EA-invariant but not CCZ-invariant. One such property is the algebraic
degree, which is preserved by EA-equivalence, but not by CCZ-equivalence. Unfortunately,
this is not terribly useful for classifying APN function either since, as mentioned above,
nearly all known instances of APN functions are quadratic.

In this paper, we present an approach for computationally testing the EA-equivalence
of two (n,m)-functions by first guessing the outer permutation A1, applying its inverse to
(1) to obtain a relation of the form F ◦ A2 + A′ = G′, and then solving the latter for A2
and A′. In the case of (n, n)-functions with n even, our approach allows the set of possible
affine permutations A1 to be drastically reduced (as opposed to exhaustive search), which
makes the entire procedure computationally feasible. Our approach has the advantage that
it can be broken down into a multitude of small independent steps, which makes the result-
ing algorithm easily parallelizable. Unlike the CCZ-equivalence test and EA-equivalence
test described in [13], which rely on testing the equivalence of a pair of linear codes (and
therefore require specialized and rather complex algorithms), our approach uses only basic
arithmetics and linear algebra, and can be easily implemented in any general-purpose pro-
gramming language, and ran on any computer. Furthermore, each of the individual steps
comprising the algorithm has a concrete and meaningful input and output that can be mon-
itored and verified. This precludes the possibility of false positives or negatives as in the
case of the current CCZ-equivalence test.

2 A family of EA-invariants

Let m, n, k be positive integers, and t be an element of Fn
2. We denote by Tk(t) the set of all

k-tuples of elements from F
n
2 that add up to t , i.e.

Tk(t) = {(x1, x2, . . . , xk) ∈ (Fn
2)k |

k∑

i=1

xi = t}.

If A is an affine (n, n)-permutation, then the image of any k-tuple (x1, x2, . . . , xk) from
Tk(t) is a k-tuple (A(x1), A(x2), . . . , A(xk)), the sum of whose elements is

A(x1) + A(x2) + · · · + A(xk) =
{

A(x1 + x2 + · · · + xk) k odd;
A(x1 + x2 + · · · + xk) + A(0) k even.

Equivalently, A is a one-to-one mapping from Tk(t) to Tk(t
′), where t ′ = A(t) when k is

odd, and t ′ = A(t) + A(0) when k is even. In particular, a linear A always permutes Tk(0).
For any (n,m)-function F , let �F

k (t) denote the multiset of all sums of the form F(x1)+
F(x2) + · · · + F(xk) for all k-tuples (x1, x2, . . . , xk) ∈ Tk(t). Symbolically:

�F
k (t) =

{
k∑

i=1

F(xi) : (x1, x2, . . . , xk) ∈ Tk(t)

}

.

The multiplicities of �F
k (0) are then an EA-invariant for any even value of k.

Proposition 1 Let F and G be (n,m)-functions with A1 ◦ F ◦ A2 + A = G for some affine
functions A1 : Fm

2 → F
m
2 , A2 : Fn

2 → F
n
2, A : Fn

2 → F
m
2 with A1, A2 bijective. Let k be a

275Cryptography and Communications (2022) 14:271–290

positive integer. Then

�G
k (0) =

{
{A1(s) + A(0) : s ∈ �F

k (A2(0))} k odd;
{A1(s) + A1(0) : s ∈ �F

k (0)} k even.

In particular, the multiplicities of �F
k (0) and �G

k (0) (that is, the number of times that each
element occurs in each multiset) are the same when k is even.

Proof Consider a k-tuple (x1, x2, . . . , xk) with x1+x2+· · ·+xk = 0. The sum of the images
of xi under A2 is A2(x1) + A2(x2) + · · · + A2(xk), which becomes A2(x1 + x2 + · · · + xk)

for odd values of k, and A2(x1 + x2 + · · · + xk) + A2(0) for even values of k. Since
x1 +x2 +· · ·+xk = 0 by assumption, the sum A2(x1)+· · ·+A2(xk) is then A2(0) for odd
k, and 0 for even k. Thus, computing all sums of the form F ◦ A2(x1) + F ◦ A2(x2) + · · · +
F ◦ A2(xk) for (x1, x2, . . . , xk) ∈ Tk(0) is equivalent to computing all sums of the form
F(x1)+F(x2)+· · ·+F(xk) for (x1, x2, . . . , xk) ∈ Tk(q), with q = 0, resp. q = A2(0) for
k even, resp. k odd. Thanks to the affinity of A1, computing the sums of values of A1◦F ◦A2
amounts to computing the corresponding sums of values of F ◦ A2, and then taking their
image under A1, up to the addition of the constant A1(0) in the case of even k. Finally, the
sum A(x1) + A(x2) + · · · + A(xk) of the images of x1, . . . , xk under A is equal to A(0) for
k odd, and is equal to 0 for k even. Computing the sums of values of G = A1 ◦ F ◦ A2 + A

is thus the same as computing the sums of values of A1 ◦ F ◦ A2, up to the addition of the
constant A(0) in the case of odd k. The particular statement follows immediately from the
above by observing that the elements of �G

k (0) are simply the images of the elements in
�F

k (0) under the linear part of the permutation A1.

Recall that the majority of known APN functions are quadratic, and that testing the
equivalence of quadratic (n, n)-functions represents the case of highest practical interest.
One very useful observation that we can make in the quadratic case is that we can assume
A1(0) = A2(0) = 0, which (as we see later), greatly simplifies the complexity of the
entire EA-equivalence test; and, in particular, means that the multiplicities of �F

k (0) are an
EA-invariant for quadratic functions in the case of odd values of k as well.

