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Abstract

Jets are created in the aftermath of relativistic heavy-ion collisions. While the fragmentation of
jets in proton-proton collisions is well known, there is still a lot to learn about jet fragmentation
in heavy-ion collisions. Usually, one studies the inclusive fragmentation properties of the shower.
However, studying the properties of the leading (or most energetic) particle in the jet might
bring a deeper understanding of jet-quenching and the properties of the quark-gluon plasma.

The motivation for the thesis is to investigate the leading parton distribution and describe it
analytically. The analytical formalism of the inclusive distribution is presented, for both vacuum
and medium, and the evolution equations are solved. In parallel, Monte-Carlo programs are
developed for simulating parton showers in both vacuum and medium, and the results are
compared with the analytical solutions.

The current formulation of leading parton energy-loss assumes soft radiation and is inaccurate
for substantial energy-loss. It would therefore be interesting to formulate evolution equations
for the leading parton. The proposed evolution equation is valid for on-branch gluons in vacuum
and a solution is obtained in Mellin space.
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Introduction

Shortly after The Big Bang, the universe consisted exclusively of fundamental particles in a
primordial soup called quark-gluon plasma (QGP). Quarks and gluons would exist in this matter
as free particles, not being bound by the strong nuclear force to form protons and neutrons.
Colliders such as the Relativistic Heavy Ion Collider (RHIC) based at the Brookhaven National
Laboratory and the Large Hadron Collider (LHC) at CERN, have allowed us to create quark-
gluon plasma in the modern world. Heavy ions such as Au and Pb are accelerated to velocities
approaching the speed of light and smashed together in relativistic heavy-ion collisions. In the
aftermath of these collisions, the temperature and density is large enough for QGP to form,
allowing us to model the first moments of the universe.

Measuring the properties of the quark-gluon plasma in colliders is exceedingly difficult. Not
only does the QGP exist for just a brief moment (10−24s), but how would one go ahead and
measure something existing at the center of relativistic heavy-ion collisions? The answer is jets.
Jets are collimated groups of hadrons generated by successive branchings of a highly energetic
parton (quark or gluon), created in relativistic heavy-ion collisions. When this energetic parton
traverses the quark-gluon plasma it interacts with the medium, affecting the distribution of final
hadrons we observe in the detectors. Therefore, jets provide a way of probing the medium as
we know the initial conditions, and can determine the medium impact by measuring the parton
showers in the detector. An analogy can be made by considering a game of chess. Imagine you
walk into an empty room with a chessboard in the middle of a game. Assuming we know how
the pieces were set up at the start of the game, it should be possible to determine which moves
were made to get the pieces to where they are now. The challenge is doing this thousands of
times, while not being entirely sure what the rules of the game actually are.

This thesis is a study of how energetic partons, created in the aftermath of heavy-ion collisions,
split or branch into pairs of new partons, with and without a background medium. Two different
fragmentation scenarios will be considered. The first one is the inclusive parton distribution
where we are interested in all of the partons accumulated throughout the branching process,
such that the total energy is conserved. In the second scenario, we will focus on the leading
parton, in which we follow the parton with the highest energy in each branching, and the other
partons are considered a loss of energy from the leading parton.

Both an analytical perspective and a numerical perspective will be presented in this thesis. The
former relies on known literature and published papers to formulate the current understanding of
parton branching for vacuum and medium cascades. The evolution equations for both cascades
will be presented, and the most important results will be recreated. The numerical perspective
of the thesis is concentrated on developing Monte-Carlo programs which rely on randomly
generated numbers, to create parton showers by iterating through the evolution equations. The
distributions generated from these programs will be compared to the analytical results, and the
properties of the two cascades will be discussed and highlighted using plots.

The thesis is structured in different chapters, with their own purpose. Chapter I is the Funda-
mentals, which will present the fundamental theory and concepts which should be known for
truly understanding the content of the thesis. Its primary function is to revive old knowledge,
and formal derivations will generally not be given. The first topic to be covered is the foun-
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dations of quantum chromodynamics (QCD), which is the theory of the strong nuclear force.
Following that, an introduction to jet evolution and jet observables will be given. Finally, we
will introduce the most basic quantities of parton branching, which will be used throughout the
thesis.

Chapter II is Analytical. Here all of the mathematics and formalisms of parton branchings will
be discussed, focusing on the inclusive parton distribution. Beginning with parton branching in
vacuum, where the DGLAP evolution equations will be presented, alongside the Sudakov form
factor, and analytical solution. The same structure is given for parton branching in medium,
where the evolution equations are the in-medium kinetic rate equations. The corresponding in-
medium Sudakov form factors will also be introduced, and a solution to the evolution equations
will be calculated.

Chapter III is Numerical. Here the analytical concepts will be used to creating a Monte-Carlo
program for simulating parton showers. For vacuum we will be simulating cascades consisting
exclusively of gluons, and cascades consisting of both quarks and gluons. When simulating
medium cascades, we will be working exclusively with gluons. The results of these programs are
then plotted alongside the analytical solutions, and used to discuss and highlight the properties
of the different cascades. Chapter II and Chapter III will therefore complement each other.

Chapter IV, Leading Parton and Energy-Loss, is dedicated to the leading parton formalism.
While the inclusive parton distribution is well known, there is still a lot to learn about the
leading parton distribution. The key concepts and obstacles will be presented using current
models for the energy-loss. We will then determine how often the leading parton remains on-
branch, and will also formulate a new set of evolution equations for the leading parton and
attempt to solve them.

The results we are looking for in Chapter IV might be an important step in understanding the
leading parton distribution and its energy-loss. A deeper understanding of the leading parton
distribution could refine current studies of jet quenching in heavy-ion collisions, and develop
new observables sensitive to the properties of QCD.
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Chapter I

Fundamentals

This chapter will cover the different topics required for understanding the analytical and nu-
merical aspects of our parton shower formalism. Most of the results given in this chapter will
be quoted from known texts, and formal derivations will generally not be recreated. The topics
to be covered are quantum chromodynamics, jets, and kinematics of parton branchings. The
first of these is a purely theoretical framework for the strong nuclear force, while the second will
explore the concepts of jets. Kinematics of parton branchings will be focusing on the mathe-
matics of simple parton branching in vacuum, and will be important when implementing them
into Monte-Carlo programs.

Natural units are used throughout the thesis such that ~ = c = 1.

1 Quantum Chromodynamics

Quantum chromodynamics (QCD) is the theory describing the strong interaction, one of the
four fundamental forces in nature. It is a quantum field theory and a part of the famous standard
model.

Historically there were several problems QCD tried to address. Among them was the ratio of
the hadronic cross section to the muon-pair cross section produced by e+e− interactions

R =
σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

(1.1)

which was off by a factor three in the calculation. Another issue yet to be addressed was
the existence of the Ω− particle, consisting of three strange quarks, giving it a symmetrical
wavefunction which violates the Pauli principle. It was also unclear at the time why members
of the triplet representations of the SU(3) group, with fractional charges (23 and −1

3), were
unobserved in experiments [1].

The addition of the color degree of freedom resolved all of these challenges. By allowing three
different colors, the R ratio gained a factor of three. The Ω− could now have an anti-symmetric
wavefunction as there was now another quantum number with three different values. The elusive
fractionally charged hadrons were also accounted for by assuming that hadrons can only form
as colorless states. This will be further explored in the section on confinement. As the name
implies, quantum chromodynamics is the theory of color charges, and we will see that it is aptly
named.

This section begins by exploring the basics of QCD. Covering how casimirs (color factors)
originate from the generators of the SU(3) group, and giving a short overview of the Lagrangian
and the first-order Feynman diagrams. Following that, a discussion on confinement will be
given. Finally the concept of the running coupling, or asymptotic freedom, which defines how
the strength of the strong interactions changes with scale and distance, will be introduced.
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1.1 The basics of QCD

Group theory

Formally quantum chromodynamics is a non-abelian gauge theory described by the SU(3) sym-
metry, which is a Lie group. The generators of the group are defined from the traceless hermitian
Gell-Mann matrices λa defined as

λ1 =

0 1 0

1 0 0

0 0 0

 , λ2 =

0 −i 0

i 0 0

0 0 0

 , λ3 =

1 0 0

0 −1 0

0 0 0

,
λ4 =

0 0 1

0 0 0

1 0 0

 , λ5 =

0 0 −i
0 0 0

i 0 0

 ,

λ6 =

0 0 0

0 0 1

0 1 0

 , λ7 =

0 0 0

0 0 −i
0 i 0

 , λ8 =

1 0 0

0 1 0

0 0 −2

 1√
3
.

(1.2)

The generators T a of QCD satisfy the Lie Algebra of the SU(3) group
[
T a, T b

]
= i fabc T c.

Where fabc is the structure constants. Physicists generally normalize the structure constants as∑
c,d f

acd f bcd = Nδab, where N is the number of colors. The normalization of the generators
follows naturally as [2, p.485],

T a =
1

2
λa , (a = 1, 2, · · · , 8). (1.3)

The generators are also called color operators as they act on the color wavefunctions χc. For
a single quark the wavefunction is written as a product of the space/spin wavefunction ψ, and
the color wavefunction χc represented by the color spinors,

r =

1

0

0

 , g =

0

1

0

 , b =

0

0

1

. (1.4)

When examining the color operators it can be noted that only two of them commute, T 3 and
T 8. The color states χc = a, b, c are therefore eigenstates of both these operators and do not
change if acted on by T 3 or T 8. The remainder of the color operators are non-diagonal and can
therefore change color states, which means that the interaction can annihilate quarks of one
color, and create quarks of a different color. It is therefore implied, by conservation of color,
that gluons must have non-zero color charges, and therefore be able to self-interact.

The color operators will inevitably allow us to introduce eight real gauge fields Aµ = Aµa λa,
where a = (1, 2, · · · , 8), which corresponds to the octet of vector gauge bosons - the eight gluon
fields.

The generators as presented here define the fundamental representation of the SU(3) group,
meaning that it is the smallest non-trivial representation of the algebra. It is the most important
representation, along with the adjoint representation described by (T a

adj)
bc = −ifabc. Different

representations can be characterized in a basis-independent way using casimirs. The quadratic
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casimir of a representation R is defined, T a
RT

a
R = C2(R)1. For evaluating the quadratic casimir,

it will be useful to define an inner product for the generators as tr
[
T a
RT

b
R

]
= T (R)δab. The

number T (R) is then known as the index of the representation. For a given SU(N) group the
index TR ≡ T (R) and quadratic casimir CR ≡ C2(R) of a given representation R is then given
by [2, p.484-489].

TA = CA = N , TF =
1

2
, CF =

N2 − 1

2N
. (1.5)

These quantities appear in almost every QCD calculation.

The QCD Lagrangian

Since QCD is a quantum field theory it has a Lagrangian which describes the free and interacting
parts of the particle fields. We will not do any formal derivation, but will be motivating the rel-
evant results given by standard textbooks. QCD is described by the Yang-Mills Lagrangian [3],

LQCD = Ψ̄f (x)
[
i /D −mfδij

]
Ψf (x)− 1

4
Giµν(x)G

µν
i (x) (1.6)

where f = (1, · · · , Nf ) is a flavor index. The gluon term and covariant derivative is defined as

Gµν
i (x) = ∂νAµ

i (x)− ∂µAν
i (x) + gsfijkA

µ
j (x)A

ν
k(x) (1.7)

DµΨf (x) =
[
∂µ + igsλjA

µ
j (x)/2

]
Ψf (x) (1.8)

where i, j = (1, 2, · · · , 8). The gluon term corresponds to free gluons, with an additional in-
teraction term for achieving gauge-invariance. The covariant derivative then ensures invariance
under local phase transformations. The Lagrangian of Eqn. (1.6) is therefore gauge invariant,
and not suitable for quantization as the path integral formulation gives no methods for select-
ing among equivalent solutions. This is resolved by the Faadeev-Popov method which fixes the
choice of gauge by adding a gauge fixing term to the Lagrangian [4]. We will now explore two
of the most common gauges, the Feynman gauge, and the light-cone gauge.

Feynman gauge

The first type of gauges we will examine are the covariant Rξ gauges introduced by the gauge
fixing

Lgauge-fix = − 1

2λ
(∂µA

µ
i (x))

2
. (1.9)

These gauges preserve Lorentz invariance and give simpler calculations than non-covariant
gauges. We will be working with the Feynman gauge, commonly used in field theory calcu-
lations, which is obtained by setting λ = 1 in the gauge fixing.

The consequence of choosing covariant gauges is that we are no longer guaranteed that only
physical transverse modes of Aa

µ propagate, and we obtain additional kinetic terms which are
ghost-like, giving us ghost fields ηi(x). These fields correspond to unphysical spin-0 fermions
which can only appear as virtual particles in loop corrections [2, 4]. Introducing the gauge-fixing
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term of the Feynman gauge and resulting ghost fields gives the following Lagrangian

LQCD = Ψ̄f (x)
[
i /D −mf

]
Ψf (x)− 1

4
Giµν(x)G

µν
i (x)

− 1

2λ
(∂µA

µ
i (x))

2
+ ∂νηi(x)

[
∂ν η̃i(x) + gsfijkη̃j(x)A

µ
k(x)

]
.

(1.10)

The gluon propagator in the Feynman gauge is given as

iΠµνab
feynman =

−igµν

p2 + iε
δab. (1.11)

The light-cone gauge

Turning to the light-cone gauge which is a type of axial gauge. Axial gauges violate Lorentz
invariance, and makes it such that ghosts decouple from the physical particles, and can be
ignored altogether. The gauge fixing of axial gauges is given by

Lgauge-fix = − 1

2λ
(nµA

µ
i (x))

2
, (1.12)

where nµ is some vector. The light-cone gauge is then defined from n2 = 0 and λ = 0, meaning
that nµ is light-like. The gluon propagator in the light-cone gauge is given as

iΠµνab
light-cone =

i

p2 + iε

[
−gµν + nµpν + pµnν

np

]
δab. (1.13)

There are only two physical polarizations in the light-cone gauge, those transverse to the n− p

plane. The numerator of the propagator is the polarization sum of transverse modes in a given
basis, since there are only two propagating polarizations, we don’t need ghosts to eliminate
unphysical polarizations.

Axial gauges are not really useful unless there is some natural direction to choose. It is therefore
very applicable in heavy-ion collisions, as we generally have an initial parton travelling in some
direction which can define the vector nµ.

Feynman diagrams

Since we are generally concerned with interactions it is possible to expand the terms of our La-
grangian in the Feynman gauge, Eqn. (1.10), and isolate the interaction parts of the Lagrangian
for quarks, gluons, and ghosts, respectively as:

LI quark = −1

2
gsΨ̄

f (x)γµλjΨ
f (x)Aµ

j (x) (1.14)

LI gluon = gsfijkAiµ(x)Ajν(x)∂
µAν

k(x)

− 1

4
g2sfijkfilmA

µ
j (x)A

ν
k(x)Alµ(x)Amν(x)

(1.15)

LI ghost = gsfijk(∂µηi(x))η̃j(x)A
µ
k(x). (1.16)

From these interaction-terms the famous Feynman diagrams can be obtained. Eqn. (1.14) gives
us a single three-point vertex which gives rise to two diagrams (depending on how the contraction
is done), with two quarks and one gluon in each. The diagrams are pictured in Figure 1.1. The
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gluon contribution to the lagrangian gives us two different terms containing exclusively gluon
fields, demonstrating the gluon self-interaction we expected from the color operators. The result
is the three-gluon vertex and the four-gluon vertex as pictured in Figure 1.2. The ghost term
also gives rise to a Feynman diagram, which we have not printed here, as it can only occur in
virtual loops and can be completely neglected in the light-cone gauge.

k1 k2
k3

k1 k2
k3

Figure 1.1: Tree-level Feynman diagrams for the quark contributions in the QCD Lagrangian.

k1

k2k3

k1 k4
k3k2

Figure 1.2: Tree-level Feynman diagrams for the gluon contributions in the QCD Lagrangian.
Three-gluon vertex (left), and four gluon vertex (right).

These are all of the O(g) interactions of QCD. There are naturally higher-order diagrams and
loop-corrections which may pose challenges when dealing with calculations, but for our purposes
the first-order terms are sufficient. This allows us to disregard the four-gluon vertex in later
sections as it is ∼ g2.

1.2 Confinement

Confinement is the phenomenon that particles with color charge does not exist as isolated
particles under normal conditions of temperature and pressure. While it is not clear how it
emerges from the Lagrangian of QCD, it remains an experimental fact - quarks and gluons are
forced to be bound into color-neutral states called hadrons [5]. The simplest example is mesons
which consist of a quark and an anti-quark of the same flavor which is a color-neutral state.

The familiar Coulomb potential of QED is attractive for opposite charges, and repulsive for
similar charges. It would therefore be interesting to observe how the QCD potential behaves
for qq̄-pairs, of similar and different color charge. For large separations the potential increases
linearly V (r) ∼ k r, while at small separations a potential similar to the Coulomb will dominate.
This calculated in [2, p.512-513], and the QCD potential can then be written as

VQCD(r) = k r − 4

3

g2s
4πr

, (color singlet),

VQCD(r) = k r +
1

6

g2s
4πr

, (color octet).
(1.17)

The color singlet represents the potential for qq̄-pairs of the same color charge and is the only
one attractive at small separations. This is consistent with our expectations that quarks can
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form color-neutral mesons. The color octet, which gives all combinations of qq̄-pairs of different
color charge, is however repulsive for all r, and mesons with a net color charge does not form.

