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Abstract
Correlation is a method to measure the relation between two or more vari-
ables. In this thesis, a method of measuring correlation and a method of
measuring dependence are used. These two methods, are the local Gaussian
correlation and the local dependence function. The goal was to build a bridge
between these two measurements. The hypothesis is that for a bivariate nor-
mal density, both methods will locally approximate the densities correlation
coefficient. The local dependence function is a measure of dependence and
it has to be transformed to give the function of the correlation. However,
there was not a clear connection between the two methods. Instead of the
local dependence function, the precision matrix was utilised. The precision
matrix provides an opportunity to find the correlation coefficient locally for
the bivariate normal density. Thus, a bridge between the local Gaussian cor-
relation and the correlation estimate from the precision matrix can be built.
To obtain the correlation estimate from the precision matrix, it has to be
transformed to its inverse, the covariance matrix. However, while a connec-
tion was made, some details remain unclear. This is observed, with the local
Gaussian correlation being defined for the range of the density. While the
estimated correlation for the precision matrix has areas that are undefined
for certain densities. The function of the estimated correlation from the pre-
cision matrix is discussed, to explain why some areas are undefined and why
the estimate takes the form it does for different densities. The two methods
also produced differing correlation estimates for given areas. In this thesis,
the same set of test case densities are used, as the ones in the introductory
paper for the local dependence function (Jones, 1996), and its preliminary
paper (Doksum et al., 1994). As the local Gaussian correlation is an empiri-
cal method of measuring correlation, it needs data. For this thesis there is no
observed data, therefore instead simulated data are used in the analyses. The
correlation estimate from the precision matrix, on the other hand requires the
densities to be known. To further explore the precision matrix’s correlation
estimate, two novel methods are explored; the Box-Cox transformation and
the Gaussian kernel estimates, but they require further work. In conclusion,
while a bridge is constructed between the local Gaussian correlation and the
precision matrix’s correlation estimate, more work is needed to establish a
clearer connection.
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1 Introduction

1 Introduction
Correlation is the measure of the relation between two or more variable and
is a commonly studied subject as it can be important to understand how
variables in a sample relate to each other. The local Gaussian correlation,
is a measure of correlation, and measures the correlation locally for areas of
the data. It does this by approximating areas to Gaussian densities and the
correlation estimates comes from these approximations. My introduction to
local Gaussian correlation was through my bachelor thesis (Brokstad, 2020).
This bachelor thesis provided a general overview of the local Gaussian cor-
relation. In addition, to using the local Gaussian correlation to investigate
the relation between COVID-19 data and its impact on the index stock for
Oslo Børs. The local Gaussian correlation’s primary use has been for inves-
tigating the stock market. An example of this is the paper by Støve et al.
(2014), where they use the local Gaussian correlation to investigate different
financial crises. Another example of this is Nguyen et al. (2020) that looks at
correlation before and after economic crises. Some work has also been con-
ducted in other areas of statistics. Such as Jordanger and Tjøstheim (2021)
paper where they use the local Gaussian correlation to inspect upper and
lower tails of spectral densities. Similarly, Berentsen et al. (2014) used the
local Gaussian correlation to examine copula models and their characteristics.

The other method used is the local dependence function. The local de-
pendence function was introduced in Jones (1996). The local dependence
function is a measure of dependence. To be able to find an estimate of the
correlation using it, it has to be transformed. The areas of use for the depen-
dence function are less specific than the area of use for the local Gaussian
correlation. There are papers such as Gupta et al. (2010) that proved, when
the local dependence function is always equal or more than 0 the density is
totally positive of the second order. Jones and Koch (2003) introduces de-
pendence maps, with the goal of making the local dependence function easier
to interpret.

The goal of this thesis is try and build a bridge between the local Gaus-
sian correlation and the local dependence function. This bridge can be found
if they can both locally approximate the same correlation as the correlation
coefficient for a bivariate normal density. As there was not, a clear connection
between the local Gaussian correlation and the local dependence function.
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1 Introduction

Instead, the precision matrix was utilised over the local dependence function.
The precision matrix is the inverse of the covariance matrix. In order to get
the correlation coefficient, the precision matrix has to be transformed to the
covariance matrix. From the covariance matrix, it is possible to get the cor-
relation coefficient. As the estimated correlation obtained from the precision
matrix can locally approximate to the correlation coefficient for the bivariate
normal density, the bridge between it and the local Gaussian correlation can
be built. However, some details remain unclear. One of the problems is that
the local Gaussian correlation is defined over the entire area of the density,
while the estimated correlation from the precision matrix has areas that are
undefined. In addition, there are certain areas for the different densities that
the local Gaussian correlation and the estimated correlation from the pre-
cision matrix give differing estimates. The reason for why they may differ
and why there are undefined areas is discussed further in this thesis. For the
implementation of the local Gaussian correlation the package lg (Otneim,
2019) for the programming language R is used. For finding the precision
matrix the package TMB, is used (Kristensen et al., 2016). There is also the
implementation of the Box-Cox transformation and the bivariate Gaussian
kernel estimate in relation to the precision matrix. However they are only
briefly used so they are not as extensively studied as the regular precision
matrix. Finally a discussion about the overall results and what problems
remain with the precision matrix’s estimated correlation.
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2 Correlation

2 Correlation
Correlation is the interaction between two variables and how they affect each
other. Generally the most used form of correlation is Pearson’s ρ that Pearson
(1896) introduced, and its formal definition is

ρ =
E(XY )− E(X)E(Y )

σXσY
, (1)

where E(XY ) is the expected value for X times Y . E(X) is the expected
value for X and E(Y ) is the expected value for Y . σX and σY are the stan-
dard deviations for the X and Y variables, respectively. The ρ value is within
the range of [−1, 1]. Positive ρ values indicate a positive correlation between
the two variables. Positive correlation is the positive association between
the variables, so as X increases in value, Y increases in value as well. For
the negative correlation, as one of the variables increases in value the other
variable will decrease in value. The strength of this association is described
by how close or equal ρ is to 1 or −1. A ρ value of 0.9 indicates a stronger
correlation then a ρ value of 0.2. For ρ = 0, it indicates that there is no
linear correlation between the variables.
Although ρ has been given for its population form, it can also be approxi-
mated empirically by replacing the expected value and variance with their
empirical forms. The empirical forms are the sample mean and sample vari-
ance. Then for a given dataset with the observations (X1, Y1), ..., (Xn, Yn),
the mean for the observations X and Y are given by X̄ and Ȳ , the sam-
ple standard deviations are given by sX and sY . The empirical version of
Pearson’s ρ is

r =

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
. (2)

For both the population variant and the empirical variant, a singular value
of the correlation ρ is found for all of the data.
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2 Correlation

Figure 1: 1 000 simulated datapoints for the function Y = sin(3x) + ε,
where ε is independent and identically distributed noise.

While Pearson’s ρ gives us a good overview of the relation between the
x and y variable, it does have its weak points. For certain datasets we are
more interested in specified areas correlation than the whole data’s correla-
tion coefficient There are at least two big disadvantages for Pearsons ρ. One
of the two problems is that ρ is sensitive to outliers. For example for a hy-
pothetical dataset of (1, 3), (4, 6), (5, 2), (13, 9), the correlation is r = 0.8. If
we removed (13, 9) from the dataset, then instead r = 0.038. Obviously the
proposed hypothetical dataset is small so the ρ value is more susceptible to
changes for this dataset, than for a dataset of size n = 1000 for example. But
even for that larger hypothetical dataset, the ρ value would still be sensitive
to outliers. The reason is that both the formula for the empirical (2) and the
population variant (1) include measurements of the mean. Outlier values will
have bigger impacts on the mean value then data within the normal range.
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The second problem is the fact that Pearson’s ρ is set up to measure linear
correlation between the two variables. Thus for nonlinear correlation, it will
not describe the association between the two variables well. An example
discussed in Tjøstheim et al. (2022) of this issue that ρ is for Y = X2 + ε.
The reason Pearson breaks down for this example is that it is not able to
capture the nonlinear association between the two variables. As Y and X
will be negatively correlated for negative values of X. Whereas for positive
values of X there will be a positive correlation between the two variables.
Similarly, another example of nonlinearity that ρ will under perform on is
Y = sin(3x)+ε as seen in figure 1 where ε is identical independent distributed
(i.i.d) noise.

There are methods to reduce susceptibility for outliers for ρ. An easy so-
lution is to exclude or remove outliers from the dataset. There are other
methods such as transforming or altering the formula for how ρ is calculated,
to make it less susceptible to this problem. Building on the previous exam-
ple, a quick and dirty solution would be to only use data points within a
given percentile. There are also more complex alters such as Spearman’s or
Kendall’s methods which are also outlined in Tjøstheim et al. (2022). Spear-
man’s rank correlation looks at the observations by ranking. While Kendall’s
correlation coefficient τ looks at the difference between concordant pairs and
discordant pairs. Concordant pairs are pairs where for i < j, Xi > Xj and
Yi > Yj or Xi < Xj and Yi < Yj. A discordant pair would entail either Xi

or Yi having a smaller value than either Xj or Yj. However both of these
variations will still have problems with describing the relation of nonlinear
data.

So far, the paper has mainly presented potential weaknesses for ρ. Yet it
still is the most commonly used method of measuring correlation. As pre-
viously stated ρ gives an overview of the whole dataset’s relation unlike the
local correlations which is discussed later. In addition, ρ is very simple to
compute as its components are simple to find, such as the standard devia-
tion and the mean. There are also other benefits of ρ such as being able
to describe the relation of Xt and Xt+h for linear time series models such
as Autoregressive-moving average (ARMA) models (Tjøstheim et al., 2022).
Another group of models that ρ is important for, is the multidimensional
normal density and similar densities from the same family. As one of the pa-
rameters used to describe the density is actually Pearson’s ρ which appears

5



2 Correlation

in the covariance matrix. ρ is also useful in linear regression models. For the
form of Y = α + βX + ε, where ε is zero-mean i.i.d noise. Then β can be
given as (Tjøstheim et al., 2022):

β = ρ
σY
σX

. (3)

For the linear regression model if σX , σY and ρ are unknown, we can instead
use their empirical counterparts {sX , sY , r} to get a similar result.
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3 Local Gaussian Correlation
The local Gaussian correlation is method of measuring correlation by locally
approximating a Gaussian density to a dataset. For a given datapoint z =
(x, y). The approximated density will have the running variables (v1, v2).
It will also have µ1(z) and µ2(z) as the local mean vectors and σ2

1(z) and
σ2
2(z) will be the local variance functions. ρ(z) is the covariance value for the

density. Then for the datapoint (x, y), the approximated density is

ψ(v,µ1(z), µ1(z), σ2
1(z), σ2

2(z), ρ(z))

=
1

2πσ1(z)σ2(z)
√

1− ρ2(z)

× exp

[
− 1

2

1

1− ρ2(z)

(
(v1 − µ1(z))2

σ2
1(z)

− 2ρ(z)
(v1 − µ1(z))(v2 − µ2(z))

σ1(z)σ2(z)
+

(v2 − µ2(z))2

σ2
2(z)

)]
.

(4)

From the approximation, the most important parameter is ρ(z). It is from
the parameter ρ(z), the local Gaussian correlation gets its name from. The
dataset itself does not have to have a Gaussian density, as the local Gaussian
correlation will approximate a local area of the dataset to a Gaussian density.
If the dataset is actually Gaussian distributed. Then for a given density f ,
the local Gaussian density will approximate to f ’s density for any value of f .
Although for the Gaussian data, as the local Gaussian correlation approxi-
mates the datapoints in a given area there can be multiple possible densities
that it could approximate to (Tjøstheim et al., 2013). Thus to find the best
fit for the approximation, a penalty function is used. The penalty function
utilised for the local Gaussian correlation is a locally weighted Kullback-
Leibler distance between f and ψ. As the local Gaussian correlation is built
on the work of Hjort and Jones (1996). Many of the functions and equations
for the local Gaussian correlation’s penalty function, are derived from that
paper. In that paper (Hjort and Jones, 1996), they present how to find a
local dependence measurement using local likelihood. However unlike the lo-
cal Gaussian correlation they do not specify what family the approximating
density f̂ will have. While for the local Gaussian correlation the f̂ takes the
form of ψ.

7



3 Local Gaussian Correlation

The penalty function is given as

q =

∫
Kh(v − z)[ψ(v, θ(z))− logψ{v, θ(z)}f(v)]dv. (5)

In the penalty function Kh is a product kernel containing

Kh(v − z) = (h1h2)
−1K(h−11 (v1 − x))K(h−12 (v2 − y)). (6)

For Kh, the bandwidth is h = (h1, h2) (Tjøstheim et al., 2013). Also

θ(z) = (µ1(z), µ2(z), σ2
1(z), σ2

2(z), ρ(z)). (7)

Then to minimize θ(z) for the penalty function∫
Kh(v − z)

∂

∂θj
log(ψ(v, θ(z)))[f(v)− ψ(v, θ(z))]dv = 0

j = 1, ..., 5.

(8)

For the density f , where (X1, ..., Xn) and (Y1, ..., Yn) are i.i.d observations
and Zi = (Xi, Yi). To get an estimate for θ(z) for a fixed z, we maximize the
local log likelihood (Tjøstheim et al., 2013).