Proposition 2 Let F,G be quadratic (n, n)-functions for some positive integer n, and sup-
pose that A1 ◦ F ◦ A2 + A = G for some affine (n, n)-functions A1, A2, A with A1,
A2 bijective. Furthermore, let c1 = A1(0), c2 = A2(0), and L1(x) = A1(x) + c1,
L2(x) = A2(x)+c2 so that L1 and L2 are linear. Then there exists an affine (n, n)-function
A′ such that

L1 ◦ F ◦ L2 + A′ = G.

Proof We can assume that F is purely quadratic, i.e. of the form F(x) =
∑

0≤i<j<n cij x
2i+2j

for some coefficients cij ∈ F2n . The composition F ◦ A2 expands to

F(A2(x)) = F(L2(x) + c2) =
∑

ij

cij (L2(x) + c2)
2i+2j

=
∑

ij

cijL2(x)2i+2j +
∑

ij

cij (c
2j

2 L2(x)2i + c2i

2 L2(x)2j + c2i+2j

2)

= F(L2(x)) + A′′(x),

276 Cryptography and Communications (2022) 14:271–290

where A′′(x) = ∑
ij cij (c

2j

2 L2(x)2i + c2i

2 L2(x)2j + c2i+2j

2) is an affine function. Then the
composition A1 ◦ F ◦ A2 becomes

A1(F (A2(x))) = L1((F ◦ L2)(x) + A′′(x)) + c1 = L1 ◦ F ◦ L2(x) + AA′′′(x),

where AA′′′(x) = L1(A
′′(x)) + c1. Finally, taking A′ = AA′′′(x) + A(x), we have

L1 ◦ F ◦ L2 + A′ = G

as desired.

As suggested above, Proposition 2 implies that the multiplicities of �F
k (0) are an

invariant for both odd and even values of k in the quadratic case. Note that the condi-
tion of the function being quadratic is necessary, as witnessed by e.g. F(x) = x15 and
G(x) = (x + α)15 over F2six, where α is a primitive element of F2six: the elements of the
finite field in question fall into three distinct classes based on their multiplicities in �F

3 (0),
but into five distinct classes based on their multiplicities in �G

3 (0).

Corollary 3 Following the notation and hypothesis of Proposition 1, if F and G are in
addition quadratic, then the multiplicities of �F

k (0) and �G
k (0) are the same for any value

of k.

The complexity of computing the multiplicities of �F
k (t) for an (n,m)-function F

increases exponentially with each increment of k. Fortunately, computing the multiplicities
via the Walsh transform of F results in a complexity that does not depend on the value of k.

Proposition 4 Let F be an (n,m)-function, k be a positive integer, t ∈ F
n
2 and s ∈ F

m
2 . Let

MF
k (t, s) denote the number of k-tuples (x1, x2, . . . , xk) such that x1 + x2 + · · · + xk = t

and F(x1) + F(x2) + · · · + F(xk) = s. Then

2m+nMF
k (t, s) =

∑

a∈Fn
2

(−1)Trn(at)
∑

b∈Fm
2

(−1)Trm(bs)Wk
F (a, b). (2)

Proof From the definition of the Walsh transform, the expression

∑

a∈Fn
2

(−1)Trn(at)
∑

b∈Fm
2

(−1)Trm(bs)Wk
F (a, b)

expands to

∑

a∈Fn
2 ,b∈Fm

2

∑

x1,...,xk∈Fn
2

(−1)Trm(b(s+∑k
i=1 F(xi)))+Trn(a(t+∑k

i=1 xi)).

277Cryptography and Communications (2022) 14:271–290

By changing the order of summation, this becomes

∑

b∈Fm
2

∑

x1,...,xk∈Fn
2

(−1)Trm(b(s+∑k
i=1 F(xi)))

∑

a∈Fn
2

(−1)Trn(a(t+∑k
i=1 xi)).

The statement then follows by recalling that
∑

a∈Fn
2
(−1)Trn(ax) evaluates to 0 for any 0 �=

x ∈ F
n
2, and evaluates to 2n for x = 0.

Finding the multiplicity of a given element s ∈ F
m
2 in �F

k (t) now amounts to computing
the Walsh coefficients WF (a, b) of F , raising them to the power k, and combining them
according to (2). We note that for the purposes of testing EA-equivalence, we always assume
t = 0, and hence (2) simplifies to 2m+nMF

k (0, s) = ∑
a∈Fn

2 ,b∈Fm
2
(−1)Trm(bs)Wk

F (a, b).
Furthermore, the Walsh coefficients WF (a, b) can be precomputed for all F from a known
set of EA-representatives, allowing the computations to be sped up at the cost of storing the
precomputed result.

Remark 5 We note that, in the case of APN functions, the multiset of the multiplicities
of �F

3 (0) is essentially the same as the multiset �0
F studied in [6]. The latter, given an

(n, n)-function F , is defined as the multiset

�0
F = {#{a ∈ F2n | (∃x ∈ F2n)F (x) + F(a + x) + F(a) = b} : b ∈ F2n}.