An interesting part of confinement should become apparent when examining the potential be-
tween a qq̄-pair of similar color charge. If we were to forcefully separate the quarks, the potential
between them would eventually become large enough for it to be energetically favorable to form
a new qq̄-pair which then combine with the existing pair, giving us two mesons. This property
is illustrated by the famous rubber band analogy in Figure 1.3.

Figure 1.3: When the potential between a qq̄-pair becomes too large, it is energetically favor-
able to create a new qq̄-pair. This can be visualized as pulling a rubber band that instead of
breaking, spontaneously turns into two new rubber bands.

1.3 The running coupling

Field theories such as QED and QCD, have a coupling constant describing the strength of a
given interaction, relative to the free fields. For QED this is the fine-structure constant α ≈ 1

137 ,
which is proportional to the squared electric charge e2, which we can intuitively associate with
how strongly an electrically charged particle interacts with an electric field. The same goes for
QCD, where the coupling constant gs only appears in the interaction-parts of the Lagrangian.
higher-order interactions scale with orders of the coupling constant, as is apparent in Eqn. (1.15)
where the three-gluon vertex is scaled by gs, and the four-gluon vertex is scaled by g2s .

The QCD Lagrangian given by Eqn. (1.6) contains the bare coupling constant gs. This is only
valid for tree-level in perturbation theory, and needs to be corrected by the method of renormal-
ization to account for divergences appearing from higher-order loop corrections. Renormaliza-
tion will allow us to replace the bare coupling constant with a renormalized coupling constant
gr(µ), where µ is an scale dependence appearing as a consequence of the renormalization proce-
dure. It is customary to define this new coupling in analogy to the fine-structure constant such
that αs(µ) =

g2r
4π , the new coupling can be written to leading order as

αs(µ) =
2π

β0 ln
(
µ2/Λ2

QCD

) . (1.18)

In this coupling β0 is the leading order expansion of the full β-function, which encodes how
the coupling changes with scale. The β-function is therefore responsible for the running of the
coupling constant. ΛQCD is the scale at which the coupling constant becomes infinite, also called
the Landau pole, and for QCD this scale is typically ΛQCD ∼ 0.2 GeV.

The importance of the running coupling in QCD is that αs(µ) → 0 as µ → ∞. This is known
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as asymptotic freedom. For processes with a large momentum transfer Q >> ΛQCD, such as
high energy jets, the process can be described by perturbation theory. The uniqueness of the
running coupling in QCD is that the β-function is negative, which gives rise to confinement [5].

1.4 Quark-gluon plasma

In our discussion on confinement we made an explicit statement that particles with color charge
can not exist as isolated particles under ”normal conditions of temperature and pressure”. This
naturally sparks the question of what happens under extreme conditions with high temperature
and high pressure.

At increasing temperature and/or increasing baryonic chemical potential, a phase transition
occurs such that hadrons no longer exist. The resulting matter consisting of free quarks and
gluons is commonly called a quark-gluon plasma (QGP). While it is commonly called a plasma
it is not always clear whether it should be interpreted as a weakly interacting gas or a strongly
correlated system such as a fluid. The properties of the quark-gluon plasma is best illustrated
using a phase diagram such as the one given in Figure 1.4.

Figure 1.4: Diagram for the phase transition from hadronic matter to quark-gluon plasma.
The transition from hadrons to QGP is split into a crossover section, and a phase transition
(deconfinement).

There are several points of interest in this phase diagram. The most obvious feature is the
phase transition between the hadron gas and the quark-gluon plasma, at finite µB, which is an
important feature of QGP. However, at the same point, there is also a chiral phase transition
happening. In short, chiral symmetry is broken in QCD, meaning that the theory acts differently
on left and right-handed fields. This symmetry is restored for high pressure and/or temperature,
and seemingly coincides with deconfinement when plotting the phase transitions in terms of the
baryonic chemical potential. Another important feature is the crossover, at high temperature
and low baryonic chemical potential, where there is no well defined phase transition and the
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hadrons transform smoothly into a QGP, this is the region LHC operates at [6]. In the color
superconducting phase the quarks are bound in Cooper pairs and form the SU(3) analogue of
superconductivity [7].

Studying the QGP is difficult as it is incredibly short-lived and difficult to measure directly.
The main method of probing the quark-gluon plasma is to observe how highly energetic partons
interact with the plasma in the immediate aftermath of heavy-ion collisions (Au + Au), at
colliders such as RHIC and LHC. These high-energy particles lead to jets.

2 Jets

A jet is a narrow cone of particles, produced by successive branchings of some initial parton
created in the aftermath of particle collisions with extremely large momentum transfer, at
colliders such as RHIC and LHC. The quarks and gluons created by parton branchings eventually
hadronize and are observed in the detector as parton showers. The jets may propagate with or
without a background medium. The former requires relativistic heavy-ion collisions, typically
Pb or Au, while the latter may be created by e+e−-collisions.

This section will discuss the properties of jets in both vacuum and medium, and the terminology
associated with them. After that, we will introduce the observables relevant for this thesis.

2.1 Jets in vacuum

Starting with jets in vacuum. Since there is no background medium for the partons to interact
with the picture is relatively simple, and we need only concern ourselves with basic parton
branching.

Basic parton branching

Parton branching is simply the process of an energetic parton splitting into two new partons.
This can happen via all of the basic QCD vertices (Figure 1.1 and Figure 1.2) and allows for the
number of partons in a jet to increase, which eventually leads to the parton showers we observe
in the detector. When addressing parton branching we will generally mean soft and collinear
branching. In soft branching the emitted parton carry very little transverse momentum z,
relative to the parent parton. Collinear branching is when the newly created parton travels in
roughly the same direction as the branching parton, implying that the opening angle θ of the
branching is very small. Soft and collinear branching will appear as divergences in the branching
probability proportional to

Pbranching ∼ αs

π

dθ

θ

dz

z
. (2.1)

This will be derived in Section 3. Here the momentum fraction is written as z as we are speaking
of the outcome of a branching. When concerned with the final distribution when the shower
has terminated, we will be replacing the z with an x. The soft divergence will then frequently
be called the small x-limit.
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Angular ordering

The parton showers evolving without a background medium will be angular ordered, mean-
ing that any subsequent emission angle is smaller than the previous angle. For simple par-
ton branchings, angular ordering can be obtained by considering the spatial separation of the
daughter-partons of the branching.

a

c

b

d

θ

θ0 r⊥

Figure 2.1: Illustration of the opening angles for successive parton branchings. The branching
is said to be resolvable if the separation distance r⊥ at the time tf of the second branching is
larger than the wavelength of the emitted gluon d.

Looking at Figure 2.1, we have noted the opening angle as θ0 for the initial branching, and θ

for the successive branching. If the secondary branching parton has a wavelength λ ∼ 1
k⊥

∼ 1
ωθ ,

with formation time tf ∼ ω/k2⊥, then the formation time can be written

tf ∼ ω

k2⊥
=

1

ωθ2
. (2.2)

The spatial separation of the partons from the initial branching can be given from the same
formation time as r⊥ ∼ θ0 tf = θ0

ωθ2
. Demanding that the wavelength λ of the branched parton

d must be smaller than the separation distance r⊥ we obtain

λ < r⊥

1

ωθ
<

θ0
ωθ2

θ < θ0. (2.3)

The criteria λ < r⊥ leads us therefore to angular ordering. The reason we are able to impose
this criterion originates from our desire to have resolvable branchings. This means that the
branched parton d should be able to probe whether it branched from c, or from b. This is
also called coherent branching. If the wavelength of d is too large, then it will not be able to
distinguish b and c as individual partons, and it would instead branch from the sum of the color
charges, which is equivalent to branching from a [8]. When we are constructing our Monte-Carlo
program we will be using the angle θ as our ordering variable, meaning that we start from a
large value of θ and branch our way down to smaller angles. Angular ordering follows therefore
naturally from the choice of evolution variable.

Coherent branching also imply that color charge is conserved along the parton shower for the
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same reasons - if the branching is resolvable each successive branching will conserve the net
color charge.

2.2 Jets in medium

Jets traversing a background medium, typically QGP formed in the aftermath of heavy-ion
collisions, bring along some more complex phenomena. Highly energetic partons interacting with
the medium give rise to the phenomena of induced gluon radiation, broadening, and quenching.
All of these properties will be discussed, but first, we must take a closer look at how relativistic
heavy-ion collisions evolve.

Evolution of relativistic heavy-ion collisions

The different phases of relativistic heavy-ion collisions is given in Figure 2.2. The units of the
diagram is fm/c ∼ 10−24s. The first stage of the evolution is the pre-equilibrium dynamics
where partons (mostly gluons) are quickly freed by the collision, and then start to approach
thermal equilibrium. This gives us an initial energy density around 1fm/c which is the basis
for the quark-gluon plasma phase which evolves until around 10fm/c. When the pressure
and temperature become too small for deconfinement, hadrons are formed in a process called
hadronization. The hadron gas is treated using relativistic hydrodynamics until it cools enough
for the freeze-out, which finally leaves us with the free hadrons we can observe in our detector.

Figure 2.2: Illustration of the evolution of relativistic heavy-ion collisions. Evolution starts at
the initial collision and continues until the hadronized particles reach the detector. The bottom
axis gives the time scale of the evolution, units fm/c ∼ 10−24s, and the dynamics governing
the system. This thesis concerns itself primarily with the QGP phase, evolving from the initial
energy density to the hadronization. Figure from [9] but colors are inverted.

When discussing jets in medium, we are interested in the high-energy partons at the very start
of the QGP phase, and how they interact with the medium. These will lead to hadronization
and eventually the parton showers we observe in the detector, which will be quite different from
the jets evolving without a medium.
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Gluon radiation

Induced gluon radiation is very similar to the simple parton branchings discussed for vacuum
cascades, but it is created by the jet interacting with the QGP and radiating soft gluons. These
soft gluons are produced in abundance when jets move through a background medium. This
happens via multiple collisions between the parton and the medium constituents, resulting in
induced gluon radiation with a formation time of

tf ∼ ω/k2⊥. (2.4)

These soft gluons carry very little momentum, and are typically emitted at large angles - the
softer the emission, the larger the emission angle. This leads to incoherent branchings, as
the newly emitted partons will probe the net color charge. Color is therefore not necessarily
conserved along the shower, and angular ordering is no longer the norm [10].

Jet broadening

Broadening takes place during the QGP phase of heavy-ion collisions. The concept is simply
gluons exchanging transverse momentum with the medium, resulting in a broader transverse
momentum distribution.

During the time-scale of soft gluon emissions, the gluon can experience multiple kicks and gain
transverse momentum on the scale of k2⊥ ∼ q̂ tf . Here q̂ is a diffusion coefficient, called the jet-
quenching parameter, representing how the partons interact with the medium. ω is the energy
of the radiated gluon, and k⊥ is its transverse momentum relative to the parent gluon. If these
kicks from the medium are the only source of transverse momentum then the formation time
can be written in terms of the jet-quenching parameter

tf =

√
ω

q̂
(2.5)

and can also be called the branching time. When the collisions are soft, and a large number of
collisions is needed to change the transverse momentum by a significant amount, the diffusion
approximation given by q̂ is valid. The total transverse momentum k⊥ gained by a high-energy
parton traversing a medium of length L is therefore given From the definition of the diffusion
coefficient as

〈k2⊥〉 = q̂ L. (2.6)

The jet-quenching parameter will generally be set to some constant, even though it is a function
of momentum [11]. Quenching is understood as the suppression of high pT hadrons due to
energy-loss from the most energetic parton of a given jet, commonly known as the leading parton.
This energy-loss is primarily caused by soft gluon radiation, which is induced by collisions with
the medium [10]. The concepts of broadening and quenching are closely connected, and both
are consequences of medium interactions.

2.3 Observables

This section will present different observables and quantities which will be particularly important
for our treatment of parton showers. Before going into specific observables, it is necessary
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to define the transverse momentum pt of the initial parton in a given jet, by the transverse
momentum it has in the lab frame pT , such that pt ≡ pT .

The jet radius

The method of grouping different quarks and gluons into the same jet is defined by jet algorithms.
A recombination algorithm can be made by grouping any quarks or gluons separated by a
distance

∆2
ij = ((yi − yj)

2 + (φi − φj)
2) < R2 (2.7)

into a single jet. Here yi and φi is the rapidity and azimuth of particle i, and R is the jet radius.
The jet radius is not an observable for out showers, but it is an important quantity which must
be defined for both numerical and analytical purposes [12].

The inclusive parton distribution

The observable we will encounter most frequently is the inclusive parton distribution. For a
jet evolving according to an arbitrary evolution variable t, the inclusive parton distribution is
given as

fi(x, t) =
dNi

dx
(2.8)

where i = (g, q, q̄) labels the species of the parton, and x is its transverse momentum relative to
the initial parton. The inclusive parton distribution then gives us any partons within a given
energy range, at a given time of the evolution, evolving according to some evolution variable.
The choice of evolution variable is somewhat arbitrary, common choices are momentum t = p2t ,
scale t ∼ ln Q2

Q2
0
, and angle t ∼ ln θ2max

θ2min
. We will discuss the evolution variable at length in

Chapter II.

t0 t′

fq(x4, t
′)

fg(x1, t
′)

x1

x2
x3

x4

x5

x6

x7

E = pt

Figure 2.3: Illustration of the inclusive parton distribution fi(x, t) in a shower with both
quarks and gluons, evolving according to an arbitrary evolution variable t. Since the inclusive
distribution can give any of the relevant partons in a given energy range at give point t′, we
have highlighted fg(x1, t

′) and fq(x4, t
′).
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The inclusive parton distribution fi(x, t) is described by the DGLAP evolution equations which
will be introduced in Chapter II. Some of the properties of the inclusive distribution are∫ 1

0
dx fi(x, t) = 〈Ni〉 (2.9)∫ 1

0
dxx fi(x, t) = 1. (2.10)

Eqn. (2.9) follows from the definition of the inclusive parton distribution, and tells us that the
integral over all momentum values in the inclusive parton distribution yields the total number
of partons. Since the inclusive distribution gives us the number of partons, it must conserve
the total momentum as given by Eqn. (2.10) [13].

When we develop our Monte-Carlo shower program the outcome is a list of all final partons
which makes it easy to find the number of particles in a given momentum interval dNi

dx and
the energy density xdNi

dx . The inclusive parton distribution is therefore ideal for comparing
analytical and numerical results in our parton showers.

The leading parton distribution

The leading parton distribution Ji(x, t) contrasts the inclusive distribution as it only concerns
itself with the parton with the highest momentum relative to the initial parton, at a given time
of the evolution.

t0 t′

Jg(x, t
′)

x4 = max{xi} ;

x1

x2
x3

x4

x5

x6

x7

E = pt

Figure 2.4: Illustration of the leading parton distribution, for a parton shower consisting ex-
clusively of gluons, evolving according to an arbitrary evolution variable t. Here it is assumed
that x4 = max{x1, x2, · · · , x7} and the leading parton distribution Jg(x, t

′) is highlighted ac-
cordingly.

In contrast to the inclusive parton distribution, the leading parton distribution J (x, t) represents
a well-defined object which has lost energy due to emissions. The sum rules for the leading
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parton distribution are ∫ 1

0
dxJi(x, t) = 1 (2.11)∫ 1

0
dxxJi(x, t) = 〈x〉. (2.12)

The number of partons is constant in the leading distribution, as can be seen from Eqn. (2.11),
and the energy is not conserved as can be seen from Eqn. (2.12). Since we have an expression
for the average energy contained in the leading parton, the energy-loss can be calculated from
〈xi〉loss = 1− 〈xi〉, this will be revisited in Chapter IV [13].

3 Kinematics of Parton Branching in Vacuum

Taking a step back from the concepts of QCD and jets, this section will discuss the actual
kinematics of parton branchings in vacuum. Beginning by introducing the basic kinematic
variables, before we explore the properties and origin of the Alterelli-Parisi splitting functions
by considering the matrix-elements of the different QCD vertices. Finally we will take a look
at the branching probability by considering the cross sections of a given process.

Rather than obtaining a precise result to some fixed order in perturbation theory, we will aim for
an approximate result by considering the kinematics of parton branchings, which will be valid
to all orders, allowing us to introduce a parton shower picture that can be easily implemented
into Monte-Carlo programs.

3.1 Kinematic variables

Before doing any calculations the basic kinematic variables must be introduced. Restricting
ourselves to the variables which will be used throughout the later sections. We start by con-
sidering the branching a → b, c under the assumption that p2b , p2c << p2a. For now, we will be
ordering our showers with respect to the initial parton energy t ≡ p2a. An illustration of a single
branching is given in Figure 3.1.

θb

θc

a

b

c

Figure 3.1: Branching of an outgoing gluon a from some initial blob, into two gluons b, c. The
opening angle is given as θ = θb + θc.