L(Z1, ..., Zn, θb(z)) =n−1
∑
i

Kh(Zi − z) logψ(Zi, θh(z))

−
∫
Kh(v − z)ψ(v, θh(z))dv,

(9)

Kh is a kernel function as described previously for the penalty function (6).
From here, one can obtain the derivative ∂L/∂θj (Tjøstheim et al., 2013),

∂L

∂θj
=n−1

∑
i

Kh(Zi − z)
∂

∂θj
log{ψ(Zi, θh(z))}

−
∫
Kh(v − z)

∂

∂θj
log{ψ(v, θh(z))}ψ(v, θh(z))dv

→
∫
Kh(v − z)

∂

∂θj
log{ψ(v, θh(z))}[f(v)− ψ(v, θh(z))]dv,

(10)

∂L/∂θj is found by using the law of large numbers, and the assumption that

E[Kh(Zi − z) logψ(zi, θb(z))] <∞. (11)
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Then if ∂L/∂θj = 0, we can find the maximum likelihood estimates θ̂b (Tjøs-
theim et al., 2013). From minimizing θ(z) for the penalty function we can
get∫

Kh(v − z)α(v)dv = α(z) +
1

2

2∑
i=1

2∑
j=1

σ2
Ki,j

∂2α(zi, zj)

∂zi∂zj
bibj + o(bT b). (12)

In the equation, σ2
Ki,j

=
∫
ci1c

j
2K(c1, c2)dc1dc2. Where c = A−1i (z − ai). Ai =

Σ
1/2
i , where Σ is the covariance matrix and ai = µi, for further explanation

see Tjøstheim et al. (2013). The important part is

α(v) =
∂

∂θj
log{ψ(v, θh(z))}[f(v)− ψ(v, θh(z))], (13)

for θT = [θ1, ..., θ5], which means that as b → 0 then at the same time
f(z)−ψ(z, θh(z))→ 0. For f1(z) = f2(z) within a neighbourhood then for a
certain bandwidth b0 it is possible to get θ(f1, z) = θ(f2, z) (Tjøstheim et al.,
2013). For creating the subsequent figures, the R package lg (Otneim, 2019)
is used. The reason is it finds the local Gaussian correlation estimates for
datasets. In addition as there is no real data, the data is simulated using the
Markov chain Monte Carlo method.
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4 Local Dependence Function
Another method for measuring local dependence is described in Jones (1996)
paper "The local dependence function". The local dependence function Jones
describes takes the form of

γ(x, y) =
∂2

∂x∂y
log(f(x, y)). (14)

As the local dependence function is the double derivative of the log density,
it is not restricted to being values within the range of −1 and 1. This is
unlike Pearson’s ρ or the local Gaussian correlation. In Jones’s paper, they
also present multiple properties for the function γ(x, y) (Jones, 1996). One
of those properties is that γ(x, y) is finite everywhere. A different property
is that if X and Y are independent then and only then is γ = 0. Another
important property is that, when we are looking at γ(x, y) for a bivariate
normal density. Then the γ function is constant(Jones, 1996) and should
have the form of

γ(x, y) =
ρ

(1− ρ2)
. (15)

Another property is that for a stronger correlation between x and y, the
γ(x, y) function will begin to increase exponentially towards ±∞. This can
be seen in equation (15). As ρ for the bivariate normal density goes towards
±1 then the denominator of the equation (15) will go towards 0.

10



5 Experiments

5 Experiments
As the local dependence function is defined as a function of ρ for bivariate
normal densities. Then by solving the equation, ρ can instead be described
as a function of γ.

γ(x, y) =
ρ

(1− ρ2)
γ(x, y)(1− ρ2) = ρ

ρ2γ(x, y) + ρ+ γ(x, y) = 0.

(16)

From the inverse transformation we get the two possible values for ρ,

ρ1 =
−1 +

√
1 + 4γ(x, y)2

2γ(x, y)

ρ2 =
−1−

√
1 + 4γ(x, y)2

2γ(x, y)
.

(17)

From experimentation using real ρ values within the range [−1, 1] and using
the γ(x, y) function. ρ1 returns the real ρ values. This is also discussed in
the introductory paper for the local dependence function (Jones, 1996). ρ2
on the other hand will return values that are outside the range of ρ’s defined
area of [−1, 1]. However while Pearsons ρ can be equal to 0, ρ1 6= 0. This
can be seen by using equation (17), and (15). If ρ = 0 then the γ function
from equation (15) is also equal to 0. The problem occurs in equation (17)
as ρ1 has γ in the denominator and we cannot divide by 0. Although ρ1 6= 0,
it does approach the value 0 as the γ function goes towards 0 from both the
positive and negative sides. This is shown by using L’Hôpital’s rule

f(γ) = −1 +
√

1 + 4γ2 g(γ) = 2γ

f(0) = 0 g(0) = 0

f ′(γ) =
4γ√

1 + 4γ2
g′(γ) = 2.

Then the resulting equation is

lim
γ→0

1

2

4γ√
1 + 4γ2

= 0. (18)
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Although Jones (1996) states that "it is constant if f is the bivariate normal
density, and then takes the value ρ/(1−ρ2) where ρ is the Pearson correlation
coefficient;". The statement can be proven to be false. By deriving the mixed
partial derivative of the logarithm of a bivariate normal density f , the γ
function takes the form of

γ(x, y) =
∂2

∂x∂y
log(f(x, y)) =

ρ

1− ρ2
× 1

σxσy
. (19)

The reason that the γ function takes the form of the above equation (19)
instead of the previously given form in the equation (15), is because the
bivariate normal density is defined as

f(x, y) =
1

2πσxσy
√

1− ρ2

× exp

[
− 1

2

1

1− ρ2

(
(x− µx)2

σ2
x

− 2ρ
(x− µx)(y − µy)

σxσy
+

(y − µy)2

σ2
y

)]
.

(20)

From the definition (20), the only part that contains both a x and a y variable
is the part of

− 2ρ
(x− µx)(y − µy)

σxσy
. (21)

Thus when we try to find the local dependence function for the density, the
denominator with σx and σy is not derived away. Just to further exemplify
this, if equation (19) and equation (17) are used to check that ρ1 = ρ. Then
γ for a bivariate normal density with σx = σy = 1 will take the form given
in equation (15) and all possible ρ1 values will be equal to ρ. While if one
or both of the σ are different than 1 then ρ1 6= ρ. This conclusion is further
supported by Jones (1998), that it is for a standard bivariate normal density
that γ takes the form given in equation (15). Using the given definition of
the local dependence function for the Pear which is a transformed normal
density, the γ function is

γ(x, y) =
ρ

1− ρ2
× 3x2

σxσy
. (22)

The Pear density was included in Doksum et al. (1994) and can be seen in
figure 2a. For the transformed normal density seen in figure 5a, the γ takes
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the form of

γ(x, y) =
ρ

1− ρ2
× y

σxσy
. (23)

As shown there are some problems with trying to build a connection between
the local dependence function and the local Gaussian correlation. Therefor
my supervisor Professor Skaug proposed the use of the precision matrix in-
stead. The precision matrix for the bivariate normal density can be defined
as

1

(1− ρ2)σ2
x

−ρ
(1− ρ2)σxσy

−ρ
(1− ρ2)σxσy

1

(1− ρ2)σ2
y

 =

 −
∂2

∂x2
logf(x, y) − ∂2

∂x∂y
logf(x, y)

− ∂2

∂x∂y
logf(x, y) − ∂2

∂y2
logf(x, y)

 .
(24)

The precision matrix’s inverse is the covariance matrix, which for a bivariate
normal density is given as [

σ2
x ρσxσy

ρσxσy σ2
y

]
. (25)

As the covariance matrix is defined to have a ρ value in it, it can be solved
to extract the ρ value. This is done by taking either (1, 2) or (2, 1) as they
contain ρσxσy from matrix (25). Then by dividing (2, 1) by the square roots
of (1, 1) and (2, 2) for the equation (25) as they contain σ2

x and σ2
y . Then

the only variable left is ρ. This approach is generalized for other densities so
that an estimate of ρ can be obtained. By going through the steps outlined
above, the estimate is referred to as

ρ̂(x, y). (26)

This estimate will always be ρ̂(x, y) = ρ for the bivariate normal density.
Thus a connection between it and the local Gaussian correlation can be
found as they both locally approximate the correlation coefficient for the
bivariate normal density. Again likewise with the local Gaussian correlation,
ρ̂(x, y) was found in R, this time by using the TMB package (Kristensen
et al., 2016) which allows one to compile C++ files in R. The reason why the
TMB package is useful, is because it can return the double derivative values

13



5 Experiments

for functions. It can also return the derivatives value if that is needed. The
one thing to note is that the package does not give the explicit form of the
derivatives or double derivatives. So to find out how the double derivatives
actually look has to be done by hand.
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5 Experiments

(a) Density.

(b) 10 000 Simulated observations from the density.
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5 Experiments

(c) ρ̂(x, y) estimates from the precision matrix.

(d) Local Gaussian correlation map for the simulated data.

Figure 2: The density of N(x, y, 10, 1.55, 102, 0.7752, 0.75) where the density
is a transformed normal density from (U, V ) where x = U1/3, y = V and
simulated observations of it. a) contour, b) simulated observations from the
density, c) estimated correlation from the precision matrix and d) local
Gaussian correlation map.
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5 Experiments

(a) Density.

(b) 10 000 Simulated observations for the density.
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5 Experiments

(c) ρ̂(x, y) estimates from the precision matrix.

(d) Local Gaussian correlation map for the simulated data.

Figure 3: The density of twisted Pear f(x, y) = f(x)f(y|x), where
f(x) = N(1.2, (1/3)2), f(y|x) = N(µ(x), σ2(x)),
µ(x) = (x/10) exp(5− (x/2)), σ2(x) = [(1 + 0.5x)/3]2 and simulated
observations from it. a) contour, b) simulated observations, c) precision
matrix and d) local Gaussian correlation.
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5 Experiments

(a) Density.

(b) 100 000 Simulated observations from the density.
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5 Experiments

(c) ρ̂(x, y) estimates from the precision matrix.

(d) Local Gaussian correlation map for the simulated data.

Figure 4: The Cauchy density and simulated observations from it. a)
contour, b) simulated observations from the density, c) estimated
correlation from the precision matrix and d) local Gaussian correlation map.
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5 Experiments

(a) Density.

(b) 100 000 simulated observations for the density.
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5 Experiments

(c) ρ̂(x, y) values from the precision matrix.

(d) Local Gaussian correlation map for the simulated data.

Figure 5: The density of transformed bivariate normal density
N(x, y, 4, 2, 52, 22,−0.27) where x = U + 1, Y =

√
V − 2 and simulated

observations of it. a) contour, b) simulated observations from the density,
c) estimated correlation from the precision matrix and d) local Gaussian
correlation map.
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6 Variance

6 Variance
The different densities for ρ̂(x, y) from equation (26) are displayed in figures
2c − 5c. With the exception of the ρ̂(x, y) for the transformed bivariate
normal distribution, the other figures 2c − 4c have areas that are white.
These white areas occur because ρ̂(x, y) is imaginary. The reason the estimate
can be imaginary, is because it gets variance estimates for σ2

x and σ2
y and

takes the square root of them. Thus where these estimates are negative, the
resulting ρ̂(x, y) is imaginary. So while, estimating the variance is not the
primary focus of the thesis, there is some values to analysing them. These
estimates for the different densities are shown in figures 6, 7, 8 and 9. These
estimates are taken from sequentially increasing x and y values instead of the
sample. So as the sequences are dependent on the areas they are used over,
the estimated variances will likewise also be dependent on those areas. Thus
these estimates have to at least be taken with a bit of skepticism. In terms of
the different estimates, only the estimates for the transformed normal density
which corresponds to figure 9 have all of its values within the range of the
histogram. This is demonstrated in figure 5c, as it is the only one that has
no white areas. The other figures 6, 7 and 8 have excluded 5% or less of
the variance estimates. The only exception is figure 6a, which is missing 68
309 observations out of 1 000 000. In terms of the negative values that are
estimated there is some information to glean. For example the subfigures 8a
and 8b have a reasonable amount of estimations that are negative, which at
a surface level seems to correspond to why there is so much white area in
figure 4c. Another point to note is the fact that for the different figures, most
of the estimates fit within the range of [−1, 1]. While most of the values not
included are just outside of this range, there are also occurrences of extreme
estimated values in at least the thousands if not more. This will be further
expanded upon in the next section.
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6 Variance

(a) σ̂2x (b) σ̂2y

Figure 6: Variance estimates for the Pear density. a) the variance estimate
of X and b) variance estimate of Y .

(a) σ̂2x (b) σ̂2y

Figure 7: Variance estimates for the twisted Pear density. a) the variance
estimate of X and b) variance estimate of Y .
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6 Variance

(a) σ̂2x (b) σ̂2y

Figure 8: Variance estimates for the Cauchy density. a) the variance
estimate of X and b) variance estimate of Y .

(a) σ̂2x (b) σ̂2y

Figure 9: Variance estimates for the transformed bivariate normal density.
a) the variance estimate of X and b) variance estimate of Y .
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7.1 Pear 7 Results and Discussion

7 Results and Discussion
One of the main results from figures 2, 3, 4 and 5 is that both the local
Gaussian correlation and the ρ̂(x, y) estimate from equation (26) indicate if
the correlation is positive or negative for the given areas. With the figures 3c
and 3d seeming to be the most similar. The other main result is that ρ̂(x, y)
is within the range of [−1, 1]. Compared to the local Gaussian correlation
the estimate ρ̂(x, y) is a function, so there is a smoother transition from one
area to another. While for the local Gaussian correlation, these areas are less
interconnected, so there is the possibility of an area of negative correlation
occurring in a wider area that is positively correlated. The actual function
for ρ̂(x, y) can be complex because of it using the double derivatives. As
some of the chosen densities do not reduce when derived, particularly the
twisted Pear. With the local Gaussian correlation, it is harder to grasp why
certain areas return the correlation estimates, they do. As the package lg
does the estimations for you. Another thing to note is that the transformed
normal density and the Cauchy density have more simulated observations
than the twisted Pear and the Pear density. This was done because as one
can see in figures 4b and 5b, the simulations extend outside of the range
of the distribution. As the correlation estimates look at the same range
as the densities, some extra observations were simulated to make sure that
approximately the same amount of observations are in the restricted ranges.

7.1 Pear

The first Pear transformed normal density is from Doksum et al. (1994). The
Pear density is a transformed normal density shown in figure 2c, where x, y
are transformed from (U, V ). For the transformation x = U1/3, y = V and
the density is given as

3x2

2πσxσy
√

1− ρ2
exp

[
− 1

2(1− ρ2)

(
(x3 − µx)2

σ2
x

− 2ρ
(x3 − µx)(y − µy)

σxσy
+

(y − µy)2

σ2
y)

)]
.

(27)

For this density, µx = σx = 10, µy = 1.55, σy = 0.775 and ρ = 0.75. Generally
the correlation estimates in figure 2d seem to have approximated well to the
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7.1 Pear 7 Results and Discussion

real ρ. While the estimates in figure 2c are less accurate at estimating the real
value of ρ. For ρ̂(x, y), there seems to be no correlation in area between the
two tops of the densities seen in figure 2a. In addition, while not observable
there is a straight line at x = 0 that is undefined. The reason it is undefined
is because the double derivative of x includes 2/x as part of the equation. On
the other hand, there is a clear undefined area approximately around x for the
values of (1, 3) and y for the values of (2, 4) in figure 3c. Along the edge of this
undefined region is where the strongest correlation estimates occur as well
as where the strongest variance estimates occur. These variance estimates
are displayed in figure 10. These variance estimates being the positive and
negative thousands. The reason for these negative approximations for σ̂2

x and
σ̂2
y are because they are given by

σ̂2
x =

[
1

0.7752(1− 0.752)

]
/k

σ̂2
y =

 1

2(1− 0.752)

(
3x4 − 12x

10
− 9x(y − 1.55)

7.75

)
+

2

x2

 /k,
where k is given as

k =

 1

2(1− 0.752)

(
3x4 − 12x

10
− 9x(y − 1.55)

7.75

)
+

2

x2

( 1

0.7752(1− 0.752)

)

−

(
4.5x2

15.5(1− 0.752)

)2

.