The equation F(x) + F(a + x) + F(a) = b has either 0 or 2 solutions for any 0 �= a ∈ F2n

and any b ∈ F2n if F is APN. Thus, an equivalent invariant would be the multiset

{F(x) + F(a + x) + F(a) : a, x ∈ F2n},
and it is easy to see that this can equivalently be rewritten as

{F(x1) + F(x2) + F(x3) : (x1, x2, x3) ∈ F
3
2n | x1 + x2 + x3 = 0},

which is essentially the same as �F
3 (0). As pointed out in [6], the multiset �0

F is a CCZ-
invariant for quadratic APN functions.

3 Guessing the outer permutation

Suppose that we are given two EA-equivalent functions F and G from F
n
2 to F

m
2 for some

positive integers n, m, so that A1◦F ◦A2+A = G for some affine functions A1 : Fm
2 → F

m
2 ,

A2 : Fn
2 → F

n
2 and A : Fn

2 → F
m
2 , with A1 and A2 bijective. Let c1 = A1(0) and c = A(0)

so that L1(x) = A1(x) + c1 and L(x) = A(x) + c are the linear parts of A1 and A,
respectively. We note that if A1 ◦ F ◦ A2 + A = G, then also A′

1 ◦ F ◦ A2 + A′ = G where
A′

1(x) = A1(x) + � and A′(x) = A(x) + � for any � ∈ F
m
2 . In particular, we can always

assume that c1 = 0 without loss of generality, so that A1 is linear. In the following, we will
write simply G = L1 ◦ F ◦ A2 + A.

By Proposition 1, for even values of k, we have

�G
k (0) = {L1(a) : a ∈ �F

k (0)}.
Besides justifying that the multiset of multiplicities of �F

k (0) is an EA-invariant for any
positive even integer k, the above relation gives us some information about L1; namely, it

278 Cryptography and Communications (2022) 14:271–290

implies that if L1(x) = y for some x, y ∈ F
m
2 , then the multiplicity of x in �F

k (0) should
be the same as that of y in �G

k (0). If the elements of Fm
2 are partitioned according to the

multiplicities of F as

F
m
2 = K1 ⊕ K2 ⊕ · · · ⊕ Ks

for some positive integer s, so that all elements in Ki for every 1 ≤ i ≤ s have the same
multiplicity in �F

k (0), and elements in Ki and Kj have distinct multiplicities for i �= j ;
and, similarly, as

F
m
2 = C1 ⊕ C2 ⊕ · · · ⊕ Cs

according to the multiplicities of G, then we must have

L1(Ki) = Ci

for all 1 ≤ i ≤ s. We will say that any permutation L1 satisfying L1(Ki) = Ci for all
i respects the two partitions of Fm

2 . Consequently, we obtain conditions that can be used
to restrict the possible choices for L1. Intuitively, the larger the number of classes s in the
partition of Fm

2 , the fewer linear permutations L1 can satisfy the conditions thus obtained.
In particular, if all elements of Fm

2 occur with the same multiplicity, we do not obtain any
information on L1. This is clearly the case when F is a permutation. Furthermore, the same
appears to be true for all APN (n, n)-functions with odd n (regardless of whether they are
permutations or not), which is why we concentrate on fields of even extension degree in our
work.

All linear permutations L respecting the partitions F
m
2 = K1 ⊕ · · · ⊕ Ks and F

m
2 =

C1 ⊕ · · · ⊕ Cs can now be found by trying to guess the values of L on a basis of Fm
2 , and

backtracking whenever some assignment violates these partitions. An algorithmic descrip-
tion of this procedure is provided below under Algorithm 1 and Algorithm 2. The former
presents the general framework for partitioning F

m
2 according to the multiplicities of sums

of values of F and G, while the latter describes the process of reconstructing all linear per-
mutations that respect the constructed partitions. We remark that the algorithm is described
for the particular case of k = 4 (which is what we have mostly used in practice for our com-
putational experiments), but the principle trivially generalizes to any value of k. We also
note that computing the number MF

k (0, s) of k-tuples whose values under F add up to a
given s ∈ F

m
2 can be done via the values of the Walsh transform as described in Proposition

4; this is particularly useful if the selected value of k is large, or if a precomputed table of
the Walsh coefficients for one (or both) of the tested functions is available.

Let us take a closer look at Algorithm 1. We first fix an even value of k, for instance
k = 4. Given two (n, n)-functions, F and G, that we would like to test for equivalence, we
begin by computing the multiplicities of the elements in the multisets �F

k (0) and �G
k (0).

The number of times that the element s ∈ F
m
2 appears in �F

k (0) is denoted by MF
k (0, s)

(this means that MF
k (0, s) k-tuples (x1, x2, . . . xk) with x1 + x2 + · · · + xk = 0 satisfy