The opening angle is given as θ = θb + θc, and the energy carried by the branched partons is
given relative to the energy of the parent parton such that Eb = z Ea and Ec = (1− z)Ea. The
relationships between z and the different energies can therefore be written as

z =
Eb

Ea
= 1− Ec

Ea
. (3.1)

Assuming most of our emissions are collinear, the opening angle θ is small, and we can use
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the small-angle approximations cos θ ≈ 1 − θ2

2 and sin θ ≈ θ. Conservation of four-momentum
can be used to derive the following relationships between the kinetic variables - assuming the
particles are massless:

p2a = 2EbEc(1− cos θ)

= 2
Eb

Ea

Ec

Ea
(1− cos θ)E2

a

= z(1− z)E2
aθ

2 (3.2)

where the relationships in Eqn. (3.1) has been used to introduce z(1 − z). The transverse
momentum of the partons in Figure 3.1 is

pb⊥ = |pb| sin(θb) = zEa sin(θb)

pc⊥ = |pc| sin(θc) = (1− z)Ea sin(θc).
(3.3)

Conservation of transverse momentum can then be used to give a relationship between the
opening angle θ and z

z Ea sin θb = (1− z)Ea sin θc

z θb = (1− z) θc

θb
1− z

=
θc
z

= θ. (3.4)

3.2 Altarelli-Parisi splitting functions

The Altarelli-Parisi splitting functions Pba(z) appear when evaluating the matrix elements of the
basic QCD vertices1. They have a physical interpretation as the probability density of finding a
parton b ”inside” of parton a, with a particular momentum fraction z of the parent parton [14].
This distribution changes with the scale due to its dependence on αs. The splitting functions
are valid as long as the coupling constant is sufficiently small, which for QCD is fulfilled at large
scales and in the collinear limit [15].

Now we will do a re-derivation of the Pgg(z) splitting function by identifying the QCD vertex
factors of the three-gluon vertex given in Figure 1.2, and then averaging over incoming and
outgoing polarization. The method is outlined in [15, p.159-163]. When taking all the gluon
momenta to be incoming, the matrix element Mn+1 will be given by the initial matrix element,
Mn, the gluon propagator Πµν , the vertex factor Vαβγ , and the two final gluon polarization
vectors εβb ε

γ
c :

Mn+1 =
(
εβb ε

γ
c

)
(gfαβγVαβγ) iΠ

µνijδij |Mn| (3.5)

where α, β, γ are color indices. We will start by rewriting the gluon propagator in Feynman

1 The notation for the splitting vertices is such that the first letter gives the parton type with momentum z
after the splitting, and the second letter given the initial parton type. The branching a → b, c is therefore
noted as ba.
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gauge Eqn. (1.11), in terms of the gluon polarization states, with p = pa,

Πµν
feynman =

(∑
λ

εµλ(p) ε
ν∗
λ (p)

)
−i

p2a + iε
, (3.6)

where we have neglected off-shell and logitudinal polarizations. One of these gluons will connect
to the initial matrix element, while the other will be connected to the vertex element such that

Mn+1 =
∑
λ

(
εαa ε

β
b ε

γ
c

)
(gfαβγVαβγ)

−i
p2a + iε

(εν∗λ |Mn,ν |) . (3.7)

Squaring the matrix element, taking the limit ε → 0, and using t = p2a, we obtain the final
expression for our vertex element

|Mn+1|2 ∼
g2

t2
CAV

2
αβγ |Mn|2. (3.8)

Continuing lets take a closer look at Vαβγ , which comes from the vertex factor. Since all
momenta are incoming, we can use pa + pb + pc = 0, and the condition εi · pi = 0 to write

Vαβγ = (εαa ε
β
b gαβ)(ε

γ
c (pa − pb)γ) + (εβb ε

γ
c gβγ)(ε

α
a (pb − pc)α) + (εαa ε

γ
c gγα)(ε

β
b (pc − pa)β)

= (εa · εb)(εγc (−2pb − pc)γ) + (εb · εc)(εαa (2pb − pa)α) + (εa · εc)(εβb (2pc − pb)β)

= (εa · εb)(εc · −2pb) + (εb · εc)(εa · 2pb) + (εa · εc)(εb · 2pc)
= −2 ((εa · εb)(εc · pb)− (εb · εc)(εa · pb)− (εa · εc)(εb · pc)) . (3.9)

We will assume that the polarization vectors of the gluons are purely transverse, either as plane
polarization states in the plane of branching εini , or normal to the plane of branching εout

i . We
can therefore write down the following criteria for the gluon polarizations:

εini · εinj = εout
i · εout

j = −1

εini · εout
j = εout

i · pj = 0.
(3.10)

Now we need to relate the individual gluon polarization to the individual gluon momenta, as
required by Eqn. (3.9), writing

pb = (Eb, Eb sin θb, 0,−Eb cos θb)

pc = (Ec, Ec sin θc, 0, Ec cos θc) .
(3.11)

From the condition εi · pi = 0 we can show that ε0 = εi, and the individual polarizations can be
written as

εina = (0, 1, 0, 0)

εinb = (0, cos θb, 0, sin θb)

εinc = (0, cos θc, 0, sin θc) .

(3.12)

Now we will combine the results in Eqn. (3.11) and Eqn. (3.12) to determine the relations
between gluon momenta and polarization, in the small-angle approximation where sin θ ≈ θ
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and θ2 ≈ 0, we obtain the following identities:

εina · pb = −Eb sin θb

≈ −Ebθb

εinb · pc = Ec sin θc cos θb + Ec sin θb cos θc

≈ Ecθ

εinc · pb = −Eb sin θb cos θc − Eb sin θc cos θb

≈ −Ebθ.

(3.13)

Rewriting these results by using the relations given by Eqn. (3.1) and Eqn. (3.4), we obtain our
final relations between the polarization and momenta

εina · pb = −z(1− z)Eaθ

εinb · pc = (1− z)Eaθ (3.14)
εinc · pb = −z Eaθ.

Now we will use Eqn. (3.10) and Eqn. (3.14) to determine the vertex factor from Eqn. (3.9) for
different polarizations

Vεin
a εin

b εin
c
= −2

[
(εina · εinb )(εinc · pb)− (εinb · εinc )(εina · pb)− (εina · εinc )(εinb · pc)

]
= −2 [(−1)(−z Eaθ)− (−1)(−z(1− z)Eaθ)− (−1)((1− z)Eaθ)]

= −2 [z − (z(1− z)) + (1− z))] Eaθ

= −2 [(z − 1)z + 1] Eaθ. (3.15)

The square of Vαβγ is

V 2
εin
a εin

b εin
c
= 4t

(
1− z

z
+

z

(1− z)
+ z(1− z)

)
= 4t F (z; εa, εb, εc) (3.16)

and can be inserted into Eqn. (3.8) to obtain the final expression of our matrix element

|Mn+1|2 ∼
4g2

t
CAF (z; εa, εb, εc)|Mn|2. (3.17)

The function F (z; εa, εb, εc) contains the information unique for this particular vertex, and is
therefore all that is required for determining the splitting function. The allowed polarizations
are given in Table 3.1 [15].

εa εb εc F (z; εa, εb, εc)

in in in 1−z
z + z

(1−z) + z(1− z)

in out out z(1− z)

out in out 1−z
z

out out in z
(1−z)

Table 3.1: Polarization dependence of the g → gg-branching.
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Now averaging over initial εa, and summing over final states εb, εc, using the values given in
Table 3.1,

〈F 〉 = (εina Σεbεc) + (εout
a Σεbεc)

2

=
1

2

(
{1− z

z
+

z

1− z
+ z(1− z)}+ {z(1− z)}

)
+

1

2

(
{1− z

z
}+ { z

1− z
}
)
}

=

(
1− z

z
+

z

1− z
+ z(1− z)

)
(3.18)

the only remaining part is to define the Pgg(z) splitting function2 as

Pgg(z) = CA〈F 〉 = CA

[
1− z

z
+

z

1− z
+ z(1− z)

]
. (3.19)

There are some small enchantments for the matrix element for soft gluon emission in the plane
of branching, but we will be using Eqn. (3.19) this precision is sufficient for our purposes [15].

The derivation for the qg and qq splitting functions follow the same procedure, so we will merely
quote the results here, and leave the full derivation as an exercise for the interested reader. They
are given respectively by Eqn. (3.20) and Eqn. (3.21). The gq splitting function is perfectly
symmetrical to the qq splitting function and can be disregarded in our numerical treatments,
but for completeness it is given here in Eqn. (3.22).

Pqg(z) = nfTR
[
z2 + (1− z)2

]
(3.20)

Pqq(z) = CF
1 + z2

1− z
(3.21)

Pgq(z) = Pqq(1− z) = CF
1 + (1− z)2

z
(3.22)

In addition to the color factors, CA = 3, CF = 4/3, and TR = 1/2, there is a factor nf in the
qg splitting function. This factor is the number of active quark flavors, and it represents the
probability of a gluon emitting a qq̄-pair with equal probability for all flavors Pqig = Pqg We
will be operating under the assumption that nf = 5. Similarly, the probability of emitting a
gg-pair from a quark is the same for all quark flavors Pgqi = Pgq. Finally when a quark emits a
gluon there is no flavor exchange, Pqiqj = δijPqq. All of this is of course under the assumption
that the quarks are massless [14].

3.3 Branching cross sections

The splitting functions give us a way of determining the z values in a given parton branching,
but we do not have any foundation for knowing how often these branchings occur. This section
will therefore explore the cross sections for the different splitting vertices. The cross section is
a measure of the probability of how often a given process happens, so this will be important
for developing our Monte-Carlo program. This will be done by following the process outlined
in [15, p.164].

For time-like branchings, the cross section dσn is given from the Matrix-element Mn of the

2 Literature warning: Some of the literature includes factors 2 in the splitting functions, but we will make
these explicit in the evolution equations.
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vertex, initial-state flux factor F , and final state phase space dΦn:

dσn = F|Mn|2 dΦn. (3.23)

When going from a state dΦn to dΦn+1, which is a branching from one to two partons, the
following replacement must be made

dΦn = · · · d3pa

2(2π)3Ea
⇒ dΦn+1 = · · · d3pb

2(2π)3Eb

d3pc

2(2π)3Ec
. (3.24)

If pb is fixed, then d3pc = d3pa. Using the kinematic relations already derived we can rewrite
dΦn+1 as

dΦn+1 =
d3pb

2(2π)3Eb

d3pc

2(2π)3Ec

=
d3pb

2(2π)3Eb

d3pa

2(2π)3Ea

1

1− z

= dΦn
1

2(2π)3
d3pb

Eb

1

1− z
(3.25)

and integrate over d3pb by inserting d3pb = E2
b dEb sin(θb)dθb dφ ≈ E2

b dEb θbdθb dφ

dΦn+1 = dΦn
1

2(2π)3
EbdEb θbdθbdφ

1

1− z
. (3.26)

We are however interested in performing a change of variable to write this in terms of t = p2a
and z, instead of θb and Eb. This is done by dz = dEb/Ea, and dt = 2EbEcθdθ = 2EbEcθbdθb
(by keeping θc constant)

dΦn+1 = dΦn
1

2(2π)3
EbdEb θbdθbdφ

1

1− z

= dΦn
1

2(2π)3
dφEbEadz

dt

2EbEc

1

1− z

= dΦn
1

2(2π)3
dφEadz

dt

2Ec

1

1− z

= dΦn
1

4(2π)3
dt dz dφ. (3.27)

Using the matrix element in Eqn. (3.17), and the phase space factor in Eqn. (3.27), we can
write out the cross section dσn+1, relative to dσn given in Eqn. (3.23),

dσn+1 = F |Mn+1|2 dΦn+1

= F
(
2g2

t
CAF |Mn|2

)(
dΦn

1

4(2π)3
dt dz dφ

)
= dσn

(
g2

t
CAF

)(
1

2(2π)3
dt dz dφ

)
= dσn

dt

t
dz

dφ

2π

(
g2

2(2π)2

)
CAF (3.28)

Writing the coupling in terms of αs = g2/4π, inserting the splitting function Pgg(z), and
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integrating over the azimuth we obtain our result,

= dσn
dt

t
dz

αs

2π
Pgg(z). (3.29)

This cross section can be thought of as the splitting probability. It is currently written in terms
of the virtuality of the emitting particle t ≡ p2a. For our parton evolutions, we would rather
write his probability in terms of the splitting angle θ. This change is straightforward to execute
(at fixed z), as dt

t = dθ2

θ2
= 2dθ

θ . The cross section is therefore

dσn+1 = dσn
dθ

θ
dz

αs

π
Pgg(z). (3.30)

3.4 Multiplicity of emitted partons

The number of gluons emitted from some initial gluon with transverse momentum pt can be
determined from Eqn. (3.30) by integrating over z and θ, with a step function Θ(k⊥ − Q0),
where k⊥ is the emitted gluon transverse momentum, in order to keep the branchings resolvable

N =
αs

π

∫ 1

0
dz Pgg(z)

∫ 1

0

dθ

θ
Θ(k⊥ −Q0). (3.31)

In the the small x approximation we can write Pgg(z) ∼ 2CA
z , and k⊥ ∼ z pt θ. Absorbing the

step-function into the integration limits by observing that θ > Q0/(z pt), and that z > Q0/(ptR),
we obtain

N =
2CAαs

π

∫ 1

Q0/(ptR)

dz

z

∫ 1

Q0/(zpt)

dθ

θ

=
2CAαs

π

∫ 1

Q0/(ptR)

dz

z
ln2
(
zptR

Q0

)
=

2CAαs

π

[
1

2
ln2
(
zptR

Q0

)]1
Q0/(ptR)

=
2CAαs

π
ln2
(
ptR

Q0

)
. (3.32)

Writing Q = ptR, this becomes,

N
2CAαs

π
ln2
(
Q

Q0

)
(3.33)

In the leading logarithmic approximation (LLA) we have

αs << 1 , αs ln2
(
Q

Q0

)
∼ 1 (3.34)

then in LLA the multiplicity is NLLA ∼ 1. For next-to-leading order expansions the multiplicity
calculated becomes NNLO > 1 and we need resummation in order to account for the terms in
the full perturbation series which are enhanced by large logarithms [5].

Results obtained by perturbation theory can be written as a power series
(
αs(Q

2) ln
(
Q2/Q2

0

))n,
where Q0 is some reference scale, introduced to make the observables infrared-and-collinear
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(IRC) safe. IRC safe means that the divergences at both x → 0 and x → 1, related to soft
and collinear emission respectively, are dealt with such that the observables can be calculated
using perturbation theory. When Q >> Q0, the perturbation series may not converge and
an all-order resummation is required to account for the terms enhanced by large logarithms.
The DGLAP equations, which will be presented shortly, is effectively a resummation of these
higher-order terms [16].
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Chapter II

Analytical

This chapter will investigate parton cascades in both vacuum and medium, from an analytical
standpoint. Properties of the two cascades will be discussed and compared against one another,
the evolution equations will be presented alongside the respective splitting functions, and finally
we will find a solution to the evolution equations. The most interesting observable in this chapter
is the inclusive parton distribution, initiated by a single quark or gluon in the aftermath of some
collision.

4 Formalism of Parton Branching in Vacuum

This section will cover the analytical details related to parton showers in vacuum. Beginning by
defining an evolution variable that will ensure angular ordering for our showers and simplify the
DGLAP evolution equations. After an overview of the DGLAP equations, they will be rewritten
in terms of a Sudakov form factor, which will be a key part of creating our parton shower
programs. At the end of the chapter, a solution to the DGLAP equation will be presented.

4.1 Properties of vacuum cascades

Evolution variable

Before introducing the evolution equations, we will define an evolution variable in order to
simplify the evolution equations, and impose angular ordering in our showers [12]. The cross
section for branching from one to two partons was calculated in Eqn. (3.30), and it can be
interpreted as a probability. With a fixed coupling αs << 1, the probability of branching can
be written as

dP1→2 =
αs

π

dθ

θ
P (z) dz. (4.1)

The probability of branching changes in a given volume element by

dP
dθdz

=
αs

π

1

θ
P (z). (4.2)

Now we want to replace θ with an evolution variable in order to simplify Eqn. (4.2). This
evolution variable will be used for all vacuum cascades from this point forward, and can be
written as

t =
αs

π

∫ θ

θmin

dθ′

θ′
. (4.3)

The evolution variable changes with θ like

dt

dθ
=
αs

π

1

θ
. (4.4)
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and inserting this into Eqn. (4.2) gives

dP
dtdz

=
dP
dθdz

dθ

dt

=

(
αs

π

1

θ
P (z)

)(
π

αs
θ

)
= P (z). (4.5)

The evolution variable will therefore simplify the evolution equations by absorbing both the
logarithms and constants which would have otherwise been explicitly written.

Since the shower evolves down to the hadronization scale, we must have that the transverse
momenta must be greater than Q0 ∼ 1GeV >> ΛQCD. In the soft limit it can be written as,

k⊥ = z(1− z)ptθ ∼ zptθ > Q0. (4.6)

With this evolution variable, the parton showers will evolve in angle from the jet radius R ∼ 0.4,
down to the minimum angle, θmin = Q0/pt, given by the hadronization scale3. The limits on
the evolution variable t is then,

tmax =
αs

π
ln
ptR

Q0
, tmin = 0. (4.7)

Therefore, as we increase in values for the evolution variable t we will be reducing our emission
angles, which leads to angular ordering being directly implemented into our showers.