From the denominator of σ̂2
x we can easily set it up the inequality for ≤ 0.

Solving the inequality for σ̂2
x, the end result is

39.75x6 − 232.258x3y − 120x3 + 350 ≤ 0, (28)

Which explains the undefined area in figure 2c.
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7.1 Pear 7 Results and Discussion

(a) σ̂2x

(b) σ̂2y

Figure 10: Outlier variance estimates for the Pear density. Red line are
negative values, while the black line are positive values. a) estimates for X
and b) estimates for Y .
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7.1 Pear 7 Results and Discussion

Figure 11: Negative values corresponding to the inequality for equation
(28).
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7.2 Twisted Pear 7 Results and Discussion

7.2 Twisted Pear

The twisted Pear density is from the introductory paper for the local depen-
dence function (Jones, 1996), and originally used in Doksum et al. (1994).
The twisted Pears density is given as:

f(x) =
1

σx
√

2π
× exp

[
− 1

2

(x− µx
σx

)2]
f(y|x) =

1√
2πσ(x)

exp

[
− 1

2

(
y − µ(x)

σ(x)

)2]
f(x, y) = f(y|x)× f(x).

(29)

Where the functions µ(x) and σ(x) are

µ(x) =
x

10
exp(5− x

2
)

σ(x) =

(
1 + 0.5x

3

)
,

(30)

and σx = 1/3 and µx = 1.2. In addition, the correlation coefficient ρ is not
given. In terms of the estimates, this is the closest that ρ̂(x, y) and the local
Gaussian correlation get for the given densities. As the correlation trend
seems to be a very strong positive correlation along the left tail for figures
3c and 3d. Then towards the rightmost end of the figures, the correlation
decreases in value and in the case of ρ̂(x, y) it gets into the negatives. So
there seems to be a nonlinear dependence between the variables x and y.
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7.3 Cauchy 7 Results and Discussion

7.3 Cauchy

The Cauchy density used is the bivariate form and takes the form of

f(x, y) =
1

π(1 + x2 + y2)3/2
. (31)

This is the same density as the one in the introductory paper for the local de-
pendence function (Jones, 1996). The most prominent feature of the Cauchy
densities are that they do not have defined variance. So both σ2

x and σ2
y are

undefined, this means that the spread of observations can be the entire range
of (−∞,∞). For the given densities, the Cauchy density is the only one that
∂2/∂x2 and ∂2/∂y2 mirror each other. This can be seen by taking the double
derivatives

∂2

∂x2
log f(x, y) =

3(x2 − y2 − 1)

(x2 + y2 + 1)2

∂2

∂y2
log f(x, y) =

3(y2 − x2 − 1)

(x2 + y2 + 1)2

∂2

∂xy
log f(x, y) =

6xy

(x2 + y2 + 1)2
.

(32)

The only difference being whether the numerator contains 3(x2 − y2 − 1) or
3(y2 − x2 − 1). This results in figures 8a and 8b mirroring each other. We
can show this by finding the covariance matrix using the derivatives. The
covariance matrix then takes the form of

x2 + y2 + 1

3(x2 + y2 − 1)
×

[
y2 − x2 − 1 −2xy
−2xy x2 − y2 − 1

]
. (33)

As we can see (1, 1) and (2, 2) also mirror each other for the equation (33).
With the difference being whether there is a minus in front of x2 or in front
ofy2. We can take this further and see why the defined areas for ρ̂(x, y) is
circular for the Cauchy density. ρ̂(x, y) is then given as

ρ̂(x, y) =

−2xy(x2 + y2 + 1)

3(x2 + y2 − 1)

(

√
(y2 − x2 − 1)(x2 + y2 + 1)

3(x2 + y2 − 1)
)× (

√
(x2 − y2 − 1)(x2 + y2 + 1)

3(x2 + y2 − 1)
)

.

(34)
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7.3 Cauchy 7 Results and Discussion

Figure 12: The correlation estimates from the local dependence function for
the Cauchy distribution.

From equation (34), the restrictions end up being

x2 + y2 6= 1,

x4 ≤ (y2 − 1)2,

x4 + 1 ≥ 2x2 + y4.

(35)

Thus resulting in the circular form. The other thing to note about ρ̂(x, y)
is that when both variables have the same sign the defined areas in figure
4c are positive. While when the signs differ, there is negative estimated
correlation. This seems to line up with figure 4d, although it does have
some areas that break this trend. Interestingly, figure 4d resembles the local
dependence function more as shown in figure 12 as the estimated correlation
for the areas are more similar. It should be noted that figure 12 has the ρ
estimates that are calculated from the γ function, using the method described
in equation (17) from the experiments chapter.
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7.4 Transformed Normal Density 7 Results and Discussion

7.4 Transformed Normal Density

For the final density, it seems that both the local Gaussian correlation and
the ρ̂(x, y) indicate that there is a negative correlation on the positive side of
the y-axis and positive correlation along the negative side of y. This is more
clearly shown in figure 5c than in figure 5d, as there is a clearer transition for
the estimate ρ̂(x, y). The local Gaussian correlation, on the other hand has
a few areas that contradict the overall trend. In addition, only the top and
bottom areas showing weak correlations. The middle area has correlation
estimates close to 0. The reason for some areas contradicting the overall
trend could be because of the areas being under sampled or, alternatively
because of the weak negative correlation not being captured. Though the
overall correlation trend seems to be, the further away from the y-axis the
stronger correlated the variables are. So in a way pushing, the observations
towards the axis. This may seem a bit counter intuitive when looking at
the density displayed in figure 5a, but the highest probability areas have
maximum probability of 0.03.
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8 Box-Cox Transformation

8 Box-Cox Transformation
The ρ̂(x, y) from equation 26 ends up with a small defined area. A possi-
ble way to mitigate this is by transforming the density, using the Box-Cox
transformation is utilized. The Box-Cox transformation is a power transfor-
mation that makes the data look more normally distributed. The Box-Cox
transformation that G. Box and D. Cox introduced in their 1964 paper (Box
and Cox, 1964). The transformation is defined as

f(x, y)(λ) =


f(x, y)λ − 1

λ
(λ 6= 0),

log(f(x, y)) (λ = 0),
(36)

and for the two parameter transformation (Box and Cox, 1964)

f(x, y)(λ) =


(f(x, y)− λ2)λ1 − 1

λ1
(λ1 6= 0),

log(f(x, y) + λ2) (λ1 = 0).
(37)

For both of these transformations, there are restrictions. For equation (36)
the restrictions is that f(x, y) > 0, otherwise when λ = 0 then f(x, y)(λ)

is imaginary. For equation (37), the restriction is similar, which is that
f(x, y) > −λ2. Of these two transformations the uni parametric method is
used. Thus using the Box-Cox transformation the precision matrix takes the
form of  −

∂2

∂x2
f(x, y)(λ) − ∂2

∂x∂y
f(x, y)(λ)

− ∂2

∂x∂y
f(x, y)(λ) − ∂2

∂y2
f(x, y)(λ)

 . (38)

In addition, as λ → 0 then f(x, y)(λ) will go towards log(f(x, y)). This is
shown in figures 15a as it almost identical to figure 4c. Another thing to
note is that ρ̂(x, y) estimates for the Box-Cox transformed density are no
longer bound to the range of [−1, 1]. For the density, as λ increase then the
probability decreases and becomes more homogeneous as seen in figure 14.
This is similar for the estimate ρ̂(x, y), as there is a decrease in estimated
value as λ increases as figure 13 shows. The exception to this is λ = 0.001.
As one can see in figure 15, the strongest correlation is estimated outside of
the circle, in the diagonal areas. it seems like as λ decreases, the diagonal
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8 Box-Cox Transformation

(a) λ = 0.1 (b) λ = 10

Figure 13: ρ̂(x, y) values for the Box-Cox transformed Cauchy density for 2
λ values. a) λ = 0.1 and b) λ = 10.

areas thin down and increase in value. While λ increases, the circle decreases
and the diagonals increase. Additionally although hard to see, the edges of
the diagonal areas are where the strongest estimated correlation occur. This
is further exemplified in figure 15b.
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8 Box-Cox Transformation

(a) λ = 0.001

(b) λ = 0.1

(c) λ = 1
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8 Box-Cox Transformation

(d) λ = 5

(e) λ = 10

Figure 14: Box-Cox transformed Cauchy density for 5 different λ values. a)
λ = 0.001, b) λ = 0.1, c) λ = 1, d) λ = 5 and e) λ = 10.
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8 Box-Cox Transformation

(a) λ = 0.001

(b) λ = 0.1

(c) λ = 1
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8 Box-Cox Transformation

(d) λ = 5

(e) λ = 10

Figure 15: Correlation estimates using the precision matrix for the Box-Cox
transformed Cauchy density for 5 different λ values. a) λ = 0.001, b)
λ = 0.1, c) λ = 1, d) λ = 5 and e) λ = 10.
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9 Kernel Smoother

9 Kernel Smoother
Kernels are a statistical application with multiple uses. The application
this paper will focus on is kernel smoothers. As the name implies kernel
smoothers are used to transform or smooth the data within specified areas
using kernels. In terms of how the data is transformed, there are a multitude
of different kernel functions. The chosen examples are; the uniform kernel,
triangle kernel, Gaussian kernel and Epanechnikov kernel. These examples
are seen in figure 16. The different functions in the figure are; the uniform
kernel function is (Ivanka, 2012)

K(x) =
1

2
I[−1,1](x), (39)

where I is an indicator function taking on the form of

I[−1,1](x) =

{
1 if x ∈ [−1, 1],
0 otherwise.

(40)

The triangle kernel function has the form of

K(x) = (1−|x|)I[−1,1](x). (41)

The Gaussian kernel function is given as

K(x) =
1√
2π

exp(−1

2
x2). (42)

and finally the Epanechnikov kernel takes the form of

K(x) =
3

4
(1− x2)I[−1,1](x). (43)

As previously mentioned these examples are just a few of many more kernel
functions. They all serve the purpose of transforming data within given areas.
For the kernel smoothers, the bandwidth h is included. h is a parameter that
allows one to control how smooth the transformed data is. So for example
the Gaussian kernel smoother with the addition of the parameter h is

K(
x−Xi

h
) = exp

(
− (x−Xi)

2

2h2

)
, (44)
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9 Kernel Smoother

where Xi is our ith observation for the data. The variables x and h are
parameters that we can set to smooth out our observations. Choosing the
optimal kernel smoother is done by using the Mean Integrated Square Er-
ror (MISE) and the Asymptotic Mean Integrated Square Error (AMISE).
AMISE and MISE are extensions of the Mean Square Error (MSE), and are
accuracy measurements. Which instead of taking summation over the area,
they instead integrate over the area. MISE is given as an integration over
the area of the data. So MSE is given as (Ivanka, 2012)

MSE[f̂(x, h)] =
n∑
i=1

(f̂(x, h)− f(x))2, (45)

f is the given density for the observed data. f̂ is the sum of the kernel
estimates for the data. The kernel density estimate was introduced by Parzen
and Rosenblatt in their 1956 paper (Murray, 1956) and takes the form of

f̂(x, h) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
, (46)

in the equation Xi is the ith observed data out of the dataset (X1, ..., Xn).

For the above equation, K(
x−Xi

h
) are the different kernels for the different

given areas. Finally MISE is given as:

MISE[f̂(x, h)] =

∫
MSE[f̂(x, h)]dx, (47)

and AMISE is given as:

AMISE =
1

nh

∫
K(x)2dx+

1

4

∫
x2K(x)dx× h4

∫
(f ′′(x))2dx. (48)

In AMISE, the first part is the Asymptotic Integrated Variance (AIV) and
the second part is the Asymptotic Integrated Square Bias (AISB) so then
AMISE = AIV + AISB (Ivanka, 2012) and MISE likewise can be defined
as

MISE(f̂(x, h)) = AMISE(f̂(x, h)) + o{ 1

nh
+ h4}. (49)
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9 Kernel Smoother

In terms of minimizing the MISE and AMISE score, one tries to find the
optimal bandwidth. The optimal bandwidth can be found by solving the
derivative of AMISE. This differential equation is set up as

∂

∂h
AMISE(f̂(x, h)) =− 1

nh2

∫
K(x)2dx

+

∫
x2K(x)dx× h3

∫
(f ′′(x))2dx = 0.

(50)

Furthermore the optimal bandwidth h takes the form of

hAMISE =

[ ∫
K(x)2dx

]1/5
[ ∫

x2K(x)dx

]2/5[ ∫
f ′′(x)2dx

]1/5n−1/5. (51)

Luckily there are simpler ways to approximate the optimal h value. Specif-
ically for the Gaussian kernel. For the Gaussian kernel, there are rule of
thumb estimates such as Scott’s rule of thumb (Scott, 2015) and Silverman’s
rule of thumb (Silverman, 1986). Silverman’s rule of thumb and Scott’s rule
of thumb are similarly defined with the only big difference being the constant
they use. Silverman’s rule of thumb bandwidth is

h = 0.9 min{σ̂, IQR/1.34}n−1/5, (52)

and Scott’s rule of thumb is

h = σ̂n−1/(d+4). (53)

For both of these estimates, σ̂ is the empirical standard deviation, n is the
length of the dataset, IQR is the interquartile range and d is the amount of
dimensions for the dataset. These two rules of thumb can also be up scaled
to also work for multivariate kernels. For the implantation of them in R,
both functions are built in. So Silverman is bw.nrd0 and Scott is bw.nrd.

So far the kernel functions have been implemented for univariate data. How-
ever, they can also be expanded to being multivariate. In this paper the
only multivariate kernel function used, is the bivariate Gaussian kernel. The
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9 Kernel Smoother

(a) Uniform kernel function. (b) Triangle kernel function.

(c) Gaussian kernel function. (d) Epanechnikov kernel function.

Figure 16: Four examples of kernel functions.a) Uniform kernel function, b)
Triangle kernel function, c) Gaussian kernel function, d) Epanechnikov
kernel function.

bivariate Gaussian kernel is given as

K

(
x

h
,
y

h

)
=

[
1√
2πh

exp

(
−1

2

x2

h

)]
×
[

1√
2πh

exp

(
−1

2

y2

h

)]
,

f̂(x, y, h) =
1

n

n∑
i=1

K

(
x−Xi

h
,
y − Yi
h

)
,

(54)

where x and y are chosen values, and Xi and Yi are the observations from
the dataset with i = {1, ..., n}.
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10 Kernel Estimates
Similar to what was done in the Box-Cox transformation. One can instead
of using f(x, y) for the precision matrix, use the bivariate Gaussian kernel
estimated density f̂(x, y, h). Then the precision matrix takes the form of −

∂2

∂x2
f̂(x, y, h) − ∂2

∂x∂y
f̂(x, y, h)

− ∂2

∂x∂y
f̂(x, y, h) − ∂2

∂y2
f̂(x, y, h)

 . (55)

Just as before the same steps are taken. Then the resulting correlation
estimate, is given as

ρ̂K(x, y). (56)

The practical reason for doing this, is because for real datasets the densities
that produce them may be unknown. Thus resulting in the need to estimate
the densities.