F(x1) + F(x2) + · · · + F(xk) = s).
Using these multiplicities, we partition F

m
2 in two ways: using the multiplicities

{MF
k (0, s) : s ∈ F

m
2 }, and using the multiplicities {MG

k (0, s) : s ∈ F
m
2 }. More precisely,

we write F
m
2 as F

m
2 = K1 ⊕ K2 ⊕ · · · ⊕ Ks , with K1,K2, . . . , Ks being disjoint sets of

elements; two elements s1 and s2 are in the same block Ki of the partition if and only if
MF

k (0, s1) = MF
k (0, s2), i.e. if s1 and s2 occur with the same multiplicity in �F

k (0). Equiv-

279Cryptography and Communications (2022) 14:271–290

alently, we could say that the multiplicities MF
k (0, s) induce an equivalence relation, in

which two elements s1, s2 ∈ F
m
2 are equivalent precisely when MF

k (0, s1) = MF
k (0, s2);

the blocks K1,K2, . . . , Ks are then the equivalence classes of this equivalence relation. In
the same way that K1,K2, . . . , Ks is the partition induced by �F

k (0), C1, C2, . . . , Cs′ is the
partition induced by �G

k (0).
If F and G are EA-equivalent, then the number of blocks in both partitions must be

the same, and the individual blocks must have the same sizes. Thus, if s �= s ′, or if the
multiset {#Ki : i = 1, 2, . . . , s} is not equal to {#Ci : i = 1, 2, . . . , s}, we can immedi-
ately conclude that F and G are not EA-equivalent. Otherwise, we can rearrange the blocks
K1, K2, . . . , Ks and C1, C2, . . . , Cs in such a way that #Ki = #Ci for i = 1, 2, . . . , s. At
this point, we know that if F and G are equivalent via L1 ◦ F ◦ A2 + A = G, then L1
must map Ki to Ci for i = 1, 2, . . . s. This additional information allows us to significantly
reduce the number of linear permutations L1 that needs to be considered.

The set of all linear permutations preserving the partitions can be found using Algorithm
2. The latter is essentially an exhaustive search that tries to guess the values of L1 on a basis
B = {b1, b2, . . . , bm} of Fm

2 . After we have guessed the values of L1 on b1, b2, . . . , bi for
some i ≤ m, we know the values of L1 on all elements of Fm

2 generated by {b1, b2, . . . , bi}.
For any such element x, we can find the indices j, j ′ such that x ∈ Kj and L1(x) ∈ Cj ′ . If
j �= j ′, then L1 does not respect the partitions, and so we backtrack, attempting a different
guess for bi . If we do not find any contradiction of this type, we proceed to guessing the
value of bi+1. We continue in this manner until we have exhausted all possibilities.

280 Cryptography and Communications (2022) 14:271–290

The partitions Fm
2 = K1⊕K2⊕· · ·⊕Ks can be precomputed for representatives from e.g.

all known EA-classes of APN functions; in particular, we refer to our computational results
described in Section 5 where we describe how we provide such pre-computed results for all
currently known APN functions over F2n up to dimension n = 10. When using Algorithms
1 and 2 to find all possibilities for the outer permutation L1 in L1◦F ◦A2+A = G, however,
we need to know the partitions according to both F and G, which makes the precomputation
of the permutations L1 impossible.

Nonetheless, we can observe that the set of linear permutations L1 mapping Ki to Ci for
every 1 ≤ i ≤ s is simply a coset in the symmetric group of Fm

2 of the subgroup of linear
permutations mapping Ki to Ki for 1 ≤ i ≤ s. The latter can be precomputed for known
EA-representatives, and hence finding a single linear permutation mapping every Ki to Ci

with 1 ≤ i ≤ s allows us to reconstruct all such permutations by composing it with the
precomputed ones. This can be formalized as follows.

Proposition 6 Let n be a positive integer, and F
n
2 = K1 ⊕ K2 ⊕ · · · ⊕ Ks and F

n
2 =

C1 ⊕ C2 ⊕ · · · ⊕ Cs be two partitions of the elements of Fn
2 such that #Ki = #Ci for every

281Cryptography and Communications (2022) 14:271–290

1 ≤ i ≤ s. Let K be the set of all linear permutations L of Fn
2 such that L(Ki) = Ki for all

1 ≤ i ≤ s, and let P be the set of all linear permutations L of Fn
2 such that L(Ki) = Ci for

1 ≤ i ≤ s. Then K is a subgroup of the symmetric group of Fn
2 , and P is a coset of K.

Proof The composition of two linear permutations is clearly a linear permutation itself, and
so is the inverse of a linear permutation. Furthermore, if L1 and L2 are linear permutations
that permute some set Ki ⊆ F

n
2, then their composition and their inverses do so as well.

Thus, K is closed under composition and taking inverses, and is a subgroup of the symmetric
group of Fn

2.
Now, suppose that L is a linear permutation of Fn

2 mapping some subset Ki ⊆ F
n
2 onto

some Ci ⊆ F
n
2. Then K ◦ L is also a linear permutation mapping Ki onto Ci for any

K ∈ K. Thus, K
→ K ◦ L maps K to P , and is clearly invertible since L is a permutation.
Consequently, P is a coset of K represented by L.

Besides delegating a large portion of the work in constructing P to the precomputation
of K, Proposition 6 allows us to estimate the complexity of testing EA-equivalence between
a function F (which we can assume is a known EA-representative) and another function G

inducing a partition of Fm
2 compatible with the one induced by F .

Furthermore, it is clear that the size of the group K of linear permutations that preserve
the partition F

m
2 = K1 ⊕· · ·⊕Ks induced by the multiplicities in �k

F (0) is an EA-invariant.
What makes this interesting, is that it is more discriminating than the sizes of the partition
classes: for instance, the APN functions F(x) = x3 and G(x) = x3 + α11x6 + αx9 over
F2six (where α is primitive in F2six) both partition F2six into three classes of size 1, 21,
and 42, respectively; but the group of linear permutations preserving the partition of F(x)

contains 1008 elements, while the group of linear permutations preserving the partition of
G has 336 elements. Thus, precomputing the groups K of linear permutations preserving
the partition for representatives from the known classes of APN functions has the additional
advantage that it allows us to rule out equivalence in more cases (using a stronger invariant).
We note that the actual elements of the group K are not, in general, invariant under EA-
equivalence.