The literature often writes the evolution variable as t ∼ ln Q
Q0

, which is equivalent to ours when
we recognize that Q = ptR is the transverse jet scale. Since our choice of evolution variable t is
dependent on the opening angle θ, angular ordering is native to our parton shower programs.

Vacuum splitting functions

The Altarelli-Parisi splitting functions for vacuum branchings was calculated to leading order
P

(0)
ba in Section 3.2. Higher-order corrections are available on the form

Pba = P
(0)
ba +

(αs

π

)
P

(1)
ba +

(αs

π

)2
P

(2)
ba + · · · (4.8)

and next-to-leading order calculations are performed in [17]. Leading order is however sufficient
for our treatment, and we will be using Eqn. (3.19), Eqn. (3.20), and Eqn. (3.21) as our splitting
functions in vacuum.

These splitting functions are however too complicated for some of the calculations we want to
perform. It will therefore be useful to introduce a simplified splitting function for gg branchings
in vacuum

P simple
gg (z) =

CA

z(1− z)
(4.9)

which will be used for some of the analytical calculations.

3 Splittings may still occur beyond this point as Q0 >> mπ ∼ ΛQCD, and most of the partons hadronize into
pions, but it is a convenient cutoff for our evolution.
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4.2 The DGLAP equations

As mentioned in the discussion on observables, the inclusive parton distribution is governed by
the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations. They are written
as a set of integro-differential equations that describe how the distribution of gluons and quarks
evolve, respectively. While the general form of the equations presented is valid beyond leading
logarithmic approximation, we will be focusing on the leading behavior, and setting αs to be
constant, such that we are only interested in terms of the order t in our evolution variable
(equivalent to order αs ln(ptR/Q0)).

The full DGLAP equations

The DGLAP equations have several conventions, so it is important to be consistent in the way it
is presented. The DGLAP equations can be written in terms of the inclusive parton distribution
fi(x, t), as

∂

∂t
fg(x, t) =

∫ 1

x

dz

z
2Pgg(z)fg

(x
z
, t
)
−
∫ 1

0
dz Pgg(z)fg(x, t)

+

∫ 1

x

dz

z
Pgq(z) fq

(x
z
, t
)
−
∫ 1

0
dzPgq(z)fg(x, t)

(4.10)

∂

∂t
fq(x, t) =

∫ 1

x

dz

z
Pqq(z)fq

(x
z
, t
)
−
∫ 1

0
dz Pqq(z)fq(x, t)

+

∫ 1

0
dzPqg(z)

1

z
fg

(x
z
, t
) (4.11)

where P (z) is the Altarelli-Parisi splitting functions, and fg/q(x, t) = dNg/q/dx is the inclusive
parton distribution for gluons and quarks respectively. The factor 2 comes from the symmetry
in the Pgg splitting function, as the emitted gluons can carry either the momentum z or (1− z).
These functions essentially represent how gluons and quarks can enter and leave a given volume
element as illustrated in [15, p.166-168]. In Appendix A we have constructed the DGLAP
equation using generating functionals, in a manner similar to [18].

The evolution equations may also be written in terms of the energy distribution Di(x, t) =

x fi(x, t). Adding a step-function Θ(z > x) we can also gather the integrals to make it more
compact, in which case Eqn. (4.10) and Eqn. (4.11) becomes,

∂

∂t
Dg(x, t) =

∫ 1

0
dz Pgg(z)

[
2Dg

(x
z
, t
)
Θ(z > x)−Dg(x, t)

]
+

∫ 1

0
dzPgq(z)

[
Dq

(x
z
, t
)
Θ(z > x)−Dg(x, t)

] (4.12)

∂

∂t
Dq(x, t) =

∫ 1

0
dz Pqq(z)

[
Dq

(x
z
, t
)
Θ(z > x)−Dq(x, t)

]
+

∫ 1

x
dzPqg(z)Dg

(x
z
, t
)
.

(4.13)

Both these sets of equations will be used, depending on which observables we are interested in.
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The DGLAP presented here is to leading order, but higher-order expansions can also be written
as is done in [12].

The DGLAP equation for gluons

We will frequently be focusing on cascades involving exclusively gluons, such that Pgg(z) is
the only splitting we are considering. The evolution equations is then adjusted by simply
disregarding the terms with quarks, such that Eqn. (4.10) takes the form

∂

∂t
fg(x, t) =

∫ 1

x

dz

z
2Pgg(z)fg

(x
z
, t
)
−
∫ 1

0
dz Pgg(z)fg(x, t). (4.14)

It can be shown from the symmetry of the Pgg(z) splitting function that∫ 1

0
dz z Pgg(z) =

1

2

∫ 1

0
dz Pgg(z) (4.15)

and it is therefore possible to rewrite Eqn. (4.14), to the form

∂

∂t
D(x, t) =

∫ 1

x
dz P̃gg(z)D(x/z, t)−

∫ 1

0
dz z P̃gg(z)D(x, t) (4.16)

where P̃gg(z) ≡ 2Pgg(z). Both Eqn. (4.14) and Eqn. (4.16) will be used when discussing gluon
showers.

4.3 The Sudakov form factor in vacuum

Now we will rewrite the DGLAP equation by introducing the Sudakov form factor, which will
be important in developing the Monte-Carlo shower program in Chapter III. The Sudakov form
factor is denoted as ∆(t) and is defined using the evolution variable introduced in Eqn. (4.3).
For gluon showers the Sudakov form factor is

∆(t) = exp

(
−t
∫ 1−ε

ε
dz Pgg(z)

)
(4.17)

with the derivatives

∂

∂t
∆(t) =

(
−
∫ 1−ε

ε
dz Pgg(z)

)
∆(t)

∂

∂t

1

∆(t)
=

∫ 1−ε

ε
dz Pgg(z)

1

∆(t)
. (4.18)
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It is easy to rewrite the DGLAP equation an integral equation using the Sudakov form factor.
Starting by implementing the Sudakov into Eqn. (4.14),

∂

∂t
f(x, t) +

∫ 1

0
dz Pgg(z)f(x, t) =

∫ 1

x

dz

z
2Pgg(z)f(x/z, t)

∂

∂t
f(x, t) + ∆(t)f(x, t)

∂

∂t

1

∆(t)
=

∫ 1

x

dz

z
2Pgg(z)f(x/z, t)

1

∆(t)

∂

∂t
f(x, t)− f(x, t)

∂

∂t

1

∆(t)
=

1

∆(t)

∫ 1

x

dz

z
2Pgg(z)f(x/z, t)

∂

∂t

f(x, t)

∆(t)
=

1

∆(t)

∫ 1

x

dz

z
2Pgg(z) f(x/z, t). (4.19)

The Sudakov form factor has now been implemented properly into the evolution equation.
Continuing we wish to rewrite from a differential to an integral form,∫ t

t0

dt′
∂

∂t

f(x, t′)

∆(t′)
=

∫ t

t0

dt′

t′
1

∆(t′)

∫ 1

x
dz 2Pgg(z)

1

z
f(x/z, t)

f(x, t)

∆(t)
− f(x, t0)

∆(t0)
=

∫ t

t0

dt′

t′
1

∆(t′)

∫ 1

x
dz 2Pgg(z)

1

z
f(x/z, t)

f(x, t)

∆(t)
− f(x, t0) =

∫ t

t0

dt′

t′
1

∆(t′)

∫ 1

x
dz 2Pgg(z)

1

z
f(x/z, t) (4.20)

and we end up with our desired evolution equation on integral form

f(x, t) = ∆(t)f(x, t0) +

∫ t

t0

dt′

t′
∆(t)

∆(t′)

∫ 1

x

dz

z
2Pgg(z) f(x/z, t

′). (4.21)

The physical interpretation of this equation comes from considering the Sudakov form factor as
a no-branching probability. This means that the first term on the right-hand side of Eqn. (4.21)
is the probability of no branching between t0 and t (since ∆(t0) = 1). The second term then
represents that some branching has occurred at time t′, followed by no branchings between t′

and t. The Sudakov form factor is effectively a way of resumming all orders of the DGLAP
equation, by absorbing the divergences into the Sudakov form factor [2].

If we are working with both quarks and gluons then the Sudakov form factor will be slightly
different, as several different branchings may occur in a given interval. The Sudakovs for showers
with both gluons and quarks will be respectively

∆g(t) = exp

(
−t
∫ 1−ε

ε
[Pgg(z) + Pqg(z)] dz

)
(4.22)

∆q(t) = exp

(
−t
∫ 1−ε

ε
Pqq(z) dz

)
. (4.23)

4.4 Analytical solution of the DGLAP equation

We will now solve the DGLAP equation following the method outlined in [19], for gluons in
vacuum. The starting point is Eqn. (4.16), which is written with P̃gg(z) ≡ 2Pgg(z). The Mellin
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transform and its inverse are defined as

D̃(ν, t) =

∫ 1

0
dxxν−1D(x, t) , D(x, t) =

∫ c+i∞

c−i∞

dν

2πi
x−ν D̃(ν, t). (4.24)

Taking the Mellin transform of Eqn. (4.16) and then changing the integration limits
∫ 1
0 dx

∫ 1
x dz →∫ 1

0 dz
∫ x
0 dx, and performing a change of variable ξ = x/z ⇒ dx = z dξ we obtain

∂

∂t

∫ 1

0
dxxν−1D(x, t) =

∫ 1

0
dxxν−1

∫ 1

x
dz P̃gg(z)D(x/z, t)−

∫ 1

0
dxxν−1

∫ 1

0
dz z P̃gg(z)D(x, t)

∂

∂t
D̃(ν, t) =

∫ 1

0
dz P̃gg(z)

∫ 1

0
(z dξ) (z ξ)ν−1D(ξ, t)−

∫ 1

0
dz z P̃gg(z) D̃(ν, t)

∂

∂t
D̃(ν, t) = −

∫ 1

0
dz P̃gg(z) (z − zν) D̃(ν, t). (4.25)

Inserting the simplified splitting function of Eqn. (4.9), we can write the evolution equation in
Mellin space as

∂

∂t
D̃(ν, t) = −2CA

∫ 1

0
dz

1− zν−1

(1− z)
D̃(ν, t). (4.26)

Introducing the Digamma function

ψ(ν) =

∫ 1

0

1− zν−1

1− z
dz − γE , (4.27)

where γE is the Euler-Mascheroni constant, we can write Eqn. (4.26) as a simple differential
equation

∂

∂t
D̃(ν, t) = −2CA(ψ(ν) + γE)D̃(ν, t) (4.28)

the solution is easily obtained with the initial condition D̃(ν, 0) = 1

D̃(ν, t) = exp [−2CA(ψ(ν) + γE)t] . (4.29)

Now that the solution is obtained, we just have to transform back with the inverse Mellin
transform

D(x, t) =

∫ c+i∞

c−i∞

dν

2πi
x−ν exp [−2CA(ψ(ν) + γE)t]

=

∫ c+i∞

c−i∞

dν

2πi
exp [ln 1/xν ] exp [−2CA(ψ(ν) + γE)t]

=

∫ c+i∞

c−i∞

dν

2πi
exp

[
−2CA(ψ(ν) + γE ]t+ ν ln

1

x

]
. (4.30)

A solution to the equation an be obtained by utilizing the saddle-point approximation. Setting
the argument of the exponential as f(ν) ≡ −2CA(ψ(ν) + γE)t + ν ln 1

x , then in a saddle point
νs we should have

f(ν) ≈ f(νS) +
1

2
f ′′(νS)(ν − νS)

2. (4.31)
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f(ν) has a minimum value when

ψ′(νs) =
1

2CA

ln(1/x)

t
(4.32)

which gives us, in the small x limit where ln(1/x) >> t,

ψ(ν) ≈ −ν−1 ⇒ ψ′(ν) ≈ ν−2. (4.33)

and the value νs of the saddle point can therefore be found to be

νs =

(
2CA t

ln(1/x)

)1/2

. (4.34)

We can then write Eqn. (4.30) by using the saddle point-approximation

D(x, t) ≈ exp (f(νS))

∫ c+i∞

c−i∞

dν

2πi
exp

(
1

2
f ′′(νs)(ν − νs)

2

)
. (4.35)

Performing a change of variable ν = ib to remove the complex numbers in the integral

D(x, t) ≈ exp (f(νS))

∫ ∞

−∞

db

2π
exp

(
−1

2
f ′′(νs)(b+ iνs)

2

)
(4.36)

and solving using Mathematica,∫ ∞

−∞

db

2π
exp

(
−1

2
f ′′(νs)(b+ iνs)

2

)
=

1

2
√
π/2

√
f ′′(νs)

. (4.37)

Seeing that f ′′(νS) = 4CA t ν
−3
S , we write our solution as

D(x, t) = exp (f(νS))
1

2
√
(π/2) f ′′(νS)

D(x, t) = exp

(
2CAν

−1
S − 2CAγEt+ νS ln

1

x

)
1

2

1√
2πCA t ν

−3
S

D(x, t) = exp

(
2
√
2CA

√
t ln

1

x
− 2CAγE t

)
1

2

(
2CA t

π2 ln3(1/x)

)1/4

. (4.38)

Eqn. (4.38) is therefore a solution of the DGLAP equation. Note that the factor
√
2CA comes

from the symmetry factor and color factor of the Pgg(z) splitting function. It is valid in the
small x-limit such that ln 1

x >> t. In the double logarithmic limit, where we focus on the leading
ln 1

x behavior, the solution can be written as

DDLL(x, t) ≈ exp

(
2
√
2CA

√
t ln

1

x

)

≈
(
1

x

)2
√
2CA

√
t

ln 1/x

. (4.39)
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5 Formalism of Parton Branching in Medium

This section will explore parton showers developing in a dense QCD medium. Most of the
notation will be given in the same manner as [19]. The new medium showers will be described
by a in-medium kinetic rate equation which has a similar structure to the DGLAP equation.
After introducing the differences between vacuum and medium cascades, we will solve the
evolution equation for gluons. Our treatment will begin by disregarding the broadening that
can occur between splittings, and rather focus on how the cascade changes due to the large
amount of soft gluon emission. At the end of the section, we will discuss how to account for the
broadening of partons due to exchange of momenta with the medium.

We will be working exclusively with gluons throughout this section. Subsequent discussions on
medium showers will also be purely gluonic.

5.1 Properties of medium cascades

Differences between vacuum and medium cascades

Before introducing the in-medium kinetic rate equation, a discussion is required for covering
the main differences between medium and vacuum showers. In the vacuum discussion, the
first point of interest was the evolution variable which was a dimensionless quantity used to
conveniently write the evolution equations. For the medium showers this will be replaced by
the characteristic time t∗, which has dimensions equal to the actual time [GeV −1] and is defined
in Eqn. (5.1). The characteristic time, or stopping time, is the time it takes for a gluon of energy
ω to radiate most of its energy into soft gluons

t∗ ≡
1

ᾱ
tbr(E) =

π

αsNC

√
E

q̂
(5.1)

here tbr(E) is the typical time, or branching time, introduced in Eqn. (2.5), which is the time
it takes a gluon of energy E to branch into two gluons, and q̂ is the jet-quenching parameter.
Since we are exclusively working with gluons, we can set CA = NC , and define ᾱ ≡ αsNC/π

and q̂ = ˆ̄q CA, such that all color factors are absorbed into the branching time.

An important feature of the medium cascades is that the branching rate increases along the
cascade, in contrast to the vacuum cascades, where the branching rate is constant along the
cascade. This is apparent when looking at the characteristic time; as the energy ω of a given
gluon decrease, the expected time for branching also decreases. This means that the branchings
are accelerating, and it takes a finite time to transport a finite amount of energy from the
leading particle to soft gluons. Energy is therefore effectively transported towards large angles,
which contrasts the strong angular ordering of QCD cascades in vacuum. Both the increased
branching rate and transport of energy towards large angles are natural consequences of medium
induced soft gluon emissions. The spectrum of these radiated gluons is on the form

ω
dI

dω
≈ ᾱ

√
ωc

ω
(5.2)

where ωc is the energy which gives one branching in the length of the traversed medium tbr(ωc) ∼
L, and can therefore be written as ωc = q̂L2. The spectrum in Eqn. (5.2) is called the BDMPS-Z
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spectrum, named after Baier-Dokshitzer-Mueller-Peigne-Schiff and Zakharov. The first factor
ᾱ represents the standard bremsstrahlung spectrum for radiation by the parent gluon, while
the second factor

√
ωc/ω is a correction factor. This factor needs to be cut off for a minimum

frequency at which radiation is primarily produced by incoherent collisions. This cut-off ωBH is
where the branching time is of the order of the mean free path, tbr ∼ `. The mechanisms and
approximations required for large amounts of soft gluon emissions require the formation time
to be much larger than the mean free path `, but smaller than the size of the medium L, this
gives us boundaries for the energy of the emitted gluons ωBH << ω < ωc [10].