10.1 Contours

To give an overview over the different fits for the estimates, the subfigures
17a and 17d from figure 17 have approximated the form of the real densities
closely. Specifically subfigure 17a is almost identical to subfigure 2a. The
probabilities of the Gaussian kernel estimate of the Cauchy density are too
low compared to the real Cauchy’s probabilities. This also occurs for the
fit of the twisted Pear, as the probability in the center of the density is too
low. Just to exemplify how the change in bandwidth changes the bivariate
Gaussian kernel estimated density f̂ , the transformed normal density is used.
The figure 18 shows that as the bandwidth decreases towards 0 then the bands
become less smooth. While for higher bandwidths the smoothness increases.
In addition, the probabilities increase for lower bandwidths and decrease for
higher bandwidths.

44



10.1 Contours 10 Kernel Estimates

(a) h = 0.119

(b) h = 0.08
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10.1 Contours 10 Kernel Estimates

(c) h = 0.093

(d) h = 0.28

Figure 17: Bivariate Gaussian kernel estimates using the rule of thumb
bandwidths. a) Pear density for h = 0.119, b) twisted Pear for h = 0.08, c)
Cauchy for h = 0.093 and d) transformed normal density for h = 0.28.
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(a) h = 0.28

(b) h = 0.5
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10.1 Contours 10 Kernel Estimates

(c) h = 1

Figure 18: Bivariate Gaussian kernel estimate of the transformed normal
density for 3 different h values. a) h = 0.28, b) h = 0.5 and c) h = 1.
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10.2 Double Derivatives

While the actual f̂ approximations we get might look similar. The estimated
correlation maps tell a different story. Even from a cursory glance the subfig-
ures of 19 are vastly different from the ρ̂(x, y) estimates from figures 2c, 3c,
4c and 5c. Of these, only figure 19a has a resemblances to the actual ρ̂(x, y)
from figure 2c. Similarly to the Box-Cox transformation, the ρ̂K(x, y) values
from equation (56) are not limited to the range of [−1, 1]. But just like with
the contours as the bandwidth increases, the spectrum of which ρ̂ is defined
decreases back within the [−1, 1] as seen in figure 20. Based on figure 20,
h values of 1 and above, result in ρ̂K(x, y) being defined within the [−1, 1]
range. Generally from figure 19, the stronger correlation estimates seem
to occur within localised areas. For figure 19a this occurs in the small fang
like area at (1, 4). For figures 19c and 19d there are specks of high correlation.

To observe the impact of the smoothing parameter h, the bivariate Gaus-
sian kernel estimated Cauchy density was chosen. The results of this are
shown in figures 20 and 21. As h, increases the range of ρ̂K(x, y) decreases.
As seen in figure 21e the ρ̂K(x, y) are so minuscule that the estimate are
essentially equal to 0. On the other side for h = 0.001 in figure 21a there are
only specks of correlation in between a larger area of undefined values. As h
increases the amount of undefined areas decrease, as the difference between
figures 21a and 21d is palpable. Although both figures 21c and 21d seem to
show similar trends to figure 4c. As when x and y are positive, the estimated
correlation is also positive. While when x and y have differing signs, the
estimated correlation is negative. What figure 21 has shown is that ρ̂K(x, y)
has to consciously implemented for the bivariate Gaussian kernel estimates.
As low of h values return a picture that can be too chaotic to read. While
high values of h become too homogeneous to discern. In addition, to the fact
that sub optimal h values for the fit, may give better correlation estimates.
To understand why there are undefined areas for the estimated ρ̂K(x, y) is
harder than the function for ρ̂(x, y) from equation (26), as the function for
ρ̂K(x, y) is more obtuse . The log double derivatives of the bivariate Gaussian
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kernel estimates are

∂2

∂x2
log f̂(x, y, h) =

1

h2
(∑

exp

[
− 1

2h
((Xi − x)2 + (Yi − y)2)

])2

×
{(∑

exp

[
− 1

2h
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])
×
(
− h

∑
exp

[
− 1

2h
((Xi − x)2 + (Yi − y)2)

]
+
∑

(Xi − x)2 exp

[
− 1

2h
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− 1

2h
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])2}
,

(57)

∂2

∂x2
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1

h2
(∑
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[
− 1

2h
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])2

×
{(∑
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[
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])
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(
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∑
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[
− 1

2h
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]
+
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− 1

2h
((Xi − x)2 + (Yi − y)2)

])
−
(∑

(Yi − y) exp

[
− 1

2h
((Xi − x)2 + (Yi − y)2)

])2}
,

(58)
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and

∂2

∂x∂y
log f̂(x, y, h) =

1

h2
∑

(x−Xi)(y − Yi) exp

[
− 1

2h
((x−Xi)

2 + (y − Yi)2)
]

∑
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[
− 1

2h
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− 1∑
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[
− 1

2h
((x−Xi)2 + (y − Yi)2)
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×
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∑
(x−Xi) exp

[
− 1
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((x−Xi)

2 + (y − Yi)2)
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×
(
− 1

h

∑
(y − Yi) exp

[
− 1
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((x−Xi)

2 + (y − Yi)2)
])}

.

(59)

As shown these three double derivatives are long, and because of the amount
of observations complex. In addition, they cannot be reduced, which creates
a needlessly complex formula for ρ̂K(x, y). One can find where the white
areas occur, but even that is not really reliable nor fully understood. As all
parts of ρ̂K(x, y) contain

∂2

∂x2
log f̂(x, y, h)

∂2

∂y2
log f̂(x, y, h)− ∂2

∂x∂y
log f̂(x, y, h)2, (60)

in their denominator. The equation (60) results in figure 22. For figure 22,
the areas that are less than 0 are areas that are undefined in figures 21c and
21b. Although the area at (−2, 2) in figure 22b is 0 or lower, the same area
in figure 21c is defined.
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(a) h = 0.119

(b) h = 0.08
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10.2 Double Derivatives 10 Kernel Estimates

(c) h = 0.093

(d) h = 0.28

Figure 19: ρ̂K(x, y) estimates for the bivariate Gaussian kernel estimates of
the densities. The densities represented are a) Pear density for h = 0.119,
b) twisted Pear for h = 0.08, c) Cauchy for h = 0.093 and d) transformed
normal density for h = 0.28.
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(a) h = 0.001 (b) h = 0.093

(c) h = 0.5 (d) h = 1

(e) h = 100

Figure 20: ρ̂(x, y) estimates for 5 values of h for the Gaussian kernel
estimate of the Cauchy density. a)h = 0.001, b)h = 0.093,
c)h = 0.5,d)h = 1, e)h = 100.
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(a) h = 0.001

(b) h = 0.093

(c) h = 0.5
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(d) h = 1

(e) h = 100

Figure 21: Contours of ρ̂(x, y) for the Gaussian kernel estimates of Cauchy
simulated data at 5 different h values. a) h = 0.001, b) h = 0.093, c)
h = 0.5, d) h = 1 and e) h = 100.
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(a) h = 0.093

(b) h = 0.5

Figure 22:
∂2

∂x2
log f̂(x, y, h)

∂2

∂y2
log f̂(x, y, h)− ∂2

∂x∂y
log f̂(x, y, h)2 for the

bivariate Gaussian kernel estimates on the Cauchy simulated data for 2 h
values. a) h = 0.093 and b) h = 0.5. 57
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11 Conclusions and Future Perspective
Using the methods outlined in this thesis, we are able to establish a connec-
tion between the local Gaussian correlation and the ρ̂(x, y) estimate from the
precision matrix. However, there remain limitations. As the results show,
the correlation estimates give differing estimations for certain densities. The
other thing of note is that the local Gaussian correlation is defined over the
entire area of the densities, while the correlation estimate of the precision
matrix results in undefined areas. As presented in the experiments section,
the precision matrix’s correlation estimate will always be equal to the corre-
lation coefficient for any bivariate normal density. For example the bivariate
normal density in figure 23, ρ̂(x, y) = ρ = 0.5 with the log double derivatives
taking on the form in equation (24). The problem of sample size for the local
Gaussian correlation is shown in figure 23. For the chosen sample sizes, it is
first at 10 000 observations that almost all areas start to converge to the true
ρ. Another problem could be because the 4 densities used in this thesis are
not typical densities, nor do they reduce when derived. The best example
of the derivative not reducing the function, is the twisted Pear density. The
reason why the twisted Pear is a good example is because of the variables

µ(x) =
x

10
exp(5− x

2
), (61)

and
σ(x) = (

1 + 0.5x

3
), (62)

which for the part
−1

2
(
y − µ(x)

σ(x)
)2 when derived by x results in

∂

∂x

−1

2

(
y − µ(x)

σ(x)

)2

=
−9

2

{[
y

5
(0.5x− 1) exp(5− 0.5x)

+
x

5
(0.5x− 1) exp(10− x)

][
1 + x+

x2

4

]
−
(

1 + 2x

)(
y2 − xy

5
exp(5− 0.5x)− x2

10
exp(10− x)

)}
/(

1 + x+ 0.25x2

)2

.

(63)
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Already from the first derivative, the resulting function has increased in both
length and complexity. There is another jump in complexity for the double
derivatives. Thus illuminating the fact that ρ̂(x, y) ends up being a highly
complex function.

The Box-Cox transformation and the bivariate Gaussian kernel estimate were
studied late in the process. To observe if they can be incorporated in future
analysis. The Box-Cox transformation would be the easier of the two to fur-
ther study, as the derivatives for the densities are less complex than the ones
from the bivariate Gaussian kernel estimates. The problem for the bivariate
Gaussian kernel estimate, is that the derivatives are not reducible. Thus each
sum in equations (57), (58) and (59) would be complex functions containing
number of parts equal to the number of observations. As the double deriva-
tives occur multiple times in ρ̂K(x, y), the resulting function requires more
work than the scope of this thesis, but remains a promising avenue. There is
also the possibility of using other bivariate kernel estimates, for estimating
the densities.

In conclusion, a bridge between the local Gaussian correlation and the cor-
relation estimate from the precision matrix has been established. Although
further work is needed, to clarify remaining problems.
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11 Conclusions and Future Perspective

(a) n = 100

(b) n = 1 000
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(c) n = 10 000

(d) n = 100 000

Figure 23: local Gaussian correlation for a bivariate normal density
(N(0, 0, 1, 1, 0.5)) for 4 different n sample sizes. a) n = 100, b) n = 1 000, c)
10 000 and d) 100 000.
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Appendices
Appendix A Example of the Precision matrix’s

Correlation Function
The Pear’s density is given as

f(x, y) =
3x2

2πσxσy
√

1− ρ2
exp

[
− 1

2(1− ρ2)

(
(x3 − µx)2

σ2
x

− 2ρ
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σxσy
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σ2
y)
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.

(64)

From here the log first order derivatives of the density are

∂

∂x
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(65)

The second order derivatives are
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∂x2
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(66)
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Then with the double derivatives, we can put them into the precision matrix −
∂2

∂x2
logf(x, y) − ∂2

∂x∂y
logf(x, y)

− ∂2

∂x∂y
logf(x, y) − ∂2
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(67)

From here we take the inverse as we know the inverse of the precision
matrix is the covariance matrix.

1
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(68)

As the (1, 2) and (2, 1) represent ρσxσy for the equation(68). For the
equation (68), (1, 1) represents σ2

x and (2, 2) represents σ2
y . Thus to find

ρ̂(x, y) we take (1, 2) divided by the square root of (2, 2) and (1, 1) so then
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for the Pear density, ρ̂(x, y) is
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Appendix B Examples of C++ Code
Pear density in C++

#include <TMB.hpp>
#include <cmath>
#include <math.h>
#include <cstdlib>

template<class Type>
Type objective_function<Type>::operator() ()
{
PARAMETER(x);
PARAMETER(y);
PARAMETER(mu_1);
PARAMETER(mu_2);
PARAMETER(sig_1);
PARAMETER(sig_2);
PARAMETER(rho);

Type U = pow(x,3);

Type a = 2 * M_PI * sig_1 *sig_2 * sqrt(1 - pow(rho,2));
Type b = (pow(U - mu_1, 2)/pow(sig_1,2)) - 2 * rho * (U -

mu_1) * (y - mu_2)/(sig_1 * sig_2) + pow(y - mu_2, 2)/pow(
sig_2,2);

Type c = exp(-b/(2 * (1 - pow(rho,2))));;
return log(c) - log(a) + log(3) + 2 * log(fabs(fabs(x)));

}
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Bivariate Gaussian kernel estimate in C++

#include <TMB.hpp>
#include <cmath>
#include <math.h>
#include <cstdlib>

template<class Type>
Type objective_function<Type>::operator() ()
{
DATA_VECTOR(X_i1);
DATA_VECTOR(X_i2);
DATA_SCALAR(h);
PARAMETER(X);
PARAMETER(Y);

Type n = X_i1.size();

Type f = Type(0.0); // Kernel smoother

for(int i=0;i<n;i++){
f += dnorm(X,X_i1(i),sqrt(h)) * dnorm(Y,X_i2(i),sqrt(h));

}
return(log(f) - log(n));

}
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Appendix C R-code

###Important packages####
library(lg)
library(mcmc)
library(mvtnorm)
library(ggplot2)
library(RColorBrewer)
library(dplyr)
library(pheatmap)
library(TMB)
dat <- read.table("Master/data_pear_bivar.txt", header = TRUE)

###rho matrix function and Reverse gamma function####
###rho matrix function###
matrix_function <- function(z_dx2, z_dxdy, z_dy2, row_length =

1000){
#asssumes the data is the form of a 1000 times 1000 matrix
z_rho <- matrix(data = rep(0,row_length^2), nrow = row_length

, ncol = row_length)
z_sig_x <- matrix(data = rep(0,row_length^2), nrow = row_

length, ncol = row_length)
z_sig_y <- matrix(data = rep(0,row_length^2), nrow = row_

length, ncol = row_length)

for (i in c(1:row_length)){
for(j in c(1:row_length)){
poten_matrix <- matrix(data = c(-z_dx2[i,j], -z_dxdy[i,j