To give some basic idea of how efficient these processes are, we have computed the
groups K for representatives from all switching classes of APN functions over F2n with
n ∈ {6, 8} [12]. The results are presented in Table 1 below. The first column gives the
dimension n of F2n . The functions are indexed in the second column in the same way as
in [12]. The next two columns give the time in seconds for computing the partition of F2n

according to the quadruple sums of F directly and using the Walsh transform, respectively
(including the time in seconds for precomputing the Walsh coefficients). The following
column gives the time for computing all linear permutations preserving the corresponding
partition. The last column gives the number of linear permutations found in each case, which
is a direct measure of the complexity of an EA-equivalence test by our method, as the
approach for guessing the inner permutation (described in the following Section 4) has to
be applied to every possible choice of the outer permutation.

We note that the running times are highly dependent on the programming language,
implementation, and computational equipment used, and the ones presented in the paper are
given only for illustrative purposes.

For comparison, there are 27998208 linear permutations of F26 , and 132640470466560
linear permutations of F28 .

282 Cryptography and Communications (2022) 14:271–290

Table 1 Computational experiments for finding the outer permutation

n ID Sums Walsh Time Permutations

6 1.1 1.650 1.250 1.030 1008

1.2 1.510 1.390 0.300 336

2.1 1.390 1.450 0.010 10

2.2 1.250 1.250 0.380 336

2.3 1.240 1.450 0.970 1008

2.4 1.260 1.250 0.010 8

2.5 1.300 1.310 0.050 60

2.6 1.260 1.290 0.010 8

2.7 1.310 1.290 0.010 10

2.8 1.310 1.310 0.010 8

2.9 1.300 1.310 0.010 7

2.10 1.580 1.300 0.010 8

2.11 1.290 1.290 0.000 8

2.12 2.450 2.470 0.030 48

8 1.1 103.580 74.910 23.090 680

1.2 92.140 86.570 206.830 680

1.3 244.540 238.560 78.180 8

1.4 146.520 140.710 12.530 8

1.5 112.860 107.580 58.300 4

1.6 111.810 106.920 62.580 4

1.7 127.330 121.320 10.020 1

1.8 126.210 121.740 26.670 4

1.9 127.250 121.730 40.370 4

1.10 127.090 121.270 10.400 2

1.11 127.410 122.560 50.560 4

1.12 127.950 121.240 46.520 4

1.13 127.850 122.320 10.530 2

1.14 132.900 127.100 0.010 2

1.15 126.410 121.940 22.580 1

1.16 127.020 121.040 9.970 2

1.17 126.860 120.790 69.860 2

2.1 99.690 94.340 27.380 360

3.1 118.870 112.990 57.480 4

4.1 115.700 110.040 0.070 16

5.1 102.470 96.640 0.030 8

6.1 110.940 105.610 0.040 8

7.1 98.650 93.330 49.350 680

283Cryptography and Communications (2022) 14:271–290

4 Guessing the inner permutation

If, in addition to the (n,m)-functions F and G, we know the linear permutation L1 in the
relation L1 ◦ F ◦ A2 + A = G, we can apply its inverse, L−1

1 to both sides, obtaining

F ◦ A2 + A′ = G′, (3)

where A′ = L−1
1 ◦A and G′ = L−1

1 ◦G. A pair of affine (n,m)-functions A2, A
′ satisfying

the above relation then exists if and only if F is EA-equivalent to G.
Once again, let us write c = A′(0) and c2 = A2(0), and L2 = A2 + c2 and A =

L + c for the linear parts of A2 and A, respectively. Substituting 0 for x in (3) yields
F(c2) + c = G′(0). Since we know G′, and hence also G′(0), this means that any choice
of c2 uniquely determines c. It is thus enough to loop over all possible choices of c2 ∈ F

n
2

and take c = F(c2) + G′(0) in order to exhaust all possibilities for (c2, c
′). As observed in

Proposition 2, if F and G are quadratic, then we can assume that c2 = 0 and c = G′(0)

without loss of generality; for functions of higher algebraic degree, we have to consider all
possible values of c2. In the following, we assume that we have guessed the constants c2
and c, and rewrite (3) as

F ◦ L2 + L′ = G′′, (4)

where G′′(x) = G′(x+c2)+c. It now remains to look for a pair of functions L2 : Fm
2 → F

m
2

and L : Fn
2 → F

m
2 satisfying (4).

To guess the permutation L2, we observe that, given some k-tuple (x1, x2, · · · , xk) ∈
Tk(0), by Proposition 1, we have

G′′(x1) + · · · + G′′(xk) = F(L2(x1)) + · · · + F(L2(xk)),

and thus, if some element xi ∈ F
n
2 is part of a k-tuple whose sum under G is t , then its

image L2(xi) under L2 must be part of some k-tuple whose sum under F is t . We state this
formally as follows.

Proposition 7 Let F and G be (n,m)-functions for some positive integers n,m such that
F ◦ L2 + L = G for L2, L linear and L2 bijective. Let k be a positive integer, and, for any
t ∈ F

m
2 , denote

OF
k (0, t) = {(x1, x2, · · · , xk) ∈ Tk(0) | F(x1) + F(x2) + · · · + F(xk) = t}.