Since this section is concerned with partons traversing a medium, it could also be insightful to
rewrite the BDMPS-Z spectrum of Eqn. (5.2) in terms of dL, in order to indicate the branching
rate when traversing a given length of medium. Simply inserting ωc = q̂L2, we can write

dI

dωdL
=
ᾱ

ω

√
q̂

ω
. (5.3)

Scaling behavior

Another feature of the medium cascades is that they exhibit a scaling behavior in the number
of partons occupying small values of x. This scaling stems from the solution of the BDMPS-Z
spectrum which we will solve shortly, and is on the form

D(x, t) ≈ t

t∗
√
x
exp

[
−π
(
t

t∗

)2
]
. (5.4)

The scaling manifest itself when t > t∗, which means that most of the energy has been radiated
into soft gluons x < 0.1. After this, the number of partons occupying a given element δx
decreases in a uniform and shape-conserving way. A natural interpretation of this phenomenon
would be a constant flow of energy towards small values of x, which can be related to the
existence of a stationary solution of the energy distribution [19]. This scaling will be apparent
later when we will create a Monte-Carlo program for simulating parton showers in medium, for
different values of t.

Medium splitting functions

The splitting functions responsible for parton branchings in medium are somewhat different
from their vacuum counterparts. From our discussion on the BDMPS-Z spectrum we would
expect the splitting functions to be similar to the branching rate given by Eqn. (5.3). Since we
have absorbed all color factors into the branching time, the gg splitting function given by [20]
can be written as,

Kgg(z) =
1

2
2
[1− z(1− z)]5/2

[z(1− z)]3/2
. (5.5)

The factor 1/2 come from the terms accounting for medium induced radiation, while the factor
2 comes from the symmetry of the gg splitting. Comparing with the vacuum counterpart we
now have an additional term inside a square root. This appears due to partons interacting
with the medium, leading to soft gluon emissions and making the medium splitting function
more divergent. The parton distributions are therefore softened, or quenched, and is the only
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measurable consequence of the quark energy-loss in the medium [21].

While this splitting function might seem quite different from its vacuum counterpart at first
glance, the simple vacuum splittings functions can be easily identified such that Eqn. (5.5)
can be written in terms the vacuum splitting function Pgg(z). This form also accentuate the
similarities of Eqn. (5.3) and the splitting function

CAKgg(z) = CA
[1− z(1− z)]2

z(1− z)

√
(1− z) + z2

z(1− z)

= Pgg(z)

√
1− z(1− z)

z(1− z)
(5.6)

The full splitting function has now been introduced. However, it will be sufficient - and more
convenient - to work with a simplified splitting function which we will write as

K(z) =
1

(z(1− z))3/2
. (5.7)

For the remainder of the chapter, Eqn. (5.7) will be used as our gg splitting function, and we
will call it the reduced kernel.

5.2 The in-medium kinetic rate equation

The full in-medium kinetic rate equations

The necessary ingredients for constructing the in-medium kinetic rate equations have now been
introduced. It is expected that the form of the evolution equations in medium, will be very
similar to the vacuum version. For a derivation using generating functionals see [18], here we
simply quote the results following the conventions of [19]. An important feature to note is that
the in-medium kinetic rate equation is written in terms of the actual time t and characteristic
time t∗ (defined in Eqn. (5.1)). This means that angular ordering is not strictly imposed in
these showers, which is to be expected as soft gluon emission at large angles occurs frequently
due to medium interactions. For now we will write the characteristic time as a function of the
energy t∗(x) = t∗

√
x. This gives an effective time scale for the branching of a gluon carrying

a fraction x of the initial energy, which is one of the properties of the medium cascade. The
evolution equations can be written

∂

∂t
Dg(x, t) =

∫ 1

x
dz

1

t∗(x/z)
Kgg(z)Dg

(x
z
, t
)
− 1

2t∗(x)

∫ 1

0
dzKgg(z)Dg (x, t)

+

∫ 1

x
dz

1

t∗(x/z)
Kgq(z)Dg

(x
z
, t
)
− 1

t∗(x)

∫ 1

0
dzKgq(z)Dg (x, t)

(5.8)

∂

∂t
Dq(x, t) =

∫ 1

x
dz

1

t∗(x/z)
Kqq(z)Dq

(x
z
, t
)
− 1

t∗(x)

∫ 1

0
dzKqq(z)Dq (x, t)

+

∫ 1

x
dz

1

t∗(x/z)
Kqg(z)Dg

(x
z
, t
)
.

(5.9)
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The main difference between the in-medium kinetic rate equations, and the DGLAP equations
should then be apparent. If we replace Kba(z) → P̃ba(z) and t∗(x) → 1, the in-medium kinetic
rate equations reduces to the DGLAP equations.

The in-medium kinetic rate equation for gluons

We will be primarily focusing on cascades consisting exclusively of gluons. Since the splitting
function Kgg(z) is perfectly symmetrical, we can again use that

1

2

∫ 1−ε

ε
dzKgg(z) =

∫ 1−ε

ε
dz zKgg(z) (5.10)

and Eqn. (5.8) can be written,

∂

∂t
D(x, t) =

∫ 1

x
dz

1

t∗(x/z)
Kgg(z)D

(x
z
, t
)
− 1

t∗(x)

∫ 1

0
dzKgg(z) z D(x, t) (5.11)

The evolution equation for gluons can also be written by noting that the splitting kernel is
independent of time. The evolution equation can therefore be simplified by introducing a new
variable τ which accounts for the energy dependence and time scale of the branchings

τ =
t

t∗
= ᾱ

√
q̂

E
t (5.12)

using this new variable the evolution equation for gluons can be written as

∂

∂τ
D(x, τ) =

∫ 1

x
dzK(z)

√
z

x
D
(x
z
, τ
)
−
∫ 1

0
dzK(z)

z√
x
D(x, t). (5.13)

5.3 The Sudakov form factor in medium

We will now start with Eqn. (5.11), and rewrite it in terms of a Sudakov form factor

∆(t) = exp

(
− t

t∗(x)

∫ 1

0
dz zK(z)

)
(5.14)

with the derivatives,

∂

∂t
∆(t) = − 1

t∗(x)

∫ 1

0
dz zK(z)∆(t)

∂

∂t

1

∆(t)
=

1

t∗(x)

∫ 1

0
dz zK(z)

1

∆(t)
(5.15)
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Starting by rewriting Eqn. (5.11)

∂

∂t
D(x, t) +

D (x, t)

t∗(x)

∫ 1

0
dz zK(z) =

∫ 1

x
dzK(z)

D
(
x
z , t
)

t∗(x/z)

∂

∂t
D(x, t) +D(x, t)

∂

∂t

1

∆(t)
=

∫ 1

x
dzK(z)

D
(
x
z , t
)

t∗(x/z)

∆(t)
∂

∂t

(
D(x, t)

∆(t)

)
=

∫ 1

x
dzK(z)

D
(
x
z , t
)

t∗(x/z)

∂

∂t

(
D(x, t)

∆(t)

)
=

1

∆(t)

∫ 1

x
dzK(z)

D
(
x
z , t
)

t∗(x/z)
(5.16)

and integrating out the t integral,

D(x, t)

∆(t)
− D(x, t0)

∆(t0)
=

∫ t

t0

dt′

∆(t′)

∫ 1

x
dzK(z)

D
(
x
z , t

′)
t∗(x/z)

D(x, t) = D(x, t0)
∆(t)

∆(t0)
+

∫ t

t0

dt′
∆(t)

∆(t′)

∫ 1

x
dzK(z)

D
(
x
z , t

′)
t∗(x/z)

. (5.17)

If we now consider the initial time t0 = 0, then ∆(t0) = 1 and we obtain an equation which is
the medium equivalent of Eqn. (4.21)

D(x, t) = D(x, t0)∆(t) +

∫ t

t0

dt′
∆(t)

∆(t′)

∫ 1

x
dzK(z)

D
(
x
z , t

′)
t∗(x/z)

. (5.18)

5.4 Analytical solution of the in-medium kinetic rate equation

We will now solve the medium evolution equation for gluons, by closely following the method
outlined in [19]. The starting point for solving the medium evolution equation is Eqn. (5.13),
where Kgg(z) is the reduced kernel given in Eqn. (5.7), and τ is defined as in Eqn. (5.12).

The solution presented here is valid for values xc > 1, which corresponds to a large medium
L > t∗. This is a valid comparison with the Monte-Carlo program which is developed in
Chapter III, as it assumes the shower is constantly evolving in a medium.

The first step is to perform a change of variable such that ξ = x
z in the gain term and ξ = xz

in the loss term

G =

∫ 1

x
dzK(z)

√
z

x
D
(x
z
, τ
)

, ξ =
x

z

=

∫ x

1
dξ

(
− x

ξ2

)
K
(
x

ξ

)√
1

ξ
D(ξ, τ)

=

∫ 1

x
dξ

x

ξ5/2
K
(
x

ξ

)
D(ξ, τ) (5.19)
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L = −
∫ 1

0
dzK(z)

z√
x
D(x, τ) , ξ = xz

= −
∫ x

0
dξ

(
1

x

)
K
(
ξ

x

)
ξ

x(3/2)
D(x, τ)

= −
∫ x

0
dξ

ξ

x5/2
K
(
ξ

x

)
D(x, τ) (5.20)

in these equations a common splitting function can be identified as,

P (x, ξ) =
x

ξ5/2
K
(
x

ξ

)
=

√
ξ

x

1

(ξ − x)3/2
(5.21)

and Eqn. (5.13) can therefore be written as

∂τD(x, τ) =

∫ 1

x
dξ P (x, ξ)D(ξ, τ)−

∫ x

0
dξ P (ξ, x)D(x, τ). (5.22)

Note that P (x, ξ) 6= P (ξ, x). Now that the gain and loss terms are written in a convenient and
symmetrical way, the second step is to deal with the integral of the loss term∫ x

0
dξ

√
1

ξ

1

(x− ξ + ε)3/2
=

1√
ε

2x

x+ ε
≈ 2√

ε
− 2

√
ε

x
+O(ε3/2). (5.23)

In the limit ε → 0, the first term is divergent, and all subleading terms vanish for any finite
value of x. Therefore, the sole purpose of the loss term (in these variables) is to remove the
singularity of the gain term. We can therefore replace the integral in the loss term with the
following

L = −D(x, τ)

∫ ∞

0

dz

z3/2
. (5.24)

Step three we introduce a re-scaling of the distribution F (y, τ) =
√
xD(x, τ) , where y = 1−x,

by multiplying everything by
√
x and inserting the new loss term, Eqn. (5.22) becomes

∂τ
√
xD(x, τ) =

∫ 1

x
dξ

1

(ξ − x)3/2

√
ξ D(ξ, τ)−

√
xD(x, τ)

∫ ∞

0

dz

z3/2
,

∂τF (y, τ) =

∫ 1

1−y
dξ

1

[ξ − (1− y)]3/2

√
ξ D(ξ, τ)

−
√
(1− y)D((1− y), τ)

∫ ∞

0

dz

z3/2

. (5.25)

Then performing a change of variable ξ̃ = 1− ξ, and using F (y, τ) =
√
1− y D(1− y, τ)

∂τF (y, τ) =

∫ y

0
dξ̃

1

(y − ξ̃)3/2

√
1− ξ̃ D(1− ξ̃, τ)− F (y, τ)

∫ ∞

0

dz

z3/2
,

=

∫ y

0
dξ̃

1

(y − ξ̃)3/2
F (ξ̃, τ)− F (y, τ)

∫ ∞

0

dz

z3/2
. (5.26)

Step four is to extend the limits of the domain for F (y, τ) from y ∈ [0, 1] → y ∈ [0,∞], and
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Laplace transform our evolution equation. Defining the Laplace transform as

F̃ (ν, τ) =

∫ ∞

0
dy e−νy F (y, τ) (5.27)

and performing the Laplace transform on Eqn. (5.26) gives

∂tF̃ (ν, τ) =

∫ ∞

0
dy e−νy

∫ y

0
dξ̃

1

(y − ξ̃)3/2
F (ξ̃, τ)−

∫ ∞

0
dy e−νy F (y, τ)

∫ ∞

0

dz

z3/2

=

∫ ∞

0
dy

∫ y

0
dξ̃ e−νy 1

(y − ξ̃)3/2
F (ξ̃, τ)− F̃ (y, τ)

∫ ∞

0

dz

z3/2
. (5.28)

Since the loss term had one y dependence, the Laplace transform went very smoothly. When
dealing with the gain term it is necessary to make some changes to the integration boundaries∫∞
0 dy

∫ y
0 dξ̃ →

∫∞
ξ̃ dy

∫∞
0 dξ̃, and then introduce another change of variable z = y − ξ̃

G =

∫ ∞

0
dξ̃ F (ξ̃, τ)

∫ ∞

ξ̃
dy e−νy 1

(y − ξ̃)3/2

=

∫ ∞

0
dξ̃ F (ξ̃, τ)

∫ ∞

0
dz

e−ν(z+ξ̃)

z3/2

=

∫ ∞

0
dξ̃e−νξ̃ F (ξ̃, τ)

∫ ∞

0
dz

e−νz

z3/2

= F̃ (ν, τ)

∫ ∞

0
dz

e−νz

z3/2
. (5.29)

The results of our Laplace transform is apparent when the gain term transformed in Eqn. (5.29),
is inserted back into the evolution equation of Eqn. (5.28)

∂tF̃ (ν, τ) = F̃ (ν, τ)

∫ ∞

0
dz

e−νz

z3/2
− F̃ (y, τ)

∫ ∞

0

dz

z3/2

= F̃ (ν, τ)

∫ ∞

0
dz

(e−νz − 1)

z3/2

= F̃ (ν, τ) (−2
√
πν). (5.30)

This is a simple differential equation. From energy conservation the initial condition is F̃0 = 1 -
more precisely is the initial condition a delta function which takes into account partons ending
with precisely zero momentum - but the solution becomes

F̃ (ν, τ) = e−2
√
πντ . (5.31)

Step five - the final step of this calculation - is to do the inverse Laplace transformation on
Eqn. (5.31)

F (y, τ) =

∫ c+i∞

c−i∞

dν

2πi
eνy F̃ (ν, τ)

=
τ

y3/2
exp

(
−πτ

2

y

)
(5.32)
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and reverting back F (y, τ) =
√
xD(x, τ) and y = 1− x, our final solution is

D(x, τ) =
τ

√
x(1− x)3/2

exp

(
−π τ2

1− x

)
. (5.33)

At this point, it is worth taking a deep breath and reflect on what just happened. We started
out with the medium evolution equation and wrote it in terms of a new variable ξ, this made it
possible to solve the integral in the loss term. Another change of variables allowed us to perform
a Laplace transform so that the gain and loss term obtained the same form, and the equation
could therefore be solved as a differential equation in Laplace space. Finally, the inverse Laplace
transform gave us the final expression in Eqn. (5.33).

The solution given in Eqn. (5.33) is the full solution for the in-medium kinetic rate equation,
using the reduced kernel. Contrasting the solution to the DGLAP equation of Eqn. (4.38),
which is valid only in the small x limit.

This general strategy was relatively similar to the solution of the DGLAP equation, as both
aimed at writing the gain and loss terms in the same form by using some change of variable,
and then performing a transformation in order to solve the equation, before transforming back
to momentum space.

5.5 Medium broadening of parton showers

As mentioned at the start of the section we will now discuss how broadening can occur without
inducing gluon radiation, and how to account for this in our evolution equations.

The evolution equations which we have presented for medium cascades so far, does not in-
clude any diffusion terms representing medium broadening happening between the individual
splittings. This is represented by the partons in the distribution experiencing kicks form the
medium, by the addition of a collision kernel C(l, τ). If we were to include this broadening, the
evolution equation for gluons could be written as [18, 22]

∂

∂τ
D(x,k, τ) =

∫
l
C(l, τ)D(x,k− l, τ)

+

∫ 1

x
dz

1

z2

√
z

x
K(z)D

(
x

z
,
k

z
, τ

)
−
∫ 1

0
dz

z√
x
K(z)D(x,k, τ)

(5.34)

where C(l, t) is the elastic collision kernel, and τ is defined as in Eqn. (5.12). By integrating
this equation over transverse momentum

∫
k =

∫
d2k
(2π)2

, and setting D(x, t) =
∫
kD(x,k, t), we

are left with∫
k

∂

∂τ
D(x,k, τ) =

∫
k

∫
l
C(l, τ)D(x,k− l, τ)

+

∫
k

∫ 1

x
dz

1

z2

√
z

x
K(z)D

(
x

z
,
k

z
, τ

)
−
∫
k

∫ 1

0
dz

z√
x
K(z)D(x,k, τ)

(5.35)

∂

∂τ
D(x, τ) =

∫
l
C(l, τ)D(x, τ)

+

∫ 1

x
dz

√
z

x
K(z)D

(x
z
, τ
)
−
∫ 1

0
dz

z√
x
K(z)D(x, τ).

(5.36)
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Since
∫
l C(l, τ) = 0, this becomes simply,

∂

∂τ
D(x, τ) =

∫ 1

x
dz

√
z

x
K(z)D

(x
z
, τ
)
−
∫ 1

0
dz

z√
x
K(z)D(x, τ). (5.37)

Which is equivalent to Eqn. (5.13). We have therefore seen that when averaging over the fi-
nal transverse momentum after the splitting process, the collision kernel can be disregarded.
We are primarily concerned with the inclusive distribution integrated over transverse momen-
tum, D(x, t) =

∫
kD(x,k, t), and the broadening is therefore not relevant (in general) for our

discussions.
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Chapter III

Numerical

While the previous chapter introduced the formalism for parton branchings in vacuum and
medium, we will now turn to a numerical treatment of the evolution equations. This will be
done by using the results of the previous chapter to build a Monte-Carlo program for simulating
parton showers, both for vacuum and medium cascades. Each section will be structured in
the same manner, starting by determining how the cascade evolves relative to the branching
probability, then developing methods for sampling random energy fractions from the splitting
functions, and finally implementing this into Monte-Carlo programs. The results obtained from
these programs will then be compared with the analytical results derived in Chapter II, and
used to highlight different properties of the cascades.