],
-z_dxdy[i,j], -z_dy2[i,j]),

nrow = 2, ncol = 2)
if (anyNA(poten_matrix) == TRUE){
z_val[i,j] <- NaN

}
if(z_dx2[i,j] == z_dy2[i,j] & z_dx2[i,j] == z_dxdy[i,j]){
z_val[i,j] <- NaN

}
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else{
sol_matrix <- solve(poten_matrix)
z_rho[i,j] <- sol_matrix[1,2]/(sqrt(sol_matrix[1,1]) *

sqrt(sol_matrix[2,2]))
z_sig_x[i,j] <- sol_matrix[1,1]
z_sig_y[i,j] <- sol_matrix[2,2]

}
}

}
return(list(z_rho = z_rho, z_sig_x = z_sig_x, z_sig_y = z_sig

_y))
}

##Reverse gamma function##
reverse_gam <- function(gam){
return((-1 + sqrt(1 + 4*gam^2))/(2*gam))

}

##extreme val function##
extreme_val_function <- function(z_vals, min_val_testing = 0,

max_val_testing = 10){
i_val <- c()
j_val <- c()
for(i in c(1:1000)){
for(j in c(1:1000)){
if (anyNA(z_vals[i,j]) == FALSE){
if(z_vals[i,j] <= min_val_testing | z_vals[i,j] >= max_

val_testing){
i_val <- c(i_val, i)
j_val <- c(j_val, j)

}
}

}
}
return(matrix(c(i_val, j_val), ncol = 2))

}
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###Kernel example####
x_seq <- seq(-1.5, 1.5, length.out = 1000)

###Uniform kernel###
uniform_kernel_func <- function(x){
if(abs(x) <= 1){
return(1/2)

}
else{
return(0)

}
}

uniform_vals <- rep(0,1000)
for(i in c(1:1000)){
uniform_vals[i] <- uniform_kernel_func(x_seq[i])

}
#Figure 16. a)
plot(x_seq, uniform_vals, type = "l", xlab = "x", ylab = "",

ylim = c(0,1), lwd = 5, las = 1)

###Triangle kernel###
triangle_kernel_func <- function(x){
if(abs(x) <= 1){
return(1 - abs(x))

}
else{
return(0)

}
}

triangle_vals <- rep(0,1000)
for(i in c(1:1000)){
triangle_vals[i] <- triangle_kernel_func(x_seq[i])

}
#Figure 16. b)
plot(x_seq, triangle_vals, type = "l", xlab = "x", ylab = "",

lwd = 5, las = 1)
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###Gaussian kernel###
x_seq_gauss <- seq(-5,5, length.out = 1000)

gaussian_kernel_func <- function(x){
return((1/(sqrt(2*pi))) * exp(-0.5 * x^2))

}

gaussian_vals <- rep(0,1000)
for(i in c(1:1000)){
gaussian_vals[i] <- gaussian_kernel_func(x_seq_gauss[i])

}
#Figure 16. c)
plot(x_seq_gauss, gaussian_vals, xlim = c(-3,3), ylim = c(0,1),

type = "l", xlab = "x", ylab = "", lwd = 5, las = 1)

###Epanechnikov###
Epanechnikov_kernel_func <- function(x){
if(abs(x) <= 1){
return(3/4 * (1 - x^2))

}
else{
return(0)

}
}

Epanechnikov_vals <- rep(0,1000)
for(i in c(1:1000)){
Epanechnikov_vals[i] <- Epanechnikov_kernel_func(x_seq[i])

}
#Figure 16. d)
plot(x_seq, Epanechnikov_vals, ylim = c(0,1), type = "l", xlab

= "x", ylab = "", lwd = 5, las = 1)

###Rho example and sigma functions ####
lnx_func <- function(x){
return(sin(3*x))

}
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set.seed(3)
x_sample <- runif(1000, min = -4,max = 4)
y_sample <- lnx_func(x_sample) + rnorm(1000)
#Figure 1.
plot(x_sample, y_sample, xlab = "x", ylab = "y", las = 1)

###neg sigma^2_x for pear###:
neg_sig_pear_func <- function(x){
a <- (39.75 * x[1]^6) - (232.2580645 * x[1]^3 *x[2]) - (120 *

x[1]^3) + 350
return(a)

}

x <- seq(-3,4, length.out = 1000)
y <- seq(0,4, length.out = 1000)
z_mat <- matrix(rep(0,1000^2), nrow = 1000, ncol = 1000)

for(i in c(1:1000)){
for(j in c(1:1000)){
if(anyNA(neg_sig_pear_func(c(x[i],y[j]))) == FALSE){
if(neg_sig_pear_func(c(x[i], y[j])) < c(0)){
z_mat[i,j] <- neg_sig_pear_func(c(x[i], y[j]))

}
else{
z_mat[i,j] <- NaN

}
}

}
}

#Figure 11.
image(x,y,z_mat, xlab = "X", ylab = "Y", las = 1)
contour(x,y,z_mat,labcex = 1 ,add = TRUE)

###Compiling Gaussian kernel ####
data_gauss_kern <- read.table("Master/Gauss_kern_data.txt")
compile("Master/Gauss_kern.cpp")
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dyn.load(dynlib("Master/Gauss_kern"))

###Pear####
Parameters <- list(x = 0, y = 0, mu_1 = 10, mu_2 = 1.55, sig_1

= 10, sig_2 = 0.775, rho = 0.75)

compile("Master/pear_bivar.cpp")
dyn.load(dynlib("Master/pear_bivar"))

obj <- MakeADFun(data = dat, parameters = Parameters, DLL = "
pear_bivar")

x <- seq(-3,4,length.out =100)
y <- seq(0,4,length.out =100)
x_ldf <- seq(-10,10,length.out =100)
y_ldf <- seq(-30,30,length.out =100)
z <- matrix(data = c(rep(0,10000)), nrow = 100,ncol = 100)
for (i in c(1:100)){
for (j in c(1:100)){
z[i,j] <- exp(obj$fn(c(x[i], y[j] , 10, 1.55, 10, 0.775,

0.75)))
}

}
#Figure 2. a)
image(x, y, z, las = 1)
contour(x, y, z, zlim = c(0.025,0.5), xlim = c(0,4), ylim = c

(0,4), labcex = 1, add = TRUE)

##MCMC sampling pear##
bivar_pear <- function(x){
U = x[1]^3
a = 1/(2 * pi * 10 * 0.775* sqrt(1- 0.75^2))
b = (-1/(2 * (1 - 0.75^2))) * (((U - 10)/ 10)^2 - 2 * 0.75 *

((U - 10)/ 10) * ((x[2] - 1.55)
/0.775) + ((x[2] - 1.55)/
0.775)^2)

return (a * exp(b) * 3 *abs(x[1]) * abs(x[1]))
}
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log_bivar_pear <- function(x){
return(log(bivar_pear(x)))

}

set.seed(123)
mcmc_pear <- metrop(log_bivar_pear,initial = rep(4,2), blen =

1,nspac = 1,scale =1.05,nbatch = 10000)
mcmc_pear_sample = mcmc_pear$batch
#Figure 2. b)
plot(mcmc_pear_sample, xlab = "x", ylab = "y", las = 1)
mcmc_pear$accept

##LGC for Pear##
lg.pear <- lg_main(mcmc_pear_sample, est_method = "1par")
x <- seq(-3, 4, length.out = 15)
y <- seq(0, 4, length.out = 15)
d1 <- expand.grid(x,y)
zd1 <- dlg(lg.pear, grid = d1)
#Figure 2. d)
corplot(zd1, plot_thres = 0.02, low_color = "#4A6FE3", high_

color = "#D33F6A", label_size = 4)

##matrix function##
#remember all of the values are for 1000 squared
#double derivative values
x <- seq(-3,4,length.out =1000)
y <- seq(0,4,length.out =1000)
z_dxdy <- matrix(data = c(rep(0,1000000)), nrow =1000, ncol =

1000)
z_dx2 <- matrix(data = c(rep(0,1000000)), nrow = 1000, ncol =

1000)
z_dy2 <- matrix(data = c(rep(0,1000000)), nrow = 1000, ncol =

1000)

for(i in c(1:1000)){
for(j in c(1:1000)){
z_dxdy[i,j] <- obj$he(c(x[i], y[j], 10, 1.55, 10, 0.775,
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0.75))[2,1]
z_dx2[i,j] <- obj$he(c(x[i], y[j], 10, 1.55, 10, 0.775,

0.75))[1,1]
z_dy2[i,j] <- obj$he(c(x[i], y[j], 10, 1.55, 10, 0.775,

0.75))[2,2]
}

}

pear_doub_derivs <- matrix_function(z_dx2 = z_dx2, z_dxdy = z_
dxdy, z_dy2 = z_dy2)

z_rho <- pear_doub_derivs$z_rho
z_sig_x <- pear_doub_derivs$z_sig_x
z_sig_y <- pear_doub_derivs$z_sig_y

#plot
#Figure 2. c)
image(x,y,z_rho, col = c("#E4D3D6", "#E6C4C9", "#E6B4BD", "#

E5A5B1", "#E495A5",
"#E28699", "#DF758D", "#DB6581", "#

D75376", "#D33F6A"), las = 1)
contour(x,y,z_rho, add = TRUE, labcex = 1)

z_sig_x_trunk <- z_sig_x[z_sig_x <1 & z_sig_x > -1]
z_sig_y_trunk <- z_sig_y[z_sig_y <1 & z_sig_y > -1]
#Figure 6. a) and b)
hist(z_sig_x[z_sig_x <1 & z_sig_x > -1], main = "", xlab = "",

freq = FALSE, col = "grey", las = 1)
hist(z_sig_y[z_sig_y <1 & z_sig_y > -1], main = "", xlab = "",

freq = FALSE, col = "grey", las = 1)
length(z_sig_x)- length(z_sig_x_trunk)
length(z_sig_y)- length(z_sig_y_trunk)

#Extreme values for the pear distribution#
pear_sig_x_quatiles <- quantile(z_sig_x, probs = seq(0,1,0.05))
pear_sig_y_quatiles <- quantile(z_sig_y, probs = c

(0,0.05,0.1,0.9,0.95,1))

pear_sig_x_max_vals <- extreme_val_function(z_vals = z_sig_x,
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min_val_testing = -1e7, max_val_testing = 10)
pear_sig_x_min_vals <- extreme_val_function(z_vals = z_sig_x,

min_val_testing = -10, max_val_testing = 1e8)
pear_sig_y_max_vals <- extreme_val_function(z_vals = z_sig_y,

min_val_testing = -1e7, max_val_testing = 10)
pear_sig_y_min_vals <- extreme_val_function(z_vals = z_sig_y,

min_val_testing = -10, max_val_testing = 1e8)

#plots
#Figure 10. a)
plot(x[pear_sig_x_max_vals[,1]], y[pear_sig_x_max_vals[,2]],

type = "l", xlab = "X", ylab = "Y", las = 1)
lines(x[pear_sig_x_min_vals[,1]], y[pear_sig_x_min_vals[,2]],

col = "red")

#Figure 10. b)
plot(x[pear_sig_y_max_vals[,1]], y[pear_sig_y_max_vals[,2]],

type = "l", xlab = "X", ylab = "Y", las = 1)
lines(x[pear_sig_y_min_vals[,1]], y[pear_sig_y_min_vals[,2]],

col = "red")

###Gaussian kernel estimates###
data_list <- list(X_i1 = mcmc_pear_sample[,1], X_i2 = mcmc_pear

_sample[,2], h = 0.119)
params <- list(X = 1, Y = 1)
pear_kern_func <- MakeADFun(data = data_list, parameters =

params, DLL = "Gauss_kern")

##density est##
bw.nrd(mcmc_pear_sample)
bw.nrd0(mcmc_pear_sample) #rule of thumb bandwidth used
x <- seq(-3,4, length.out = 100)
y <- seq(0,4, length.out = 100)
z <- matrix(rep(0,100^2), nrow = 100, ncol = 100)
z_dx2 <- matrix(rep(0,100^2), nrow = 100, ncol = 100)
z_dy2 <- matrix(rep(0,100^2), nrow = 100, ncol = 100)
z_dxdy <- matrix(rep(0,100^2), nrow = 100, ncol = 100)

78



Appendix C R-code Appendix

for(i in c(1:100)){
for(j in c(1:100)){
z[i,j] <- pear_kern_func$fn(c(x[i], y[j]))
pear_kern_he <- pear_kern_func$he(c(x[i], y[j]))
z_dx2[i,j] <- pear_kern_he[1,1]
z_dy2[i,j] <- pear_kern_he[2,2]
z_dxdy[i,j] <- pear_kern_he[1,2]

}
}

#Figure 17. a)
image(x,y,exp(z), las = 1)
contour(x,y,exp(z), labcex = 1 ,add = TRUE)

##Double derivative
pear_kern_deriv <- matrix_function(z_dx2 = z_dx2,z_dxdy = z_

dxdy, z_dy2 = z_dy2, row_length = 100)

#Figure
hist(pear_kern_deriv$z_rho, main = "", xlab = "")
#Figure 19. a)
image(x,y,pear_kern_deriv$z_rho, breaks = c(-15,seq(-1,1,

length.out = 21)), col = hcl.colors(21, "BLUE␣RED␣2"), las
= 1)

contour(x,y,pear_kern_deriv$z_rho, add = TRUE, nlevels = 70,
labcex = 1)

###Pear 2.####
param_pear_2 <- list(x = 0, y = 0, mu_1 = 1.2, sig_1 = 1/3)

require(TMB)
compile("Master/pear_bivar2.cpp")
dyn.load(dynlib("Master/pear_bivar2"))

obj <- MakeADFun(data = dat, parameters = param_pear_2, DLL = "
pear_bivar2")

x <- seq(0,2,length.out =100)
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y <- seq(0,15,length.out =100)
z <- matrix(data = c(rep(0,10000)), nrow = 100,ncol = 100)

for (i in c(1:100)){
for (j in c(1:100)){
z[i,j] <- exp(obj$fn(c(x[i], y[j] , 1.2, 1/3)))

}
}
#Figure 3. a)
image(x,y,z, las = 1)
contour(x,y,z, zlim = c(0.01,0.9), xlim = c(0,2), ylim = c

(0,15), labcex = 1, add = TRUE)

##MCMC sampling pear2##
bivar_pear2 <- function(x){
a = 1/((1/3) * sqrt(2* pi))
b = - 0.5 * ((x[1] - 1.2)/(1/3))^2
f_x = a * exp(b)

mu_2 = (x[1]/10) * exp(5 - x[1]/2)
sig_2 = (1 + 0.5 * x[1])/3

c = 1/(sig_2 * sqrt(2 * pi))
d = - 0.5 * ((x[2] - mu_2)/sig_2)^2
f_y = c * exp(d);

return (f_x * f_y)
}

log_bivar_pear2 <- function(x){
return(log(bivar_pear2(x)))