Then, if (x1, x2, · · · xk) ∈ Tk(0) with G(x1) + · · · + G(xk) = t , we must have L2(xi) ∈

284 Cryptography and Communications (2022) 14:271–290

MF
k (0, t) for all 1 ≤ i ≤ k. Consequently,

L2(x) ∈
⋂

t∈∑G
k (0,x)

(⋃
OF

k (0, t)
)

, (5)

where

�G
k (0, x) = {G(x1) + · · · + G(xk) : (x1, . . . , xk) ∈ Tk(0) | x ∈ (x1, . . . xk)}.

Using (5) for k = 3, we can significantly reduce the domains of L2(x) for x ∈ F
m
2 , i.e.

the ranges of possible values that L2(x) can take. A large number of the domains end up
consisting of three elements (although we do obtain larger domains in some cases). Since
guessing L2 amounts to guessing its values on a basis of Fm

2 , the elements of the basis can
be chosen in such a way that the Cartesian product of the respective domains is small. In
most cases, we can indeed choose the basis elements in such a way that all domains consist
of three elements, and thus end up with only 3n possibilities for L2.

In addition, assuming that e.g. F is a known representative, some precomputations are
possible; namely, the sets OF

k (0, t) can be precomputed for k = 3 and all values of t .
Alternatively, the roles of F and G in (4) can be swapped by composing both sides with the
inverse of L2 from the right, in which case the sets �F

k (0, x) can be precomputed for k = 3
and for all x ∈ F

m
2 .

We note that for values of k greater than 3, it seems to always be possible to express
all elements in F2n as the sum of four values of F for an APN function F , in which case∑G

k (0, x) = F
m
2 for all x ∈ F

m
2 , and consequently the domains of all x ∈ F

m
2 end up being

the entire field F
m
2 . Since the definitions of Tk(0) and

∑F
k (0) only make sense for values of

k greater than 2, k = 3 remains the only practically useful choice for the value of k (at least
in the case of APN functions).

Algorithm 3 describes the approach for reconstructing L2 from (3) suggested by the
above considerations. The first part of the algorithm computes the domains D(x) for all
elements x ∈ F

n
2; we then know that for any x ∈ F

n
2 we must have L2(x) ∈ D(x). All

domains are initially set to F
n
2, i.e. no restrictions on the value of L2(x) is made. We then

compute the sets OF
3 (t) of all triples (x1, x2, x1 +x2) with F(x1)+F(x2)+F(x1 +x2) = t .

For any element y1 belonging to a triple (y1, y2, y1+y2) with G(y1)+G(y2)+G(y1+y2) =
t , we know that L2(y1) must belong to OF

3 (t); we use this to reduce the domain D(y1) of
y1.

Having computed the domains, the second part of the algorithm consists of finding a
basis B = {b1, b2, . . . , bn} of Fn

2, and constructing all linear permutations L2 for which
L2(bi) ∈ D(bi) for i = 1, 2, . . . , n. Since we assume that F ◦ A2 + A = G (with A2 =
L2 +c2, where we also guess the value of c2 by going through all possibilities), if the choice
of L2 is correct, then A = F ◦ A2 + G must be affine. For every possible of choice of L2
and c2, we thus compute A and check whether its algebraic degree is at most 1; if so, then
we have found the equivalence between F and G.

285Cryptography and Communications (2022) 14:271–290

Recall that by Proposition 2 we can assume that c2 = 0 if the functions being tested for
equivalence are quadratic, which significantly reduces the computation time.

We note that Algorithm 3 will return all affine permutations A2 for which A = F ◦A2+G

is affine. If our goal is to check whether such a permutation exists (which is all that we need
for the purposes of the EA-equivalence test), we can immediately terminate as soon as a
single such permutation is found. Furthermore, we remark that if (3) is obtained by applying

286 Cryptography and Communications (2022) 14:271–290

the inverse L−1
1 of the outer permutation, and a solution (A2, A) of (3) is found, then this

already witnesses that F and G are EA-equivalent.
In order to get an idea of the efficiency of this method, we once again run a number

of experiments on representatives from the known APN functions for n = 6 and n = 8.
For every pair (F,G) of representatives from the switching classes in [12], we generate
a random affine permutation A2 and a random affine function A, and use Algorithm 3 to
attempt to reconstruct A2 and A from F and G. In the cases when F and G are not EA-
equivalent this, of course, will fail; in the remaining cases (when F and G do belong to the
same EA-equivalence class), we stop as soon as we find the first pair of affine functions
(A2, A) solving F ◦A2 +A = G. For each combination of F and G, we generate 10 pairs of
(A2, A). Table 2 gives the average running time for solving F ◦A2 +A = G for dimensions
n = 8. There are 23 switching APN representatives in F28 , and we index them from 1 to 23
in Table 2 in the same order that they are listed in [12]. In the case of n = 6, the running
time does not exceed 0.2 seconds in the worst case; we omit a detailed table of the running
times for the sake of brevity. The running times are given in seconds, multiplied by a factor
of 100; e.g. deciding that F ◦ A2 + A = G is unsolvable when F is 1.1 and G is 1.2 from
[12] takes 7.51 seconds.