6 Monte-Carlo for Parton Branching in Vacuum

Starting by creating the Monte-Carlo programs for the vacuum cascades, where we want to
develop one for pure gluon cascades (only gg splittings), and one for both quarks and gluons.
The former will be created using the simplified gg splitting function, which can then be compared
to the analytical results of the DGLAP cascade. The latter will be done using the full splitting
functions, sampled using the Metropolis-Hastings algorithm (MH), and will give us a more
realistic picture of the branching process but no exact analytical solution to compare with.

6.1 Evolution interval

For our Monte-Carlo programs we need to determine the limits of the evolution variable t, such
that we know when to terminate a given shower. Recalling the evolution variable defined in
Eqn. (4.3), and that our jets evolve in angle from some initial jet radius R, down to the minimum
angle θmin = Q0/pt, with boundary values of the evolution variable given by Eqn. (4.7). A plot
of the maximum value for t for a given range of pt and R values is given by Figure 6.1. Here it
is apparent that most values of t are below 0.4.

Knowing the boundaries we need to impose on the evolution variable for our Monte-Carlo, we can
now move on to determining how to sample intervals of the evolution variable from the Sudakov
form factor. As discussed in Chapter II, the Sudakov form factor gives us the probability of
no branching to occur in a given interval, so it is the natural candidate for generating random
values of ∆t. Writing the Sudakov from Eqn. (4.17) in terms of the probability of splitting in
the interval P(∆t), in a given interval ∆t

P(∆t) =
∆(t)

∆(t0)
= exp

(
−∆t

∫ 1−ε

ε
dz Pgg(z)

)
(6.1)

then it is trivial to rewrite the equation in terms of ∆t, and generate a random number in the
interval P(∆t) = R ∈ [0, 1], to obtain a random interval in which we can expect a new splitting

∆t = − ln(R)∫ 1−ε
ε dz Pgg(z)

. (6.2)
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Figure 6.1: Maximum values of the evolution variable t for vacuum showers, plotted up to
ptR > Q0. The strong coupling is set constant αs = 0.1184 and Q0 = 1GeV . Not that most
values of t are well below 0.4.

The expected splitting interval must be calculated for all the available partons. The parton
which generates the smallest interval ∆t is then expected to split first and will be the parton
selected for splitting in our Monte-Carlo.

Algorithm 1 represents how our Monte-Carlo samples random evolution intervals, select a split-
ting parton, and imposes the boundary conditions of the evolution variable to determine when
the terminate the shower. The general method outlined here is valid for all the vacuum pro-
grams, but Eqn. (6.2) is only valid for gg-branchings.

Algorithm 1 Evolution boundaries
1: calculate tmax,

tmax =
αs

π
ln
Rpt
Q0

2: while t < tmax :
3: for parton in AllPartons :
4: calculate expected splitting interval.

∆t = − ln(R)∫ 1−ε
ε dz Pgg(z)

5: select the parton with shortest interval, ∆tmin = min(∆t)
6: evolve the angle t = t+∆tmin.

6.2 Managing quarks and gluons

When creating a program with both quarks and gluons, the interval ∆t must be advanced based
on the type of parton being split. When splitting a gluon the interval will evolve according to
the Sudakov given in Eqn. (4.22), and when splitting quarks the Sudakov is Eqn. (4.23). The
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branching probabilities are then calculated from the following equations

Pg(∆t) = exp

(
−∆t

∫ 1−ε

ε
[Pqg(z) + Pgg(z)] dz

)
(6.3)

Pq(∆t) = exp

(
−∆t

∫ 1−ε

ε
Pqq(z) dz

)
. (6.4)

The question that remains is how to determine the splitting vertex when this parton is a gluon,
as it can split with two different vertices. This can be done by comparing the contribution of
the two vertices have on the available phase space

Wgg =

∫ 1−ε
ε Pgg(z) dz∫ 1−ε

ε [Pqg(z) + Pgg(z)] dz
. (6.5)

If the splitting parton is a gluon, we need to roll a random number R ∈ [0, 1), if the value
R < Wgg, we will use the gg vertex, and if R ≥ Wgg it will be the qg vertex. When setting
ε = 10−3, the value is Wgg ≈ 0.96, so the vast majority of gluon splittings will be done via the
gg vertex.

A similar comparison could have been done for the relative contributions on the total phase
space for quarks and gluons, but this is already implemented into the calculations for Pq(∆t),
and Pg(∆t), so this is not necessary.

6.3 Sampling from the vacuum splitting functions

The process of evolving the evolution variable, and selecting which parton and what vertex to
use for each splitting, has now been outlined. The final piece of the Monte-Carlo puzzle is to
determine how to sample random energy fractions from the splitting functions. This can be
done if we consider the probability density of obtaining a parton with momentum fraction z as

P =
Pba(z)∫ 1−ε

ε dz Pba(z)
. (6.6)

The probability P can then be replaced with a randomly generated number, and the momentum
fraction of the branched parton can be calculated from

R
∫ 1−ε

ε
dz Pba(z) =

∫ y

ε
dz Pba(z). (6.7)

where R ∈ [0, 1] [15]. Note that since the splitting function is present on both sides of the
equation, we can disregard any color and symmetry factors when calculating the splitting value,
as they will not impact the final sample.

When trying to solve Eqn. (6.7) for the different splitting functions, we will find that not
all of them can be solved for a general momentum-fraction y, and we need to introduce the
Metropolis-Hastings algorithm for sampling them correctly [23]. The Metropolis-Hastings algo-
rithm requires two different distributions,

1) A target distribution P (x), which is the one we are trying to sample.

2) A proposal distribution f(x) proportional to P(x).
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The target distribution is naturally the full splitting function we are trying to sample. The
proposal function will then be a dummy splitting function, which is similar in shape to the
full splitting function. Once these are chosen the Metropolis-Hastings algorithm is executed
according to Algorithm 2,

Algorithm 2 Metropolis-Hastings
1: sample a random value x′ from f(x).
2: calculate the acceptance probability,

A(x′) = min
(
1,
P (x′)

f(x′)

)
3: generate a random number R ∈ [0, 1].
4: if R ≤ A(x′) :

accept the value x = x′

5: else if R > A(x′) :
reject the value x′

Sampling from the gg vertex

When trying to solve Eqn. (6.7) for the Pgg(z) splitting function in Eqn. (3.19), it is difficult to
obtain an exact value of y. It is therefore convenient to use the simplified splitting function of
Eqn. (4.9) such that Metropolis-Hastings algorithm can be utilized. Excluding the color factor
as it immediately cancels in the following calculation it can be written as

P dummy
gg (z) =

1

z(1− z)
(6.8)

and evaluating Eqn. (6.7) to obtain a way of sampling values from this simplified splitting
function. The integral is straightforward to execute

R
∫ 1−ε

ε
dz

1

z(1− z)
=

∫ y

ε

1

z(1− z)

R
[
ln

(
1− ε

ε

)
+ ln

(
1− ε

ε

)]
= ln

(
y

1− y

)
+ ln

(
1− ε

ε

)
2R

[
ln

(
1− ε

ε

)]
= ln

(
y

1− y

1− ε

ε

)
(6.9)

exponentiating both sides of the equation

y

1− y

1− ε

ε
=

(
1− ε

ε

)2R

y

1− y
=

(
1− ε

ε

)2R−1

y =

(
1−ε
ε

)2R−1

1 +
(
1−ε
ε

)2R−1
(6.10)
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and simplifying, gives an expression which can be used to randomly generate parton energy
fractions from the simplified splitting function

y(R) =
ξ

1 + ξ
for, ξ =

(
1− ε

ε

)2R−1

. (6.11)

Applying the Metropolis-Hastings algorithm by sampling the dummy splitting function ac-
cording to Eqn. (6.11), we can generate a plot of the original histogram, compared to the
Metropolis-Hastings correction. This gives us a good idea of how the correction works and al-
lows us to demonstrate how this simple algorithm allows us to sample more complex functions.
The resulting plot is given in Figure 6.2.

Figure 6.2: Probability density of the full Pgg(z) splitting function and the dummy splitting
function P dummy

gg (z). The left plot gives the values sampled from Eqn. (6.11),and the right
plot is corrected using Metropolis-Hastings algorithm. Simulated with 106 samples, and a MH
acceptance rate of 0.87.

Sampling from the qg vertex

Now we will find a way of sampling random values from the Pqg(z) splitting function given by
Eqn. (3.20). In contrast to the other splitting functions, this one is actually not divergent such
that ε can be set equal zero. Solving Eqn. (6.7) for Pqg(z),

R
∫ 1

0
Pqg(z)dz =

∫ y

0
Pqg(z)dz

2

3
R =

[
y − y2 +

2

3
y3
]

2

3
R = y − y2 +

2

3
y3

0 =
2

3
y3 − y2 + y − 2R

3
(6.12)

This is a cubic formula. Setting d = 2R
3 , we can throw Eqn. (6.12) into WolframAlpha, and

find the single real root to be,

y ≈ 0.5 + 0.5
[
(36d2 − 24d+ 5)1/2 + 6d− 2

]1/3
− 0.5[

(36d2 − 24d+ 5)1/2 + 6d− 2
]1/3 (6.13)
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It is therefore possible to sample randomly without using the Metropolis-Hastings algorithm.
An argument could be made that it takes more time for python to calculate the value of this
polynomial, than it would to generate a MH corrected value from a simpler function, but this
allows for some interesting variation in how we determine our splitting values. The histogram
of random samples generated, versus the exact splitting density given by Figure 6.3.

Figure 6.3: Probability density of the full Pqg(z) splitting function, and the histogram of
sampled values using Eqn. (6.13). Simulated with 106 samples.

Sampling from the qq vertex

Next up we will attempt to solve Eqn. (6.7) for the Pqq(z) splitting function of Eqn. (3.21)∫
dzP̂qq(z) =

∫ (
1 + z2

1− z

)
dz

=

∫
−(z − 1) dz −

∫
2z

z − 1
dz

=

∫
(1− z) dz −

∫
2(u+ 1)

u
du , where u = z − 1

= −
∫
(z + 1) dz −

∫
2

u
du

= −z
2

2
− z − 2 ln(z − 1) (6.14)

since this integral has an exact solution, we can solve Eqn. (6.7) for this splitting function:

y2

2
+ y + ln

(
y − 1

ε− 1

)2

= −
(
R6ε− 3

2
+

−ε2 − 4ε

2

)
− ln

(
1− ε

ε

)2R
. (6.15)

This equation is however difficult to solve, so we will need to use the Metropolis-Hastings
algorithm once again. Attempting with a dummy function

P dummy
qq (z) =

−2

z − 1
(6.16)
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then Eqn. (6.7) becomes

R [−2 ln(z − 1)]1−ε
ε = [−2 ln(z − 1)]yε

R (−2 ln((1− ε)− 1) + 2 ln(ε− 1)) = (−2 ln(y − 1) + 2 ln(ε− 1))

R ln

(
1− ε

ε

)
= − ln(y − 1) + ln(ε− 1) (6.17)

rearranging terms and exponentiating both sides

ln(y − 1) = ln(ε− 1)− ln

(
1− ε

ε

)R

y =
ε− 1

(1−ε
ε )R

+ 1. (6.18)

Eqn. (6.18) can be used for sampling random values from the simple qq splitting function, and
following the same procedure as in Section 6.3 we can implement Metropolis-Hastings algorithm
for sampling random values from the full qq splitting function. The results of both the original
samples, and the MH corrected histogram is given in Figure 6.4.

Figure 6.4: Probability density of the full Pqq(z) splitting function and the dummy splitting
function P dummy

qq (z). The left plot gives the values sampled from Eqn. (6.18),and the right
plot is corrected using Metropolis-Hastings algorithm. Simulated with 106 samples, and a MH
acceptance rate of 0.89.

6.4 Monte-Carlo implementation

This section serves to give a brief overview of the logical structure of the main generate_shower
subprogram, which is the core of the parton-shower programs. This is where all of the actual
physics is applied, while the rest of the program is for plotting, defining variables, and managing
parent/daughter relations.

The full code for running the different parton shower programs, and Metropolis-Hastings algo-
rithms is available on the authors GitHub [24]. The main loop running in the shower program
is given here in Algorithm 3. Not all parameters are listed here, as to keep the representation
as simple as possible.
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Algorithm 3 generate_shower main loop
1: while len(SplittingPartons > 0 :
2: SplittingParton, ∆t = select_splitting_parton()
3: t = t+∆t
4: end_shower = loop_status(t, tmax)
5: if end_shower :
6: break
7: SplittingPartons.remove(SplittingParton)
8: FinalList.remove(SplittingParton)
9: z = SplittingParton.split()

10: for j in range(0,2) :
11: if j==0 :
12: NewParton = Parton(t, xz)
13: else if j==1 :
14: NewParton = Parton(t, x(1− z))
15: Shower0.FinalList.append(NewParton)
16: if NewParton.InitialFrac > zmin ∼ 0.001 :
17: SplittingPartons.append(NewParton)
18: return Shower

6.5 Results for vacuum showers

The mathematics and structure of the Monte-Carlo programs have now been presented, and we
are therefore ready to examine the resulting distributions. For the vacuum programs, we are
primarily interested in the inclusive parton, or inclusive energy distributions, given in terms of
the momentum-fraction zi of the different partons.

Results for gluon showers in vacuum

Starting by looking at the results for the parton shower with gluons in vacuum, where the
inclusive energy distribution D(x, t) is generated using using the simplified splitting function
Eqn. (6.8). The results can be compared with the solution of the DGLAP equations which we
obtained in Eqn. (4.38), valid in the small x limit, the resulting plot is given in Figure 6.5.

The Monte-Carlo generated distribution plotted in Figure 6.5 is in fairy good agreement with the
analytical results for large values of the evolution variable t, and small values of the momentum
x. This as expected as the solution is only valid for small values of x where ln 1

x >> t.

Results for quarks-, and gluons showers in vacuum

Turning to the Monte-Carlo for both quarks and gluons in vacuum, generated using the full
splitting functions and sampled using the Metropolis-Hastings algorithm. This time there is
no analytical results to compare with, but we can compare the inclusive parton distributions
f(x, t), of quark-initiated and gluon-initiated showers. The resulting plot is given in Figure 6.6.
The final distributions contains both quarks and gluons, and the difference between them is
simply the type of the initial parton. The hardest parton of each shower is also plotted using
dotted lines, and it is simply determined by taking the parton with the highest momentum once
the shower has terminated, and plotting its z value.
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Figure 6.5: The inclusive energy distribution D(x, t) for gluon showers in vacuum. The red
line is the analytical solution obtained in Eqn. (4.38). The blue dotted line is the generated
values by running n = 2 · 106 showers in a Monte-Carlo program, using the dummy splitting
function Eqn. (6.8). Parameters used are ε = 10−3 and zmin = 10−3

.

There are several observations to be made from Figure 6.6. Firstly the distribution of the
hardest parton of each shower is the same as the inclusive distribution for values above z < 1

2 .
This will be explored in more detail when we discuss leading partons in Chapter IV. Secondly,
the impact the initial parton has on the distribution is significant, this is related to the expected
branching intervals, and we will discuss it shortly.

An initial check of the validity of the program can be done by comparing with the results of [12,
Figure 2.], in which the inclusive distribution has been plotted for fixed values of the evolution
variable, t = 0.04, 0.1, 0.2, 0.3. While [12] discusses a slightly different approach, where the
evolution goes from R < θ < 1, meaning they obtain the total number of microjets within a
given jet, as opposed to our treatment where we are looking for the parton distribution inside
a jet with radius R such that, Q0/pt < θ < R. The result can however be compared as long as
the evolution goes over the same effective angle, as is the case when we are plotting with the
same values of t. Our results are therefore in good agreement with [12].

More explicit calculations can be done for checking the validity of our results. From the DGLAP
equation on integral form Eqn. (4.21), there is a term ∆(t) f(x, t0), which represents the prob-
ability of no branching to occur at all for the initial parton during the interval t ∈ [t0, tmax].
This can be calculated from Eqn. (6.1) for initial gluons, except now we know the value of ∆t,
and need to take into account the possibility of the gluon to branch into a gg-pair or a qq̄-pair.
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Figure 6.6: The inclusive parton distribution fi(x, t) for quarks and gluons in vacuum, gen-
erated by the Monte-Carlo program with both quarks and gluons in vacuum, using the full
splitting functions. The solid lines show the inclusive parton distribution for initial quarks
(blue) and initial gluons (green). The dashed lines show the hardest parton of each shower.
Simulated with n = 5 · 105 showers for both initial quark and initial gluon. Parameters used
are ε = 10−3 and zmin = 10−3. The number of gluons Nz with z = 1 is printed on each of the
plots.

The probability is then given as

P(t) = exp

(
−t
∫ 1−ε

ε
dz (Pgg(z) + Pqg(z))

)
. (6.19)

Using the same values for t and ε as in the plot:

P(0.04) ≈ 2.22 · 10−1

P(0.1) ≈ 2.32 · 10−2

P(0.2) ≈ 5.40 · 10−4

P(0.3) ≈ 1.25 · 10−5.