}

set.seed(333)
mcmc_pear2 <- metrop(log_bivar_pear2,initial = rep(0,2), blen =

1,nspac = 1,scale = 0.4,nbatch = 10000)
mcmc_pear2_sample = mcmc_pear2$batch
#Figure 3. b)
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plot(mcmc_pear2_sample, xlab = "x", ylab = "y", las = 1)
mcmc_pear2$accept

##LGC for Pear2##
lg.pear2 <- lg_main(mcmc_pear2_sample, est_method = "1par")
x <- seq(-0.2, 2.3, length.out = 15)
y <- seq(-3.3, 12.7, length.out = 15)
d1 <- expand.grid(x,y)
zd1 <- dlg(lg.pear2, grid = d1)
#Figure 3. d)
corplot(zd1, low_color = "#4A6FE3", high_color = "#D33F6A",

plot_thres = 0.03, label_size = 4)

##matrix function##
#remember all of the values are for 1000 squared
#double derivative values
x <- seq(0,2,length.out =1000)
y <- seq(0,15,length.out =1000)
z_dxdy <- matrix(data = c(rep(0,1000000)), nrow =1000, ncol =

1000)
z_dx2 <- matrix(data = c(rep(0,1000000)), nrow = 1000, ncol =

1000)
z_dy2 <- matrix(data = c(rep(0,1000000)), nrow = 1000, ncol =

1000)

for(i in c(1:1000)){
for(j in c(1:1000)){
z_dxdy[i,j] <- obj$he(c(x[i], y[j], 1.2, 1/3))[2,1]
z_dx2[i,j] <- obj$he(c(x[i], y[j], 1.2, 1/3))[1,1]
z_dy2[i,j] <- obj$he(c(x[i], y[j], 1.2, 1/3))[2,2]

}
}

pear2_doub_derivs <- matrix_function(z_dx2 = z_dx2, z_dxdy = z_
dxdy, z_dy2 = z_dy2)

z_rho <- pear2_doub_derivs$z_rho
z_sig_x <- pear2_doub_derivs$z_sig_x
z_sig_y <- pear2_doub_derivs$z_sig_y
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#plot
#Figure 3. c)
image(x,y,z_rho, col = hcl.colors(10, "Blue␣Red␣2"), las = 1)
contour(x,y,z_rho, labcex = 1, add = TRUE)

z_sig_x_trunk <- z_sig_x[z_sig_x <1 & z_sig_x > -1]
z_sig_y_trunk <- z_sig_y[z_sig_y <2 & z_sig_y > -2]
#Figure 7. a) and b)
hist(z_sig_x[z_sig_x <1 & z_sig_x > -1], main = "", xlab = "",

freq = FALSE, col = "grey", las = 1)
hist(z_sig_y[z_sig_y <1 & z_sig_y > -1], main = "", xlab = "",

freq = FALSE, col = "grey", las = 1)
length(z_sig_x)- length(z_sig_x_trunk)
length(z_sig_y)- length(z_sig_y_trunk)

###Gaussian kernel estimates###
data_list <- list(X_i1 = mcmc_pear2_sample[,1], X_i2 = mcmc_

pear2_sample[,2], h = 0.08)
params <- list(X = 1, Y = 1)
pear2_kern_func <- MakeADFun(data = data_list, parameters =

params, DLL = "Gauss_kern")

##density est##
bw.nrd(mcmc_pear2_sample)
bw.nrd0(mcmc_pear2_sample)
x <- seq(0,2, length.out = 100)
y <- seq(0,14, length.out = 100)
z <- matrix(rep(0,100^2), nrow = 100, ncol = 100)
z_dx2 <- matrix(rep(0,100^2), nrow = 100, ncol = 100)
z_dy2 <- matrix(rep(0,100^2), nrow = 100, ncol = 100)
z_dxdy <- matrix(rep(0,100^2), nrow = 100, ncol = 100)

for(i in c(1:100)){
for(j in c(1:100)){
z[i,j] <- pear2_kern_func$fn(c(x[i], y[j]))
pear2_kern_he <- pear2_kern_func$he(c(x[i], y[j]))
z_dx2[i,j] <- pear2_kern_he[1,1]
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z_dy2[i,j] <- pear2_kern_he[2,2]
z_dxdy[i,j] <- pear2_kern_he[1,2]

}
}
#Figure 17. b)
image(x,y,exp(z),las = 1)
contour(x,y,exp(z), labcex = 1 ,add = TRUE)

##Double derivative
pear2_kern_deriv <- matrix_function(z_dx2 = z_dx2,z_dxdy = z_

dxdy, z_dy2 = z_dy2, row_length = 100)

hist(pear2_kern_deriv$z_rho)
#Figure 19. b)
image(x,y,pear2_kern_deriv$z_rho, col = hcl.colors(21, "BLUE␣

RED␣2"), zlim = c(-1,1), las = 1)
contour(x,y,pear2_kern_deriv$z_rho, add = TRUE, labcex = 1,

nlevels = 10, zlim = c(-1,1))

###Cauchy####
compile("Master/bivariate_cauchy_corr.cpp")
dyn.load(dynlib("Master/bivariate_cauchy_corr"))

param <- list(X = 0, Y = 0)

cauchy.obj <- MakeADFun(data = dat, parameters = param_alt, DLL
= "bivariate_cauchy_corr")

x <- seq(-4,4, length.out = 100)
y <- seq(-4,4, length.out = 100)
Z_ldf <- matrix(data = c(rep(0,10000)), nrow = 100,ncol = 100)
z <- matrix(data = c(rep(0,10000)), nrow = 100,ncol = 100)

for (i in c(1:100)){
for (j in c(1:100)){
z[i,j] <- cauchy.obj$fn(c(x[i], y[j]))
Z_ldf[i,j] <- cauchy.obj$he(c(x[i], y[j]))[1,2]

}
}
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#Figure 4. a)
image(x,y,exp(z), las = 1)
contour(x,y,exp(z), labcex = 1, add = TRUE)

Z_rho <- reverse_gam(Z_ldf)
#Figure 12.
image(x,y,Z_rho, xlab= "x", ylab = "y", col = hcl.colors(20,

palette = "Blue␣Red␣2")[4:15],
breaks = c(-0.6,-0.5,-0.4,-0.3,-0.2,-0.1,0,

0.1,0.2,0.3,0.4,0.5,0.6), las = 1)
contour(x,y,Z_rho, labcex = 1,add = TRUE)

##MCMC sampling cauchy gamma##
log_cauchy <- function(x){
a = pi * (sqrt((1 + x[1]^2 + x[2]^2)^3))
return (log(1/a))

}

cauchy_alt <- function(x){
a = pi * (sqrt((1 + x[1]^2 + x[2]^2)^3))
return (((a)^0.01- 1)/0.01)

}

set.seed(33)
mcmc_cauchy <- metrop(log_cauchy, initial = rep(0,2), scale =

5, nbatch = 100000)
mcmc_cauchy_sample <- mcmc_cauchy$batch
mcmc_cauchy$accept
#Figure 4. b)
plot(mcmc_cauchy_sample, xlab = "X", ylab = "Y", las = 1)

mcmc_cauchy_sample_x_lim <- mcmc_cauchy_sample[,1][abs(mcmc_
cauchy_sample[,1]) <= 4 & abs(mcmc_cauchy_sample[,2]) <= 4]

mcmc_cauchy_sample_y_lim<- mcmc_cauchy_sample[,2][abs(mcmc_
cauchy_sample[,1]) <= 4 & abs(mcmc_cauchy_sample[,2]) <= 4]

mcmc_cauchy_sample_lims <- matrix(c(mcmc_cauchy_sample_x_lim,
mcmc_cauchy_sample_y_lim), ncol = 2)
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##LGC for cauchy##
lg.cauchy <- lg_main(mcmc_cauchy_sample_lims, est_method = "1

par")
x <- seq(-4, 4, length.out = 15)
y <- seq(-4, 4, length.out = 15)
d1 <- expand.grid(x,y)
zd1 <- dlg(lg.cauchy, grid = d1)
#Figure 4. d)
corplot(zd1, low_color = "#4A6FE3", high_color = "#D33F6A",

label_size = 4, las = 1)

##matrix function##
#remember all of the values are for 1000 squared
#double derivative values
x <- seq(-4,4,length.out =1000)
y <- seq(-4,4,length.out =1000)
z_dxdy <- matrix(data = c(rep(0,1000000)), nrow =1000, ncol =

1000)
z_dx2 <- matrix(data = c(rep(0,1000000)), nrow = 1000, ncol =

1000)
z_dy2 <- matrix(data = c(rep(0,1000000)), nrow = 1000, ncol =

1000)

for(i in c(1:1000)){
for(j in c(1:1000)){
z_dxdy[i,j] <- cauchy.obj$he(c(x[i], y[j]))[2,1]
z_dx2[i,j] <- cauchy.obj$he(c(x[i], y[j]))[1,1]
z_dy2[i,j] <- cauchy.obj$he(c(x[i], y[j]))[2,2]

}
}

cauchy_doub_derivs <- matrix_function(z_dx2 = z_dx2, z_dxdy = z
_dxdy, z_dy2 = z_dy2)

z_rho <- cauchy_doub_derivs$z_rho
z_sig_x <- cauchy_doub_derivs$z_sig_x
z_sig_y <- cauchy_doub_derivs$z_sig_y

#plot
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#Figure 4. c)
image(x,y,z_rho, col = hcl.colors(10, "Blue-Red␣2"), las = 1)
contour(x,y,z_rho, add = TRUE, labcex = 1)

z_sig_x_trunk <- z_sig_x[z_sig_x <10 & z_sig_x > -10]
z_sig_y_trunk <- z_sig_y[z_sig_y <10 & z_sig_y > -10]
#Figure 8. a) and b)
hist(z_sig_x[z_sig_x <1 & z_sig_x > -1], main = "", xlab = "",

freq = FALSE, col = "grey", las = 1)
hist(z_sig_y[z_sig_y <1 & z_sig_y > -1], main = "", xlab = "",

freq = FALSE, col = "grey", las = 1)
length(z_sig_x)- length(z_sig_x_trunk)
length(z_sig_y)- length(z_sig_y_trunk)

###Box-Cox transformed Cauchy###
param_alt <- list(X = 0, Y = 0, Lam = 0)

dat <- read.table("Master/data_cauchy_alt.txt", header = TRUE)
compile("Master/bivariate_cauchy_alt.cpp")
dyn.load(dynlib("Master/bivariate_cauchy_alt"))

cauchy.obj_alt <- MakeADFun(data = dat, parameters = param_alt,
DLL = "bivariate_cauchy_alt")

x <- seq(-4,4, length.out = 100)
y <- seq(-4,4, length.out = 100)
Lam <- 0.1 #Changing Lam to the values of 0.001, 0.1, 1, 5 and

10 will allow one to find figures 13. - 15.
z <- matrix(data = c(rep(0,10000)), nrow = 100,ncol = 100)

for (i in c(1:100)){
for (j in c(1:100)){
z[i,j] <- cauchy.obj_alt$fn(c(x[i], y[j], Lam))

}
}
#Density for figure 14.
image(x,y, z, las = 1)
contour(x,y,z, add = TRUE, labcex = 1)
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#z_rho
x <- seq(-4,4,length.out =1000)
y <- seq(-4,4,length.out =1000)
z_dxdy <- matrix(data = c(rep(0,1000000)), nrow =1000, ncol =

1000)
z_dx2 <- matrix(data = c(rep(0,1000000)), nrow = 1000, ncol =

1000)
z_dy2 <- matrix(data = c(rep(0,1000000)), nrow = 1000, ncol =

1000)

for(i in c(1:1000)){
for(j in c(1:1000)){
z_dxdy[i,j] <- cauchy.obj_alt$he(c(x[i], y[j], Lam))[2,1]
z_dx2[i,j] <- cauchy.obj_alt$he(c(x[i], y[j], Lam))[1,1]
z_dy2[i,j] <- cauchy.obj_alt$he(c(x[i], y[j], Lam))[2,2]

}
}

cauchy_doub_derivs <- matrix_function(z_dx2 = z_dx2, z_dxdy = z
_dxdy, z_dy2 = z_dy2)

z_rho <- cauchy_doub_derivs$z_rho

#Figure 13.
hist(z_rho, main = "", xlab = "", col = "grey", freq = FALSE,

las = 1)

#Figure 15.
image(x,y,z_rho, breaks = c(-1500, seq(-1,1, length.out = 21),

1500),col = hcl.colors(22, "Blue-Red␣2"), las = 1)
contour(x,y,z_rho, add = TRUE, nlevels = 500 ,labcex = 1)

###Gaussian kernel estimates###
#Changing h to the values of 0.001, 0.093, 0.5, 1,5,100 allows

one to find Figures 17. c), 19. c), 20. and 21.
data_list <- list(X_i1 = mcmc_cauchy_sample_lims[,1], X_i2 =

mcmc_cauchy_sample_lims[,2], h = 100)
params <- list(X = 1, Y = 1)
cauchy_kern_func <- MakeADFun(data = data_list, parameters =
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params, DLL = "Gauss_kern")

##density est##
bw.nrd(mcmc_cauchy_sample_lims)
bw.nrd0(mcmc_cauchy_sample_lims)
x <- seq(-4,4, length.out = 100)
y <- seq(-4,4, length.out = 100)
z <- matrix(rep(0,100^2), nrow = 100, ncol = 100)
z_dx2 <- matrix(rep(0,100^2), nrow = 100, ncol = 100)
z_dy2 <- matrix(rep(0,100^2), nrow = 100, ncol = 100)
z_dxdy <- matrix(rep(0,100^2), nrow = 100, ncol = 100)

for(i in c(1:100)){
for(j in c(1:100)){
z[i,j] <- cauchy_kern_func$fn(c(x[i], y[j]))
cauchy_kern_he <- cauchy_kern_func$he(c(x[i], y[j]))
z_dx2[i,j] <- cauchy_kern_he[1,1]
z_dy2[i,j] <- cauchy_kern_he[2,2]
z_dxdy[i,j] <- cauchy_kern_he[1,2]

}
}

#Figure 17. c)
image(x,y,exp(z), las = 1)
contour(x,y,exp(z), labcex = 1 ,add = TRUE)

##Double derivative
cauchy_kern_deriv <- matrix_function(z_dx2 = z_dx2,z_dxdy = z_

dxdy, z_dy2 = z_dy2, row_length = 0.093)

#histograms for Figure 20.
hist(cauchy_kern_deriv$z_rho, main = "", xlab = "", col = "grey

", freq = FALSE, las = 1)

#rho estimates for Figure 19.c) and 21.
image(x,y,cauchy_kern_deriv$z_rho, breaks = c(-40,seq(-1,1,

length.out = 21), 40), col = hcl.colors(22, "BLUE␣RED␣2"),
las = 1)
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contour(x,y,cauchy_kern_deriv$z_rho,add = TRUE,nlevels = 200 ,
labcex = 1)