5 Computational results

A recent paper [1] introduces 12 923 new APN functions over F28 , in addition to the more
than 8000 instances previously found and documented in [19]. For the purposes of mea-
suring how efficient the multiplicities of the elements in �F

k (0) are as an invariant, and
for speeding-up potential EA-equivalence tests, we have computed the exact partitions for
k = 4 for all of these functions. We also perform similar computations for all known APN
functions up to dimension n = 10. A complete list of these partitions is available online at
https://boolean.h.uib.no/mediawiki. Here, we give a summary of the computed data.

In total, we have computed the partition induced by �F
k (0) for 21105 CCZ-inequivalent

functions F . From these, we have obtained 19300 distinct partitions. Of these, the “Gold-
like” partition (which splits the field into three partition classes, of size 1, 70, and 185,
respectively) is the most frequently occurring, and is induced by 21 functions including, of
course, the Gold function x3. The number of partitions that occur only once is 18103; and
the remaining partitions occur between two and eleven times.

Most of the partitions contain a large number of classes: indeed, only the “Gold-like”
partition described above has three classes, while all other observed partitions have at least 6
classes; the vast majority of functions induce a partition having between 12 and 16 classes,
while the largest number of classes, 22, is achieved by only two functions. We recall that
a large number of classes intuitively corresponds to a small number of linear permutations
respecting the corresponding partition, and consequently to a faster test for EA-equivalence.

In the case of n = 10, we only observe the “Gold-like” partition for all the ten known
representatives from the infinite families. However, among the five new functions given
in the dataset accompanying [1], we find three that have different (and pairwise distinct)
spectra.

For odd dimensions (n = 7 and n = 9), we also compute the partitions induced by the
known APN representatives, but these always yield a trivial partition of F2n into a zero and
non-zero elements (even when we take into account the newly discovered APN classes from
[1]).

287Cryptography and Communications (2022) 14:271–290

Table 2 Computation time for reconstructing the inner permutation for n = 8

1 2 3 4 5 6 7 8 9 10 11 12

1 60 751 749 751 751 751 751 751 750 751 753 751

2 739 59 744 743 742 743 743 743 745 745 742 742

3 809 809 106 808 808 808 810 829 818 807 814 832

4 775 776 778 77 778 785 786 784 809 782 789 778

5 766 766 766 767 66 766 766 766 766 788 769 769

6 775 773 769 769 768 66 769 773 768 769 769 769

7 779 778 778 777 779 778 73 778 778 778 777 778

8 778 779 779 779 778 779 778 73 835 771 772 774

9 777 776 776 776 776 776 776 776 73 776 776 776

10 773 774 774 775 776 774 780 781 776 73 775 776

11 778 775 775 775 777 774 774 774 773 774 73 774

12 782 776 776 776 776 777 777 776 776 776 777 73

13 774 775 776 773 771 769 769 770 770 769 770 769

14 782 783 783 783 783 786 781 785 786 784 783 785

15 778 773 781 779 773 775 775 774 775 775 774 774

16 775 775 775 775 775 775 775 776 776 775 775 776

17 778 778 778 778 778 778 778 778 778 778 778 777

18 766 766 766 767 766 766 779 782 772 766 766 768

19 767 767 766 767 767 767 767 767 767 766 767 767

20 779 779 779 778 779 779 778 779 778 778 778 778

21 770 770 770 770 770 770 770 770 770 770 770 770

22 769 769 769 769 769 769 769 769 769 768 769 769

23 753 753 753 754 754 753 753 754 754 753 754 753

13 14 15 16 17 18 19 20 21 22 23

1 751 751 752 752 751 752 751 751 751 752 916

2 741 743 743 741 742 743 743 743 743 743 909

3 812 810 813 815 809 809 809 809 809 809 971

4 779 779 779 780 776 775 776 776 776 776 941

5 773 772 770 772 769 770 769 769 772 771 942

6 772 770 772 771 771 917 786 791 814 797 941

7 777 777 776 779 778 778 779 778 776 779 972

8 823 775 833 772 772 772 771 771 772 771 937

9 776 775 776 783 793 780 776 778 774 774 939

10 775 776 776 776 776 774 775 776 775 775 942

11 778 775 775 775 775 775 775 775 775 775 941

12 776 776 778 776 776 776 776 776 776 776 952

13 72 770 769 770 769 769 769 780 781 787 940

14 789 75 781 789 781 785 785 784 781 782 949

15 775 774 73 773 773 775 774 777 773 777 942

16 776 777 773 72 773 773 773 775 773 773 943

17 777 777 777 778 73 777 778 777 779 775 942

18 766 765 770 766 766 63 765 763 766 764 931

288 Cryptography and Communications (2022) 14:271–290

Table 2 (continued)