(6.20)

These probabilities should manifest themselves in our plot, and we can find them by simply
counting the number of partons Nz with momentum z = 1 in the final distribution for each
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value of t. The values for Nz is given in Figure 6.6, and correspond to the following probabilites:

PMC(t = 0.04) =
Nz(0.04)

N
=

110992

5105
≈ 2.22 · 10−1

PMC(t = 0.1) =
Nz(0.1)

N
=

11549

5105
≈ 2.31 · 10−2

PMC(t = 0.2) =
Nz(0.2)

N
=

264

5105
≈ 5.28 · 10−4

PMC(t = 0.3) =
Nz(0.3)

N
=

4

5105
≈ 8 · 10−6.

(6.21)

We can see that the probabilities given from the calculation of the Sudakov in Eqn. (6.20) is
in reasonable good agreement with the probabilities we find when running 5 · 105 showers and
counting Nz in Eqn. (6.21) - which should be expected as the Sudakov form factor is used both
for the calculation, and in the Monte-Carlo.

It could be argued that the results generated by the quarks and gluons cascade are more accurate
than the gluon cascade, as there is no reason for a gluon not to branch into a qq̄-pair4. It would
therefore be interesting to compare the distribution of the pure gluon shower in vacuum as given
in Figure 6.5, with the showers initiated by a gluon as given in Figure 6.6. The resulting plot
is given in Figure 6.7.

The plot given here is a straight-up comparison of the two programs. It is therefore important
to note that the splitting functions are not identical as the gluon showers is using the simplified
splitting function which does not carry any color factors. This is apparent when examining the
integrals over the different splitting functions, using ε = 10−3:∫ 1−ε

ε
P simple
gg (z) dz ≈ 13.8∫ 1−ε

ε
Pgg(z) dz ≈ 36.0∫ 1−ε

ε
Pqg(z) dz ≈ 1.7∫ 1−ε

ε
Pqq(z) dz ≈ 16.4.

(6.22)

Since the expected splitting intervals are inversely proportional to these integrals, it is to be
expected that the gluon showers using the simplified P simple

gg splitting function, would be going
slower toward small momentum values. If we were to adjust the simplified splitting function
such that the expected intervals of gg branchings were identical, then the gluon-only distribution
would go faster towards low momentum values than the gluon initiated showers with both quarks
and gluons.

There are two reasons for this. The first is that gluons can split using either the Pgg(z) or
Pqg(z) splitting function, the second is that when we inevitably observe a qg splitting, those
new quarks will split much slower than gluons. Both of these properties are direct consequences
of how the branching intervals are calculated. We can check for this behavior by simply adding

4 It is however significantly less likely for than g → gg branchings, for our program about ∼ 4% of the gluon
branchings are g → qq̄
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Figure 6.7: The inclusive energy distributionD(x, t) generated by both Monte-Carlo programs:
gluons in vacuum (blue), and quarks-and-gluons in vacuum, initiated by a gluon(green). The
red line is the analytical solution of the DGLAP equation obtained in Eqn. (4.38) for gluons,
which is only valid in the small x and large t limits. Simulated with n = 105 showers, using
ε = 10−3 and zmin = 10−3.

a fictitious color factor C ∼ 2.6 to the simplified splitting function such that∫ 1−ε

ε
CP simple

gg (z)dz ≈
∫ 1−ε

ε
Pgg(z)dz. (6.23)

The two distributions with this new factor is given in Figure 6.8. It is now apparent that the
gluon showers is going faster towards small momentum values, as there are no quarks to slow
down the splitting process. The difference in color factors does not affect the splitting values in
the same manner, as those are calculated by two integrals over the splitting function, meaning
the constant factors simply cancel each other out.

Validity of our Monte-Carlo in vacuum

The Monte-Carlo programs developed for vacuum cascades has now been under scrutiny, so lets
quickly summarize the findings.

1. The results of the Monte-Carlo gluon cascade was compared with the analytical solution
calculated in Section 4.4 and was in good agreement in the small x large t limit, as
expected.

2. The inclusive distribution generated by gluon-initiated and quark-initiated showers, was
visually compared with the results presented in [12], and we can see that the results were

54



Figure 6.8: The inclusive energy distributionD(x, t) generated by both Monte-Carlo programs.
Blue: gluons in vacuum, but with a fictitious color factor C ∼ 2.6 added to the simplified
splitting function such that the expected branching interval of gluons are the same. Green:
quarks-and-gluons in vacuum, initiated by a gluon. The red line is the analytical solution of the
DGLAP equation obtained in Eqn. (4.38) for gluons, which is only valid for gluons and in the
small x and large t limits. Simulated with n = 105 showers, using ε = 10−3 and zmin = 10−3.

visually identical.

3. The number of initial partons which do not branch in the interval [tmin, tmax] was calculated
from the Sudakov form factor for initial gluons, and compared with the Monte-Carlo for
quarks and gluons. The numbers were of similar order.

4. The behaviour of the gluon cascade was compared with the quarks and gluons cascade.
This was done by highlighting how adjusting for the expected branching intervals, still
yielded different distributions. This was attributed to the addition of quarks in the shower,
which generally makes it go slower towards small values.

While no formal comparison has been done with the results of well established event generators
such as PYTHIA [25], the discussion presented here should spark confidence in our simple
parton shower generator.
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7 Monte-Carlo for Parton Branching in Medium

When developing a Monte-Carlo program for medium cascades, we will be restricting ourselves
to gluons in medium, and use the simplified medium splitting function, or reduced kernel. This
is done such that we can compare our results with the analytical solution for the in-medium
kinetic rate equation, and examine the properties of leading-parton cascades. The process of
creating a parton shower program for both quarks and gluons in medium, would follow the same
structure as in the previous section, but we will limit ourselves to gluons in this thesis.

7.1 Evolution interval

As discussed in Section 5.2, the medium cascade evolves according to the actual time, and
the characteristic time is simply the time it takes for the initial parton to radiate most of its
energy into soft gluons. We will be evolving the cascades using the variable τ = t/t∗, which was
defined in Eqn. (5.12). It is therefore not a hard cutoff for the medium cascade but serves more
as an indication of how long the cascades can evolve, and it is an important property that will
affect our expectations for different values of τ . There is therefore no upper limit on the value
of τ in our medium evolutions, but since most of the energy has disappeared into soft gluons
(z < 0, 001) at τ ∼ 1, we might as well set this as an approximate boundary,

0 < τ / 1. (7.1)

Determining the probable branching interval ∆t can again be done from the Sudakov form
factor, introduced for the medium evolution in Eqn. (5.14), following the procedure presented
in Section 6.1. Doing this in terms of τ , such that ∆τ = ∆t/t∗, and ∆t/t∗(x) = ∆t/t∗

√
x =

∆τ/
√
x, the evolution probability takes the form

P(∆τ) =
∆(τ0)

∆(τ)
= exp

(
−∆τ√

x

∫ 1−ε

ε
dz zK(z)

)
. (7.2)

Exchanging the probability with a randomly generated number R ∈ (0, 1)

∆τ = −
√
x ln(R)∫ 1−ε

ε dz zK(z)
(7.3)

and from the symmetry of the reduced kernel, we have
∫ 1
0 dz zK(z) = 1

2

∫ 1
0 dzK(z), and the

probable evolution interval an therefore be written as

∆τ = − 2
√
x ln(R)∫ 1−ε

ε dzK(z)
. (7.4)

7.2 Sampling from the medium splitting function

The full medium splitting functions was introduced in Section 5.1 but it will be sufficient for our
treatment of medium showers to use the reduced Kgg(z) splitting kernel, as given in Eqn. (5.7).
A way of sampling the full splitting functions is available for the interested reader in Appendix B.
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Sampling from the reduced kernel

Sampling from the reduced kernel presented in Eqn. (5.7) follows the same procedure as when
sampling the vacuum splitting functions where we solved Eqn. (6.7). The integral of the reduced
kernel is ∫ b

a

1

(z(1− z))3/2
dz =

[
4z − 2√
−z(z − 1)

]b
a

(7.5)

and Eqn. (6.7) is then

R
∫ 1−ε

ε
dz

1

(z(1− z))3/2
=

∫ y

ε

1

(z(1− z))3/2

R

(
2− 4ε√
ε(1− ε)

− 4ε− 2√
ε(1− ε)

)
=

4y − 2√
−y(y − 1)

− 4ε− 2√
−ε(ε− 1)

R

(
4− 8ε√
ε(1− ε)

)
− 2− 4ε√

ε(1− ε)
=

4y − 2√
−y(y − 1)

. (7.6)

The term on the l.h.s can be written in terms of the integral again and assigned to a variable a

a =

∫ 1−ε

ε
dz

(
R− 1

2

)
= R

(
4− 8ε√
ε(1− ε)

)
+

2− 4ε√
ε(1− ε)

(7.7)

using this a, the remainder of the equation can be solved using Mathematica

y =
16 + a2 ∓ a

√
16 + a2

2(16 + a2)

y =
1

2
∓ a

√
16 + a2

2(16 + a2)

y =
1

2
∓ a

2
√
16 + a2

. (7.8)

And we now have a method for randomly sampling from the reduced kernel. The histogram of
the randomly sampled values compared to the exact splitting function is given in Figure 7.1.

7.3 Monte-Carlo implementation

Creating the Monte-Carlo program for the medium showers follows generally the same procedure
as in Section 6.4. As already discussed, we will restrict ourselves to gluons and the reduced
kernel. There are some obvious differences, as we now need to generate evolution intervals from
the in-medium rate Sudakov form factor from Eqn. (7.4), and need to sample from the reduced
kernel Eqn. (7.8).

The other parameters are very similar, but we will need a lower limit for how soft gluon can split.
This is particularly important for the medium cascade, as very soft gluons will barely evolve τ
at all, due to the x dependence in the generated evolution interval, meaning the program would
be incredibly slow without a x-limit.. This limit is simply introduced by not appending gluons
with a momentum fraction less than z = 10−3 to the list of splitting gluons. When the plots
are made it is then important to keep in mind that we don’t have precise data below this limit.
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Figure 7.1: Probability density of the simplified Kgg(z) splitting kernel, and the histogram of
sampled values using Eqn. (7.8). Simulated with 106 samples.

The final program is again available in the author’s GitHub repository [24].

7.4 Results for gluon showers in medium

This section will be dedicated to verifying the results from our medium showers. Very similar to
the vacuum programs we will compare the generated distributions with the analytical solution
of the evolution equations, and other properties present will be highlighted using different plots.

We will now plot the inclusive energy distribution D(x, τ) from the Monte-Carlo parton shower,
along with the analytical solution for the in-medium kinetic rate equation as obtained in
Eqn. (5.33). It is important to keep in mind that this solution is only valid for the reduced
kernel. The resulting plot is given with a linear scale in Figure 7.2. The Monte-Carlo results
are in generally good agreement with the analytical solution.

For observing the scaling property of the medium evolution, we will plot the distribution for
different values of τ , on a logarithmic scale. This is presented in Figure 7.3. The scaling prop-
erties of the medium evolution is apparent for large values of τ , as once the peak corresponding
to the initial parton around z = 1 has disappeared, the flow of energy towards small x values
seems to be constant. As we discussed in Section 5.1, the distribution changes in a uniform and
shape-conserving way, once τ goes larger than τ ∼ 1.
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Figure 7.2: The inclusive energy distribution D(x, τ) as generated from the Monte-Carlo
program for gluons in medium, using the reduced kernel. Simulated with n = 2.5 · 104 showers,
using ε = 10−3 and zmin = 10−3. The distribution is compared with the analytical solution
given in Eqn. (5.33).

Figure 7.3: The inclusive energy distribution D(x, τ) as generated from the Monte-Carlo
program for gluons in medium, using the reduced kernel. Simulated with n = 105 showers,
using ε = 10−3 and zmin = 10−3, for a wide range of values τ . The scaling property of the
shower is apparent for values of τ > 1.
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Chapter IV

Leading Parton and Energy-Loss

While the preceding chapters had a natural flow where each new chapter built on the results of
the previous one, this chapter will have a more stand-alone presentation. This is done so that
the leading parton distribution, which to many is less familiar than the inclusive distribution,
can have a more coherent and natural flowing discussion.

8 Leading Parton for Gluon Cascades

Starting by exploring a simple model of energy-loss, valid in the small x limit, and seeing how it
compares to the leading parton distribution obtained from our Monte-Carlo program for gluons
in medium. Then we will examine the behavior of the leading parton by using our Monte-Carlo
to determine how often the leading parton remains on-branch in a given evolution. Finally we
will attempt to derive an evolution equation for the leading parton, and solve it in Mellin space.

8.1 Energy-loss in the small x limit

We will now turn to the leading parton energy-loss for gluon cascades is medium. Rather than
the shower depicted in Figure 2.3, we will now be following exclusively the leading parton of a
given cascade, and consider all other partons simply as energy-loss ωi. The softer partons may
still branch independently and behave as usual, but we are only concerned with the leading
parton. The energy fraction of the leading parton can therefore be stated as x = E−ε

E = 1− ε
E ,

where the total energy-loss is ε =
∑

i ωi. An illustration of this setup is given in Figure 8.1.

Ji(x, t)· · ·
E x = E−ε

E

ω1 ω2 ω3 ωn

Figure 8.1: Illustration of the leading parton energy-loss, where all soft gluon radiation is
treated as energy-loss.

The probability of emitting a total energy ε over an arbitrary number n of emissions, is given
as [26–28]

D(ε) =

∞∑
n=0

1

n!

[
Πn

i=1

∫
dωi

dI(ωi)

dω

]
δ

(
ε−

n∑
i=1

ωi

)
exp

(
−
∫ ∞

0
dω

dI

dω

)
(8.1)

where n is the total number of emitted gluons, and dI(ωi)/dω is the probability of emitting
a single gluon with energy ωi. The first term of Eqn. (8.1) is therefore the integral over all
possible combinations of ωi, such that ε =

∑n
i ωi, and then summed over the total number of

emissions n. The second term is the integral over the medium-induced gluon spectrum dI/dω,
defined in Eqn. (5.2), and serves to normalize the distribution as

∫ 1
0 dεD(ε) = 1.

Eqn. (8.1) is valid when assuming the emission is soft z << 1, and that multiple emissions
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happen independently. The solution of Eqn. (8.1) can be obtained in Mellin space, and is

D(ε) ≈ 1

ε
ᾱ

√
ωc

2ε
exp

(
−π ᾱ

2ωc

ε

)
(8.2)

where ᾱ = αsNC/π. This is now an expression of the energy-loss, but we would like to write it
in terms of the leading parton energy x, by replacing ε = E(1− x)

D(x) ≈ ᾱ

√
ωc

E3(1− x)3
exp

(
−π ᾱ2ωc

E(1− x)

)
. (8.3)

Introducing τ as defined in Eqn. (5.12), variable, but setting the time equal the length of the
medium, t = L, such that

τ = ᾱ

√
q̂

E
L = ᾱ

√
ωc

E
(8.4)

then the solution can be written as,

D(x) ≈ 1

E

τ

(1− x)3/2
exp

(
−π τ2

1− x

)
. (8.5)

This equation is strikingly similar to the solution of the in-medium kinetic rate equation for
gluons obtained in Eqn. (5.33). The difference is that a factor

√
x has been replaced by a factor

E.

This solution may be plotted alongside the leading parton distribution obtained by our Monte-
Carlo program for gluons in medium, using the reduced kernel, along with the solution of
the in-medium kinetic rate equation presented in Section 5.4. The resulting plot is given in
Figure 8.2,

From Figure 8.2 we can see that the solution given by Eqn. (8.5) is a very good agreement for
values of x > 0, 8, and decent for values x > 0, 5. This is expected as the energy-loss distribution
Eqn. (8.1) assumes all emissions to be soft. It should however motivate us to find model for the
energy-loss distribution able to deal with harder gluon emissions.

8.2 Leading branches

Before attempting to modify the current evolution equations, or crating a whole new set of
equations for describing the leading parton evolution, we must know more about how the dis-
tribution behaves. A key question is whether the leading branch in a given splitting, generally
yields the hardest parton at the end of the cascade. The simplest model imaginable is illustrated
in Figure 8.3 where the leading parton remains on the same branch for the entire evolution.
In this scenario we could disregard the softest branch in every splitting, and just focus on the
hardest branch.
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Figure 8.2: The inclusive energy distributionD(x, τ) as generated by the Monte-Carlo program
for gluons in medium. The dotted line indicates the leading parton of each shower. Plotted
alongside the analytical solution of the kinetic rate equation Eqn. (5.33), and the leading parton
solution Eqn. (8.5). Simulated with n = 3 · 104 showers, using ε = 10−3 and zmin = 10−3.
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Figure 8.3: Illustration of the leading parton Jτi remaining on the same branch for the entire
evolution. The leading parton is therefore on-branch.

The other scenario is illustrated in Figure 8.4, where the leading parton at one time, is on a
different branch than the leading parton at a later time. If this is how the evolution goes, it is
important to keep track of every single branch following a splitting, to find the hardest parton.
When the leading parton remains on the same branch throughout the cascade, we will call it
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on-branch, when it changes branches we will call it off-branch.
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Figure 8.4: Illustration of the leading parton Jτi changing what branch it on during the
evolution, due to splittings where z → 0.5. The leading is parton at the end of the evolution is
therefore off-branch.