###Bivar example 3.####
compile("Master/bivar_ex3.cpp")
dyn.load(dynlib("Master/bivar_ex3"))

Parameters3 <- list(x = 0, y = 0, mu_1 = 4, mu_2 = 2, sig_1 =
5, sig_2 = 2, rho = -0.27)

obj_bivar3 <- MakeADFun(data = dat, parameters = Parameters3,
DLL = "bivar_ex3")

x <- seq(-8,15,length.out =100)
y <- seq(-3,3,length.out =100)
z <- matrix(data = c(rep(0,10000)), nrow = 100,ncol = 100)
for (i in c(1:100)){
for (j in c(1:100)){
z[i,j] <- exp(obj_bivar3$fn(c(x[i], y[j], 4, 2, 5, 2,

-0.27)))
}

}
#Figure 5. a)
image(x,y,z, las = 1)
contour(x,y,z, add = TRUE, labcex = 1)

##MCMC for bivar example 3.##
bivar_ex3 <- function(x){
U = c(x[1] - 1)
V = c(x[2]^2 + 2)
a = 1/(2 * pi * 5 * 2 * sqrt(1 - (-0.27)^2))
b = - 1/(2*(1 - (-0.27)^2)) * ( ((U-4)/5)^2

- 2 * (-0.27) * ((U-4)/5)* ((V
-2)/2) + ((V-2)/2)^2)

return (a * exp(b) * 2 *abs(abs(x[2])))
}

log_bivar_ex3 <- function(x){
return(log(bivar_ex3(x)))
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}

set.seed(365)
mcmc_bivar_ex3 <- metrop(log_bivar_ex3,initial = c(1,1), blen =

1, nspac = 1,scale = 4, nbatch = 100000)
mcmc_bivar_ex3_sample = mcmc_bivar_ex3$batch
#Figure 5. b)
plot(mcmc_bivar_ex3_sample, xlab = "x", ylab = "y", las = 1)
mcmc_bivar_ex3$accept

a <- mcmc_bivar_ex3_sample[,1][mcmc_bivar_ex3_sample[,1] <= 15
& mcmc_bivar_ex3_sample[,1] >= -8]

b <- mcmc_bivar_ex3_sample[,2][mcmc_bivar_ex3_sample[,1] <= 15
& mcmc_bivar_ex3_sample[,1] >= -8]

a_b <- matrix(c(a,b), ncol = 2)

##LGC for bivar example 3.##
lg.bivar_ex3 <- lg_main(a_b, est_method = "1par")
x <- seq(-8, 15, length.out = 15)
y <- seq(-3, 3, length.out = 15)
d1 <- expand.grid(x,y)
zd1 <- dlg(lg.bivar_ex3, grid = d1)
#Figure 5. d)
corplot(zd1, plot_thres = 0.02, low_color = "#4A6FE3", high_

color = "#D33F6A", label_size = 4)

##matrix function##
#remember all of the values are for 1000 squared
#double derivative values
x <- seq(-8,15,length.out =1000)
y <- seq(-3,3,length.out =1000)
z_dxdy <- matrix(data = c(rep(0,1000000)), nrow =1000, ncol =

1000)
z_dx2 <- matrix(data = c(rep(0,1000000)), nrow = 1000, ncol =

1000)
z_dy2 <- matrix(data = c(rep(0,1000000)), nrow = 1000, ncol =

1000)
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for(i in c(1:1000)){
for(j in c(1:1000)){
z_dxdy[i,j] <- obj_bivar3$he(c(x[i], y[j],4, 2, 5, 2,

-0.27))[2,1]
z_dx2[i,j] <- obj_bivar3$he(c(x[i], y[j], 4, 2, 5, 2,

-0.27))[1,1]
z_dy2[i,j] <- obj_bivar3$he(c(x[i], y[j], 4, 2, 5, 2,

-0.27))[2,2]
}

}

bivar_ex3_doub_derivs <- matrix_function(z_dx2 = z_dx2, z_dxdy
= z_dxdy, z_dy2 = z_dy2)

z_rho <- bivar_ex3_doub_derivs$z_rho
z_sig_x <-bivar_ex3_doub_derivs$z_sig_x
z_sig_y <- bivar_ex3_doub_derivs$z_sig_y

#plot
#Figure 5. c)
image(x,y,z_rho, col = hcl.colors(21, "Blue␣Red␣2")[c(8:10,

12:14)],
breaks = c(-0.3,-0.2, -0.1, 0, 0.1, 0.2, 0.3), las = 1)

contour(x,y,z_rho, add = TRUE, labcex = 1)

#Figure 9. a) and b)
hist(z_sig_x, main = "", freq = FALSE, xlab = "", col = "grey",

las = 1)
hist(z_sig_y, main = "", freq = FALSE, xlab = "", col = "grey",

las = 1)

###Gaussian kernel estimates###
#For the h values 0.28, 0.5, 1 to get figures 17. d), 18. and

19. d)
data_list <- list(X_i1 = a, X_i2 = b, h = 0.28)
params <- list(X = 1, Y = 1)
bivar_ex3_kern_func <- MakeADFun(data = data_list, parameters =

params, DLL = "Gauss_kern")
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##density est##
bw.nrd(a_b)
bw.nrd0(a_b)
x <- seq(-8,15, length.out = 100)
y <- seq(-3,3, length.out = 100)
z <- matrix(rep(0,100^2), nrow = 100, ncol = 100)
z_dx2 <- matrix(rep(0,100^2), nrow = 100, ncol = 100)
z_dy2 <- matrix(rep(0,100^2), nrow = 100, ncol = 100)
z_dxdy <- matrix(rep(0,100^2), nrow = 100, ncol = 100)

for(i in c(1:100)){
for(j in c(1:100)){
z[i,j] <- bivar_ex3_kern_func$fn(c(x[i], y[j]))
bivar_ex3_kern_he <- bivar_ex3_kern_func$he(c(x[i], y[j]))
z_dx2[i,j] <- bivar_ex3_kern_he[1,1]
z_dy2[i,j] <- bivar_ex3_kern_he[2,2]
z_dxdy[i,j] <- bivar_ex3_kern_he[1,2]

}
}

#For figure 17. d) and 18.
image(x,y,exp(z), las = 1)
contour(x,y,exp(z), labcex = 1 ,add = TRUE)

##Double derivative
bivar_ex3_kern_deriv <- matrix_function(z_dx2 = z_dx2,z_dxdy =

z_dxdy, z_dy2 = z_dy2, row_length = 100)

hist(bivar_ex3_kern_deriv$z_rho)
#For figure 19. d)
image(x,y,bivar_ex3_kern_deriv$z_rho, col = hcl.colors(22, "

BLUE␣RED␣2"), breaks = c(-15,seq(-1,1,length.out = 21),15),
las = 1)

contour(x,y,bivar_ex3_kern_deriv$z_rho, add = TRUE, labcex = 1,
nlevels = 200)

###Functions derivatives and rho functions
#################################################
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##cauchy:

d2_dx2_log_cauchy <- function(x){
return(3 * (x[1]^2 - x[2]^2 - 1) / ((x[1]^2 + x[2]^2 + 1)^2))

}

d2_dy2_log_cauchy <- function(x){
return(-3 * (x[1]^2 - x[2]^2 + 1) / ((x[1]^2 + x[2]^2 + 1)^2)

)
}
d2_dxdy_log_cauchy <- function(x){
return(6 * (x[1]*x[2]) / ((x[1]^2 + x[2]^2 + 1)^2))

}

x <- seq(-4,4, length.out = 1000)
y <- seq(-4,4, length.out = 1000)
z_val <- matrix(data = c(rep(0, 1000^2)), nrow = 1000)

for(i in c(1:1000)){
for(j in c(1:1000)){
z_val[i,j] <- d2_dxdy_log_cauchy(c(x[i], y[j]))

}
}

contour(x,y,z_val)

inverse_mat_cauchy <- function(x){
a <- -d2_dx2_log_cauchy(x)
b <- -d2_dxdy_log_cauchy(x)
c <- -d2_dy2_log_cauchy(x)
d <- matrix(c(a,b,b,c), nrow = 2, ncol = 2)
return(solve(d))

}

x <- seq(-2,2, length.out = 1000)
y <- seq(-2,2, length.out = 1000)

z_sigx <- matrix(c(0,1000^2), nrow = 1000, ncol = 1000)
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z_sigy <- matrix(c(0,1000^2), nrow = 1000, ncol = 1000)
z_rho_sigxy <- matrix(c(0,1000^2), nrow = 1000, ncol = 1000)
z_rho_sigxy_alt <- matrix(c(0,1000^2), nrow = 1000, ncol =

1000)
z_rho <- matrix(c(0,1000^2), nrow = 1000, ncol = 1000)

for (i in c(1:1000)){
for(j in c(1:1000)){
z_sigx[i,j] <- inverse_mat_cauchy(c(x[i], y[j]))[1,1]
z_sigy[i,j] <- inverse_mat_cauchy(c(x[i], y[j]))[2,2]
z_rho_sigxy[i,j] <- inverse_mat_cauchy(c(x[i], y[j]))[1,2]
z_rho_sigxy_alt[i,j] <- inverse_mat_cauchy(c(x[i], y[j]))

[2,1]
z_rho[i,j] <- z_rho_sigxy[i,j] / (sqrt(z_sigx[i,j])*sqrt(z_

sigy[i,j]))
}

}

contour(x,y,z_sigx)
image(x,y, z_sigx, zlim = c(0,7000))
contour(x,y,z_sigy)
image(x,y, z_sigy, zlim = c(0,7000))
contour(x,y, z_rho_sigxy)
contour(x,y,z_rho)

sqrd_comp_1 <- function(x){
return(sqrt((x[2]^4 - x[1]^4 - 2*x[1]^2-1)/(3*(x[1]^2 + x

[2]^2 - 1))))
}
sqrd_comp_1_vals <- matrix(c(rep(0,1000^2)), nrow = 1000, ncol

=1000)

for (i in c(1:1000)){
for(j in c(1:1000)){
sqrd_comp_1_vals[i,j] <- sqrd_comp_1(c(x[i], y[j]))

}
}
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image(x,y,sqrd_comp_1_vals, breaks = c(seq(0,1,length.out = 11)
,10,100))

##Pear
Parameters <- list(x = 0, y = 0, mu_1 = 10, mu_2 = 1.55, sig_1

= 10, sig_2 = 0.775, rho = 0.75)

compile("Master/pear_bivar.cpp")
dyn.load(dynlib("Master/pear_bivar"))
obj <- MakeADFun(data = dat, parameters = Parameters, DLL = "

pear_bivar")

#first order derivatives
x <- seq(-2,2, length.out = 1000)
y <- seq(-2,2, length.out = 1000)

z_dx <- matrix(data = c(rep(0,1000000)), nrow =1000, ncol =
1000)

z_dy <- matrix(data = c(rep(0,1000000)), nrow =1000, ncol =
1000)

pear_dx <- function(x){
return((2/x[1]) - ((6 * x[1]^5 - 60 * x[1]^2)/100 - 4.5 * x

[1]^2 * (x[2] - 1.55)/7.75)/ (2 * (1 - 0.75^2)))
}

pear_dy <- function(x){
return(0.221198 * x[1]^3 - 3.80556 * x[2] + 3.68664)

}

pear_dx_vals <- matrix(data = c(rep(0,1000000)), nrow =1000,
ncol = 1000)

for(i in c(1:1000)){
for (j in c(1:1000)){
z_dx[i,j] <- obj$gr(c(x[i], y[j], 10, 1.55, 10, 0.775,

0.75))[1]
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z_dy[i,j] <- obj$gr(c(x[i], y[j], 10, 1.55, 10, 0.775,
0.75))[2]

pear_dx_vals[i,j] <- pear_dx(c(x[i], y[j]))
}

}

#Second order
#few decimals off it seems
pear_rho_func <- function(x){
a <- (1 / (2 * (1 - 0.75^2))) * ((3 * x[1]^4 - 12 * x[1])/10

- 9 * x[1] * (x[2] - 1.55) / 7.75) + 2/(x[1]^2)
b <- (-1 / (2 * (1 - 0.75^2))) * (4.5 * x[1]^2 / 7.75)
d <- (1 / (1 - 0.75^2)) * (1 / 0.775^2)
sig_x <- d /(a * d - b^2)
sig_y <- a /(a * d - b^2)
rho_sigx_sigy <- - b /(a * d - b^2)
return( rho_sigx_sigy/(sqrt(sig_x) * sqrt(sig_y)))

}

x <- seq(-3,4,length.out =1000)
y <- seq(0,4,length.out =1000)
z_dxdy <- matrix(data = c(rep(0,1000000)), nrow =1000, ncol =

1000)
z_dx2 <- matrix(data = c(rep(0,1000000)), nrow = 1000, ncol =

1000)
z_dy2 <- matrix(data = c(rep(0,1000000)), nrow = 1000, ncol =

1000)
pear_rho_vals <- matrix(data = c(rep(0,1000000)), nrow =1000,

ncol = 1000)

for(i in c(1:1000)){
for(j in c(1:1000)){
z_dxdy[i,j] <- obj$he(c(x[i], y[j], 10, 1.55, 10, 0.775,

0.75))[2,1]
z_dx2[i,j] <- obj$he(c(x[i], y[j], 10, 1.55, 10, 0.775,

0.75))[1,1]
z_dy2[i,j] <- obj$he(c(x[i], y[j], 10, 1.55, 10, 0.775,

0.75))[2,2]
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pear_rho_vals[i,j] <- pear_rho_func(c(x[i], y[j]))
}

}

z_rho <- matrix(matrix_function(z_dx2 = z_dx2, z_dxdy = z_dxdy,
z_dy2 = z_dy2), nrow = 1000, ncol = 1000)

image(x,y,pear_rho_vals)
image(x,y,z_rho)

### bivar ex3
compile("Master/bivar_ex3.cpp")
dyn.load(dynlib("Master/bivar_ex3"))

Parameters3 <- list(x = 0, y = 0, mu_1 = 4, mu_2 = 2, sig_1 =
5, sig_2 = 2, rho = -0.27)

obj_bivar3 <- MakeADFun(data = dat, parameters = Parameters3,
DLL = "bivar_ex3")

bivar_rho_func <- function(x){
a <- 1 /((1 - 0.27^2) * 25)
b <- (2 * 0.27 * x[2]) / ((1 - 0.27^2) * 10)
d <- (1 / (2 * (1 - 0.27^2))) * ((12 * x[2]^2)/4 - 4 *

(-0.27) * (x[1]- 6)/10) + 1 / (x[2]^2)
sig_x <- d /(a * d - b^2)
sig_y <- a /(a * d - b^2)
rho_sigx_sigy <- - b /(a * d - b^2)
return( rho_sigx_sigy/(sqrt(sig_x) * sqrt(sig_y)))