1 2 3 4 5 6 7 8 9 10 11 12

19 767 767 767 767 767 769 68 767 767 775 936

20 778 778 778 779 779 778 779 67 780 774 940

21 770 769 770 770 770 769 770 770 63 770 937

22 769 769 769 769 769 768 769 781 769 65 934

23 753 753 753 753 753 753 753 753 752 753 918

6 Conclusion

We have introduced a family of invariants under EA-equivalence, and have shown how their
values can be efficiently computed using the Walsh transform. We have experimentally
observed that over F2n with even n, these invariants can be used to partition quadratic APN
functions into small subclasses, thereby significantly facilitating their classification up to
EA- and CCZ-equivalence. We have demonstrated how the values of these invariants can be
used to restrict the values of the outer permutation A1 in the relation A1 ◦ F ◦ A2 + A = G

for two given (n,m)-functions F and G, and have ran experiments in order to measure
how much this approach reduces the search space. We have described how a variation of
the same invariants can be used to restrict the values of the images of F2n under the inner
permutation, A2, and have combined the above into a computational test for deciding the
EA-equivalence of any two (n, m)-functions F and G. Although slower than the standard
test for CCZ-equivalence via the permutation equivalence of linear codes, our approach has
the advantage that it is easily implementable on any programming language, and can be
separated into a multitude of small, independent steps with concrete output, the majority of
which can be naturally parallelized and run in different processes or on different computers.
Furthermore, this is, to the best of our knowledge, the first efficient algorithm for directly
testing the EA-equivalence of two given functions.

One direction for future work would be to investigate the invariants described in Section 2
more closely, and see whether they can be modified in order to provide more efficient
restrictions. In the same vein, it would be interesting to investigate the functions for which
our experimental results show a large number of choices for the outer permutation A1 fol-
lowing the restriction described in Section 3, and to see whether some of these choices can
be ruled out using some other criterion; this would directly impact the efficiency of the
entire EA-equivalence test for these functions.

So far, we have implemented the algorithms described in Sections 3 and 4 in the Magma
programming language [4] due to the ease of implementation. As pointed out above, our
approach is quite simple, and does not depend on anything more complicated than com-
puting linear combinations of binary vectors, and so it should be readily implementable
in any general-purpose programming language. We expect that a careful implementation
in an efficient language would further reduce the computational time needed for testing
EA-equivalence, and make the method even more useful in practice.

Acknowledgements This research is supported by the Trond Mohn foundation. The author would like to
thank the anonymous reviewers for their careful proofreading and helpful remarks.

289Cryptography and Communications (2022) 14:271–290

Funding Open access funding provided by University of Bergen (incl Haukeland University Hospital).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Beierle, C., Leander, G.: New Instances of Quadratic APN Functions. arXiv:2009.07204 (2020)
2. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 4.1, 3–72 (1991)
3. Biryukov, A., De Cannière, C., An, B., Preneel, B.: A toolbox for cryptanalysis Linear and affine

equivalence algorithms. International Conference on the Theory and Applications of Cryptographic
Techniques. Springer, Berlin (2003)

4. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: The user language. J. Symbol.
Comput. 24.3-4, 235–265 (1997)

5. Browning, K., Dillon, J., Kibler, R., McQuistan, M.: APN Polynomials and related codes. Special
volume of Journal of Combinatorics. Inf. Syst. Sci. 34, 135–159 (2009)

6. Budaghyan, L., Carlet, C., Helleseth, T., Kaleyski, N.: On the distance between APN functions. IEEE
Transactions on Information Theory (2020)

7. Budaghyan, L., Carlet, C., Pott, A.: New classes of almost bent and almost perfect nonlinear polynomials.
IEEE Trans. Inf. Theory 52.3, 1141–1152 (2006)

8. Budaghyan, L., Kazymyrov, O.: Verification of restricted EA-equivalence for vectorial boolean func-
tions. International Workshop on the Arithmetic of Finite Fields. Springer, Berlin (2012)

9. Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations suitable for DES-like
cryptosystems. Des. Codes Cryptogr. 15.2, 125–156 (1998)

10. Dinur, I., Shamir, A.: Breaking Grain-128 with dynamic cube attacks. International Workshop on Fast
Software Encryption. Springer, Berlin (2011)

11. Dempwolff, U.: CCZ equivalence of power functions. Des. Codes Cryptogr. 86.3, 665–692 (2018)
12. Edel, Y., Pott, A.: A new almost perfect nonlinear function which is not quadratic. Adv. Math. Comm.

3.1, 59–81 (2009)
13. Edel, Y., Pott, A.: On the equivalence of nonlinear functions. Enhancibng cryptographic primitives

with techniques from error correcting codes, vol. 23, pp. 87–103. NATO Sci. Peace Secur. Ser. D. Inf.
Commun. Secur. Amsterdam: IOS (2009)

14. Knudsen, L.R.: Truncated and higher order differentials. International Workshop on Fast Software
Encryption. Springer, Berlin

15. Matsui, M.: Linear cryptanalysis method for DES cipher. Workshop on the Theory and Application of
of Cryptographic Techniques. Springer, Berlin (1993)

16. Nyberg, K.: Differentially uniform mappings for cryptography. Workshop on the Theory and Application
of of Cryptographic Techniques. Springer, Berlin (1993)

17. Özbudak, F., Sınak, A., Yayla, O.: On verification of restricted extended affine equivalence of vectorial
boolean functions. International Workshop on the Arithmetic of Finite Fields. Springer, Cham (2014)

18. Yoshiara, S.: Equivalences of quadratic APN functions. J. Algebraic Comb. 35.3, 461–475 (2012)
19. Yu, Y., Wang, M., Li, Y.: A Matrix Approach for Constructing Quadratic APN Functions., Cryptology

ePrint Archive: Report 2013/731

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

290 Cryptography and Communications (2022) 14:271–290

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2009.07204

	Deciding EA-equivalence via invariants
	Abstract
	Introduction
	A family of EA-invariants
	Guessing the outer permutation
	Guessing the inner permutation
	Computational results
	Conclusion
	References