}

x <- seq(-8,15,length.out =1000)
y <- seq(-3,3,length.out =1000)
z_dxdy <- matrix(data = c(rep(0,1000000)), nrow =1000, ncol =

1000)
z_dx2 <- matrix(data = c(rep(0,1000000)), nrow = 1000, ncol =

1000)
z_dy2 <- matrix(data = c(rep(0,1000000)), nrow = 1000, ncol =

1000)
bivar_rho_vals <- matrix(data = c(rep(0,1000000)), nrow =1000,
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ncol = 1000)

for(i in c(1:1000)){
for(j in c(1:1000)){
z_dxdy[i,j] <- obj_bivar3$he(c(x[i], y[j],4, 2, 5, 2,

-0.27))[2,1]
z_dx2[i,j] <- obj_bivar3$he(c(x[i], y[j], 4, 2, 5, 2,

-0.27))[1,1]
z_dy2[i,j] <- obj_bivar3$he(c(x[i], y[j], 4, 2, 5, 2,

-0.27))[2,2]
bivar_rho_vals[i,j] <- bivar_rho_func(c(x[i], y[j]))

}
}

z_rho <- matrix(matrix_function(z_dx2 = z_dx2, z_dxdy = z_dxdy,
z_dy2 = z_dy2), nrow = 1000, ncol = 1000)

image(x,y,bivar_rho_vals)
image(x,y,z_rho)

### Pear 2
param_pear_2 <- list(x = 0, y = 0, mu_1 = 1.2, sig_1 = 1/3)
require(TMB)
compile("Master/pear_bivar2.cpp")
dyn.load(dynlib("Master/pear_bivar2"))
obj <- MakeADFun(data = dat, parameters = param_pear_2, DLL = "

pear_bivar2")

#er rett
pear2_dx2_func <- function(x){
a_doub_deriv <- 0.25 /((0.5 * x[1] + 1)^2)
b_doub_deriv <- -9
c_doub_deriv <- (exp(-x[1])) * ((0.9* x[1]^3 + 7.2* x[1]^2 +

10.8* x[1] - 43.2)*x[2]*exp(5 + 0.5 * x[1])
+ exp(10)*(-0.18*x[1]^4 - 0.72 *

x[1]^3 + 0.72* x[1]^2 + 4.32
* x[1] - 1.44) - 108* exp(x
[1])*x[2]^2)/((x[1] + 2)^4)

return(a_doub_deriv + b_doub_deriv + c_doub_deriv)
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}

#er rett
pear2_dxdy_func <- function(x){
return(((-1.8 * x[1]^2 - 7.2 * x[1] + 7.2) * exp(5 - 0.5 * x

[1]) + 72 * x[2])/((x[1] + 2)^3))
}

#er rett
pear2_dy2_func <- function(x){
return(-9/ (0.5 * x[1] + 1)^2)

}

pear2_rho_func<- function(x){
a = - pear2_dx2_func(c(x[1],x[2]))
b = - pear2_dxdy_func(c(x[1],x[2]))
d = - pear2_dy2_func(c(x[1],x[2]))
sig_x <- d /(a * d - b^2)
sig_y <- a /(a * d - b^2)
rho_sigx_sigy <- - b /(a * d - b^2)
return( rho_sigx_sigy/(sqrt(sig_x) * sqrt(sig_y)))

}

#er rett
pear2_dy_func <- function(x){
return(-9 * (x[2] - 0.1 * x[1] * exp(5 - 0.5 * x[1]))/((0.5 *

x[1] + 1)^2))
}

#er rett
pear2_dx_func <- function(x){
a_val <- 5
a_deriv <- -0.5 / (0.5 * x[1] + 1)
b_deriv <- 10.8 - 9 * x[1]
c_deriv <-((- 1.8 * x[1]^2 - 7.2 * x[1] + 7.2) * x[2] * exp(a

_val - 0.5 * x[1]) +
exp(2 * a_val - x[1]) * x[1] * (0.18 * x[1]^2 +

0.36 * x[1] - 0.72) + 36 * x[2]^2)/((x[1] + 2)
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^3)
return(a_deriv + b_deriv + c_deriv)

}

x <- seq(0,2,length.out =1000)
y <- seq(0,14,length.out =1000)
z_dxdy <- matrix(data = c(rep(0,1000000)), nrow =1000, ncol =

1000)
z_dx2 <- matrix(data = c(rep(0,1000000)), nrow = 1000, ncol =

1000)
z_dy2 <- matrix(data = c(rep(0,1000000)), nrow = 1000, ncol =

1000)
pear2_rho_vals <- matrix(data = c(rep(0,1000000)), nrow =1000,

ncol = 1000)

for(i in c(1:1000)){
for(j in c(1:1000)){
z_dxdy[i,j] <- obj$he(c(x[i], y[j] , 1.2, 1/3))[2,1]
z_dx2[i,j] <- obj$he(c(x[i], y[j] , 1.2, 1/3))[1,1]
z_dy2[i,j] <- obj$he(c(x[i], y[j] , 1.2, 1/3))[2,2]
pear2_rho_vals[i,j] <- pear2_rho_func(c(x[i], y[j]))

}
}

z_rho <- matrix(matrix_function(z_dx2 = z_dx2, z_dxdy = z_dxdy,
z_dy2 = z_dy2), nrow = 1000, ncol = 1000)

image(x,y, z_rho)
image(x,y,pear2_rho_vals)
####Kernel Derivatives####
data_list <- list(X_i1 = mcmc_pear_sample[,1], X_i2 = mcmc_pear

_sample[,2], h = 1)
params <- list(X = 1, Y = 1)
pear_kern_func <- MakeADFun(data = data_list, parameters =

params, DLL = "Gauss_kern")
data_list_cauchy <- list(X_i1 = mcmc_cauchy_sample_lims[,1], X_

i2 = mcmc_cauchy_sample_lims[,2], h = 0.093)
cauchy_kern_func <- MakeADFun(data = data_list_cauchy,
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parameters = params, DLL = "Gauss_kern")

##First order derivative##
z <- matrix(rep(0,100^2), nrow = 100, ncol = 100)
x <- seq(0,1, length.out = 100)
y <- seq(0,1, length.out = 100)
for(i in c(1:100)){
for(j in c(1:100)){
z[i,j] <- pear_kern_func$gr(c(x[i], y[j]))[2]

}
}
contour(z)

kernel_x_deriv <- function(h,x,y, x_i, y_i){
b <- sum(((x_i - x)/h) * exp(-0.5 * ((x_i - x)^2 + (y_i - y)

^2)/h))
d <- sum(exp(-0.5 * ((x_i - x)^2 + (y_i - y)^2)/h))
return(b/d)

}

kernel_y_deriv <- function(h,x,y, x_i, y_i){
b <- sum(((y_i - y)/h) * exp(-0.5 * ((x_i - x)^2 + (y_i - y)

^2)/h))
d <- sum(exp(-0.5 * ((x_i - x)^2 + (y_i - y)^2)/h))
return(b/d)

}

z_alt <- matrix(rep(0,100^2), nrow = 100, ncol = 100)
x <- seq(0,1, length.out = 100)
y <- seq(0,1, length.out = 100)
for(i in c(1:100)){
for(j in c(1:100)){
z_alt[i,j] <- kernel_y_deriv(h = 1, x = x[i], y = y[j], x_i

= mcmc_pear_sample[,1], y_i = mcmc_pear_sample[,2])
}

}
contour(z_alt)
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##Double derivative##

z <- matrix(rep(0,100^2), nrow = 100, ncol = 100)
x <- seq(0,1, length.out = 100)
y <- seq(0,1, length.out = 100)
for(i in c(1:100)){
for(j in c(1:100)){
z[i,j] <- pear_kern_func$he(c(x[i], y[j]))[1,1]

}
}
contour(x,y,z)

kern_2x_deriv <- function(h, x, y, x_i, y_i){
a <- sum(exp(-0.5 * ((x_i - x)^2 + (y_i - y)^2)/h))
b <- sum((x_i - x)^2 *exp(-0.5 * ((x_i - x)^2 + (y_i - y)^2)/

h))
c <- sum((x_i - x) *exp(-0.5 * ((x_i - x)^2 + (y_i - y)^2)/h)

)
return(((a)*(-h * a + b) - (c^2))/((h^2) * (a^2)))

}

kern_2y_deriv <- function(h, x, y, x_i, y_i){
a <- sum(exp(-0.5 * ((x_i - x)^2 + (y_i - y)^2)/h))
b <- sum((y_i - y)^2 *exp(-0.5 * ((x_i - x)^2 + (y_i - y)^2)/

h))
c <- sum((y_i - y) *exp(-0.5 * ((x_i - x)^2 + (y_i - y)^2)/h)

)
return(((a)*(-h * a + b) - (c^2))/((h^2) * (a^2)))

}

kern_xy_deriv <- function(h, x, y, x_i, y_i){
a <- sum((x - x_i) * (y - y_i) *exp(-0.5 * ((x_i - x)^2 + (y_

i - y)^2)/h))
b <- sum(exp(-0.5 * ((x_i - x)^2 + (y_i - y)^2)/h))
part_1 <- a/ b * (1/(h^2))

c <- - sum((x - x_i) * exp(-0.5 * ((x_i - x)^2 + (y_i - y)^2)
/h))/h
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d <- - sum((y - y_i) * exp(-0.5 * ((x_i - x)^2 + (y_i - y)^2)
/h))/h

part_2 <- c * d /(b^2)
return(part_1 - part_2)

}

z_alt <- matrix(rep(0,100^2), nrow = 100, ncol = 100)
x <- seq(0,1, length.out = 100)
y <- seq(0,1, length.out = 100)
for(i in c(1:100)){
for(j in c(1:100)){
z_alt[i,j] <- kern_2x_deriv(h = 0.119, x = x[i], y = y[j],

x_i = mcmc_pear_sample[,1], y_i = mcmc_pear_sample[,2])
}

}
contour(z_alt)

##testing##
data_list_cauchy <- list(X_i1 = mcmc_cauchy_sample_lims[,1], X_

i2 = mcmc_cauchy_sample_lims[,2], h = 0.093)
cauchy_kern_func <- MakeADFun(data = data_list_cauchy,

parameters = params, DLL = "Gauss_kern")

z <- matrix(rep(0,100^2), nrow = 100, ncol = 100)
z_sec <- matrix(rep(0,100^2), nrow = 100, ncol = 100)
z_thi <- matrix(rep(0,100^2), nrow = 100, ncol = 100)
z_fou <- matrix(rep(0,100^2), nrow = 100, ncol = 100)
z_fif <- matrix(rep(0,100^2), nrow = 100, ncol = 100)
x <- seq(-4,4, length.out = 100)
y <- seq(-4,4, length.out = 100)
for(i in c(1:100)){
for(j in c(1:100)){
derivs <- cauchy_kern_func$he(c(x[i], y[j]))
z[i,j] <- derivs[1,1]* derivs[2,2]
z_sec[i,j] <- derivs[1,2]^2

}
}
#Figure 22. a) and b). Get them by changing h to 0.5 and 0.093
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image(x,y, z -z_sec, las = 1)
contour(x,y,z -z_sec, labcex = 1,add = TRUE)

hist(z - z_sec, main= "", xlab = "", col = "grey")

###Bivar example 1.####
compile("Master/pear_bivar_deriv.cpp")
dyn.load(dynlib("Master/pear_bivar_deriv"))

obj <- MakeADFun(data = dat, parameters = Parameters, DLL = "
pear_bivar_deriv")

lit_gamma <- obj$he(c(1,1 , 0, 0, 1, 1, 0.5))[2,1]

x <- seq(-3,3,length.out =100)
y <- seq(-3,3,length.out =100)
z <- matrix(data = c(rep(0,10000)), nrow = 100,ncol = 100)
for (i in c(1:100)){
for (j in c(1:100)){
z[i,j] <- exp(obj$fn(c(x[i], y[j], 0, 0, 1, 1, 0.5)))

}
}
image(x,y,z)
contour(x,y,z, add = TRUE)

##local dependence function##
sig_x = sig_y = 1

bivar_gam <- obj$he(c(1, 1, 0, 0, 1, 1, 0.5))[2,1]
real_inverse_gamma_function(bivar_gam * sig_x * sig_y) #returns

0.5

##MCMC for bivar example 1.##
bivar_ex1 <- function(x){
a = 1/(2 * pi * 1 * 1* sqrt(1- 0.5^2))
b = - 1/(2*(1 - 0.5 ^ 2)) * ( x[1]^2

- 2 * 0.5 * x[1]* x[2] + x[2]^2)
return (a * exp(b))

}
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log_bivar_ex1 <- function(x){
return(log(bivar_ex1(x)))

}

set.seed(365)
#Changing nbatches amount to 100, 1000, 10000, 100000 gives

figure 23.
mcmc_bivar_ex1 <- metrop(log_bivar_ex1,initial = rep(0,2),

scale = 2,nbatch = 100000)
mcmc_bivar_ex1_sample = mcmc_bivar_ex1$batch
plot(mcmc_bivar_ex1_sample)
mcmc_bivar_ex1$accept

##LGC for bivar example 1.##
lg.bivar_ex1 <- lg_main(mcmc_bivar_ex1_sample, est_method = "1

par")
x <- seq(-3, 3, length.out = 20)
y <- seq(-3, 3, length.out = 20)
d1 <- expand.grid(x,y)
zd1 <- dlg(lg.bivar_ex1, grid = d1)
#Figure 23.
corplot(zd1, plot_thres = 0.1, low_color = "#4A6FE3", high_

color = "#D33F6A")

##matrix function##
#remember all of the values are for 1000 squared
#double derivative values
x <- seq(-3,3,length.out =1000)
y <- seq(-3,3,length.out =1000)
z_dxdy <- matrix(data = c(rep(0,1000000)), nrow =1000, ncol =

1000)
z_dx2 <- matrix(data = c(rep(0,1000000)), nrow = 1000, ncol =

1000)
z_dy2 <- matrix(data = c(rep(0,1000000)), nrow = 1000, ncol =

1000)

for(i in c(1:1000)){
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for(j in c(1:1000)){
z_dxdy[i,j] <- obj$he(c(x[i], y[j], 0, 0, 1, 1, 0.5))[2,1]
z_dx2[i,j] <- obj$he(c(x[i], y[j], 0, 0, 1, 1, 0.5))[1,1]
z_dy2[i,j] <- obj$he(c(x[i], y[j], 0, 0, 1, 1, 0.5))[2,2]

}
}

hist(log(-z_dx2[z_dx2 <0]), main = "", xlab = "", freq = FALSE)
hist(log(-z_dy2[z_dy2 <0]), main = "", xlab = "", freq = FALSE)
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