There is no precise formulation for how often the leading parton is off-branch, so it could be
interesting to determine this by using our Monte-Carlo program for gluons in medium. This
is implemented by picking the hardest parton at the end of the shower, and then iterating
backwards through the evolution, to check that the hardest parton is the hardest leg of each
splitting. The resulting plot for several different values of τ , where the leading on-branch partons
are plotted separately from the leading off-branch partons, is given in Figure 8.5.

There are several notable results in Figure 8.5. Firstly, the off-branch leading partons are all
confined to z / 0, 5. This is expected, since the shower requires either a splitting z ∼ 0, 5

for the leading parton to change branches during the evolution, or a very long evolution such
that all partons are moving towards small values of x. The second property to note is how the
percentage of leading on-branch partons, changes with the values of τ . This can be made more
explicit my creating a plot of the fraction of on-branch leading partons, for a shower with given
τ , as presented in Figure 8.6 with a second degree polynomial fit.

It is therefore important to take into account how often off-branch leading partons is expected
when creating a new model for the evolution of the leading parton distribution. For small values
of τ , where off-branch leading partons is rare, it can be viable to exclusively follow the leading
parton in each vertex. For larger evolutions it is however necessary to take into account these
off-branch leading partons.

8.3 Leading parton evolution equations in vacuum

When looking at Figure 6.6 which was generated for quarks and gluons in the vacuum cascade,
there is an interesting observation to be made. The distribution of the leading parton is identical
to the inclusive distribution for values of z > 0.5. This implies that the information we are
looking for is already contained within the evolution equations - which makes sense as they are
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Figure 8.5: Leading partons of the medium cascade. The solid lines indicate that the leading
parton is on-branch, while the dashed lines indicate that the leading parton is off-branch.
Percentages of total number of leading partons on-branch for each value of τ is given in the
legend. Simulated with n = 105 showers, using ε = 10−3 and zmin = 10−3.Some of the values
for τ are excluded from the plot, to make it more readable, but the percentages of hob (hardest
on branch) is still given in the legend.

resumming all splittings which may occur. This should motivate us to make some adjustments
to the current evolution equations, such that they follow exclusively the leading parton.

Derivation

In Section 8.2 we saw that the leading parton is predominantly on-branch up to values of
τ ∼ 0.5. Keeping this in mind, we can attempt to find an alternate formulation of the evolution
equations in vacuum, where we follow exclusively the leading parton in each vertex, and be
confident of where these results should be valid.

The equations can be constructed in a manner similar to the DGLAP equation which we con-
structed in Appendix A, using generating functionals. We start with the functional Z(p, t =

0) = u(p), with the property δu(p)
δu(k) = u(1− k

p ), and normalization Z(p)|u=1 = 1

∂

∂t
Z(p, t) =

∫ 1

0
dz P (z)Z(zp)Z((1− z)p)−

∫ 1

0
dz P (z)Z(p) (8.6)

but now we wish to adjust this to account for the leading partons, by changing the integration
limits 0 → 1/2 and 1/2 → 1. The real term of Eqn. (8.6) can then be written as

R =

∫ 1/2

0
dz P (z)Z(zp)Z((1− z)p) +

∫ 1

1/2
dz P (z)Z(zp)Z((1− z)p) (8.7)
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Figure 8.6: Polyfit of the fraction of leading partons which are on-branch, for a shower with a
given τ value. The dataset used is the same as for Figure 8.5; simulated with n = 105 showers,
using ε = 10−3 and zmin = 10−3.

and we are only interested in retaining the leading particle with z > 1/2,

R =

∫ 1/2

0
dz P (z)u(zp)Z((1− z)p) +

∫ 1

1/2
dz P (z)Z(zp)u((1− z)p). (8.8)

Since we are still working with gluons we can use Pgg(z) = Pgg(1 − z), and use a change of
variable z′ = 1−, to write

R =

∫ 1/2

0
dz P (z)u(zp)Z((1− z)p)−

∫ 0

1/2
dz P (z′)Z((1− z′)p)u(z′p)

= 2

∫ 1/2

0
dz P (z)u(zp)Z((1− z)p) (8.9)

then taking the functional derivative,

δR
δu(k)

|u=1 = 2

∫ 1/2

0
dz P (z)

[
δu(zp)

δu(k)
|u=1Z((1− z)p)|u=1 + u(zp)|u=1

δZ((1− z)p)

δu(k)
|u=1

]
= 2

∫ 1/2

0
dz P (z)

[
δ(1− x

z
) +D(

x

1− z
, t)

]
. (8.10)

Being careful with the limits in the second term as we are requiring that x < 1− z → z < 1−x

in the distribution, as well as z < 1/2 from the integral. Bringing both of these explicitly into
the integral, and again introducing P̃ (z) = 2P (z) we can write

δR
δu(k)

|u=1 =

∫ 1/2

0
dz P̃ (z)δ(1− x

z
) +

∫ min( 1
2
,1−x)

0
dz P̃ (z)D(

x

1− z
, t). (8.11)

In the first term there is a criteria from the delta function that x = z, that means the real term
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can be rewritten using a step function Θ(x < 1
2),

δR
δu(k)

|u=1 = Θ(x <
1

2
)xP̃ (x) +

∫ min( 1
2
,1−x)

0
dz P̃ (z)D(

x

1− z
, t) (8.12)

and a similar treatment can be given for the virtual term,

δV
δu(k)

|u=1 = −
∫ 1/2

0
dz P̃ (z)

δZ(p)

δu(k)
|u=1

= −
∫ 1/2

0
dz P̃ (z)D(x, t). (8.13)

Using Eqn. (8.12) and Eqn. (8.13), we can write Eqn. (8.6) as

∂

∂t
D(x, t) = Θ(x <

1

2
)xP̃ (x) +

∫ min( 1
2
,1−x)

0
dz P̃ (z)D(

x

1− z
, t)−

∫ 1/2

0
dz P̃ (z)D(x, t). (8.14)

Eqn. (8.14) is therefore now a proposed evolution equation for the leading parton of pure gluon
cascades in medium, where the leading parton is assumed to be on-branch.

Writing the equation in Mellin space

We will now attempt to solve Eqn. (8.14). Starting by making a change of variables z′ = 1− z

in the gain term

∂

∂t
D(x, t) = Θ(x <

1

2
)xP̃ (x)

+

∫ 1

min( 1
2
,x)
dz′ P̃ (z′)D(

x

z′
, t)−

∫ 1

1/2
dz′ P̃ (z′)D(x, t).

(8.15)

and the z′s can for simplicity be written as z. Performing the Mellin transform defined in
Eqn. (4.24)

∂

∂t
D̃(ν, t) =

∫ 1

0
dxxν−1Θ(x <

1

2
)xP̃ (x)

+

∫ 1

0
dxxν−1

∫ 1

min( 1
2
,x)
dz P̃ (z)D(

x

z
, t)−

∫ 1

1/2
dz P̃ (z)D̃(ν, t)

(8.16)

and splitting up the integrals in the gain term for values of x < 1/2 and x > 1/2,

∂

∂t
D̃(ν, t) =

∫ 1/2

0
dxxν−1xP̃ (x)

+

∫ 1/2

0
dxxν−1

∫ 1

1/2
dz P̃ (z)D(

x

z
, t)−

∫ 1

1/2
dz P̃ (z)D̃(ν, t)

+

∫ 1

1/2
dxxν−1

∫ 1

x
dz P̃ (z)D(

x

z
, t).

(8.17)
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Changing the integration limits in the third line such that
∫ 1
1/2 dx

∫ 1
x dz ⇒

∫ 1
1/2 dz

∫ z
1/2 dx

∂

∂t
D̃(ν, t) =

∫ 1/2

0
dxxν−1xP̃ (x)

+

∫ 1/2

0
dxxν−1

∫ 1

1/2
dz P̃ (z)D(

x

z
, t)−

∫ 1

1/2
dz P̃ (z)D̃(ν, t)

+

∫ 1

1/2
dz P̃ (z)

∫ z

1/2
dxxν−1D(

x

z
, t)

(8.18)

and then performing a change of variable in the gain terms such that ξ = x/z ⇒ dx = zdξ

∂

∂t
D̃(ν, t) =

∫ 1/2

0
dxxν−1xP̃ (x)

+

∫ 1

1/2
dz P̃ (z)

∫ 1/2z

0
(zdξ) (zξ)ν−1D(ξ, t)−

∫ 1

1/2
dz P̃ (z)D̃(ν, t)

+

∫ 1

1/2
dz P̃ (z)

∫ 1

1/2z
(zdξ) (zξ)ν−1D(ξ, t).

(8.19)

It is then possible to merge the integration limits with respect to dξ again and perform the
Mellin transform on D(ξ, t)

∂

∂t
D̃(ν, t) =

∫ 1/2

0
dxxν−1xP̃ (x)

+

∫ 1

1/2
dz P̃ (z)zνD̃(ν, t)−

∫ 1

1/2
dz P̃ (z)D̃(ν, t)

(8.20)

which can be written as a non-homogeneous differential equation

∂

∂t
D̃(ν, t) = 2

∫ 1/2

0
dx

xν−1

(1− x)
+ 2

∫ 1

1/2
dz

(
zν − 1

z(1− z)

)
D̃(ν, t). (8.21)

For simplicity we can introducing the incomplete beta function B 1
2
(ν, 0)

∂

∂t
D̃(ν, t) = 2B 1

2
(ν, 0) + 2

∫ 1

1/2
dz

(
zν − 1

z(1− z)

)
D̃(ν, t). (8.22)

Solving the equation in Mellin space

We will now solve Eqn. (8.22), with the initial condition D̃(ν, 0) = 1. Writing the equation in
a general form

s′(ν, t)− p(ν)s(ν, t) = f(ν) (8.23)

67



where

s(ν, t) = D̃(ν, t)

s′(ν, t) =
∂

∂t
D̃(ν, t)

p(ν) = 2

∫ 1

1/2
dz

(
zν − 1

z(1− z)

)
f(ν) = 2B 1

2
(ν, 0),

(8.24)

then the solution of the corresponding homogeneous system h′(ν, t)− p(ν)h(ν, t) = 0, with with
the initial condition h(ν, 0) = 1,

h(ν, t) = −f(ν)
p(ν)

exp (p(ν) t) . (8.25)

By variation of parameters we are looking for a solution s(ν, t) of the non-homogeneous system

s(ν, t) = v(t)h(ν, t), (8.26)

which is obtained by finding a function v(t) such that v′(t)h(ν, t) = f(ν).

v(t) =

∫
f(ν)

h(ν, t)
dt = exp (−p(ν) t) + C (8.27)

and the solution s(ν, t) is therefore

s(ν, t) = v(t)h(ν, t) = −C f(ν)

p(ν)
exp(p(ν)t)− f(ν)

p(ν)
. (8.28)

determining C from the initial condition we get the final solution

s(ν, t) =
f(ν) + p(ν)

p(ν)
exp(p(ν)t)− f(ν)

p(ν)
, (8.29)

which can be verified by inserting Eqn. (8.29) into Eqn. (8.23). Inserting the full functions
defined in Eqn. (8.24) we obtain,

D̃(ν, t) =
B 1

2
(ν, 0) +

∫ 1
1/2 dz

(
zν−1
z(1−z)

)
∫ 1
1/2 dz

(
zν−1
z(1−z)

) exp

(
2

∫ 1

1/2
dz

(
zν − 1

z(1− z)

)
t

)

−
B 1

2
(ν, 0)∫ 1

1/2 dz
(

zν−1
z(1−z)

) (8.30)

Discussing the solution in Mellin space

Performing the inverse Mellin transform on the solution obtained in Eqn. (8.30) is not straight-
forward. To gain a clearer picture of why, we can plot the solution of the leading parton
distribution, against the solution of the DGLAP equation Eqn. (4.29), in Mellin space. Note
that this is not the final solution of the DGLAP equation, but the one obtained in Mellin space,
before transforming back to momentum space. The resulting plot is given in Figure 8.7
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Figure 8.7: The solution of the leading parton evolution equations, for gluons in vacuum,
in Mellin space as given by Eqn. (8.30) (orange), and the solution of the DGLAP equation
as obtained in Mellin space as given by Eqn. (4.29) (red). The behavior at small ν values is
compared in the plot. For ν > 1 they behave in the same manner.

When examining the plot it is worth noting that the general form is remarkably similar for
values ν < 1, and if the limits of the plot were expanded we would see that the behavior at
ν > 1 is identical. This is roughly what we would expect, as our proposed leading parton
evolution equations are very similar in form to the DGLAP equation, with some modifications
to the z limits.

It should then be made explicit that the solution presented in Eqn. (8.30) is a function of ν in
Mellin space, and it needs to be transformed to momentum space to have proper interpretation.
This may be possible by employing the Mellin transforms relation to other transformations such
as the Laplace or Fourier transforms. Otherwise, an altogether different set of transformations
and change of variables may be able to find a solution in momentum space.
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Summary and Outlook

Motivation

The motivation of the thesis was to investigate how the distribution of leading partons behave
inside of a QCD jet, and whether it can be described and solved analytically. Since the most
energetic parton in a shower is (presumably) less sensitive to medium fluctuations, it could serve
as a cleaner probe of the QGP, and therefore improve studies of jet quenching and QGP. To
thoroughly acquaint ourselves with the required analytical and numerical methods of parton
showers, we had to start by examining the inclusive parton distribution which is well studied.
The presented methods could then be verified by comparing the numerical results and the
analytical solutions with one another.

Discussion and results

In Chapter II we showed how the inclusive distribution in vacuum is described by the DGLAP
evolution equations. Our treatment focused on the leading order behavior. A suitable evolution
variable was introduced to simplify the evolution equations and impose angular ordering in our
showers. Writing them as integral equations allowed us to interpret the Sudakov form factor
as a branching probability in a given interval. Solving the DGLAP equations was possible
by considering gluon showers in the small x limit. This was done by performing a Mellin-
transformation and then using the saddle-point approximation to find a solution that can be
transformed back into momentum space.

When discussing jet evolutions in medium, we chose to start at the BDMPS-Z spectrum which
describes the induced soft gluon radiation of jets. When incorporating these soft emissions into
the evolution equations we obtain the in-medium kinetic rate equations, which is the medium
counterpart to the DGLAP equations. Focusing on gluons, and using the reduced splitting
kernel, the evolution equation was solved in Laplace space. The solution obtained required no
further assumptions or constraints and is therefore a valid solution for how a medium cascades
consisting exclusively of gluons evolve with the reduced kernel.

Implementing the vacuum and medium evolution equations into Monte-Carlo programs was
done in Chapter III. The general procedure was the same for both evolutions. By generating
expected branching intervals from the Sudakov form-factor, the evolution boundaries can be
implemented, and when a parton is selected for branching we can sample a random splitting
value by using the Metropolis-Hastings algorithm.

Plotting the results of the Monte-Carlo programs alongside the analytical results allowed us to
discuss the properties of the cascades, and highlight differences and discrepancies. For gluon
cascades in vacuum, Figure 6.5 showed how the solution of the DGLAP equation is in good
agreement with the Monte-Carlo in the small x and large t limit, as expected. The behavior of
vacuum cascades with both quarks and gluons was presented in Figure 6.6 for showers where
the initial parton was either a quark or a gluon. This was also the first indication of how the
leading parton distribution behaves, clearly showing in Figure 6.6 that the leading and inclusive
distributions are identical for values of x > 0, 5.

The Monte-Carlo generated distribution for gluon cascades in vacuum was plotted alongside
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the analytical solution of the in-medium kinetic rate equation in Figure 7.2. The two graphs
were in good agreement for all values of τ and x. In Figure 7.3 the Monte-Carlo was run to
high values of τ to display the scaling property of the BDMPS-Z spectrum.

Finally, having built a deeper understanding of parton showers, both analytically and numeri-
cally, we moved on to the leading parton distribution in Chapter IV. Using a known model for
the energy-loss of the leading parton we calculated a solution valid in the small x limit. The
resulting plot in Figure 8.2 confirmed that it is a good fit for values x > 0, 8. In order to suggest
a better model for the energy-loss, which should be valid for harder gluon emissions, we must
know the validity range of the model. We attempted to address this issue by proposing the con-
cept of on and off-branch leading partons, and then investigating how often the leading parton
remains on-branch. The results showed that up to values of τ ∼ 0.5, the majority (∼ 80%) of
the leading partons are on-branch.

The method of generating functionals was used to formulate the evolution equations for the
leading parton distribution in vacuum, valid for on-branch leading partons. The key difference
from the inclusive distribution is that we must assume that the emitted parton has a momentum
z < 1/2, such that the parton we are following is always the hardest. When only branching
from the leading parton we are also keeping it on-branch, which is where the on-branch discus-
sion becomes relevant. The evolution equations were then written in Mellin space and solved.
Unfortunately returning to momentum space is challenging, and further development has not
been made.

Outlook

The list of points which could be improved for our Monte-Carlo programs is long. Examples
include using the full splitting functions in medium, and including both quarks and gluons in
medium. But improving the Monte-Carlo is altogether not all that interesting as it has already
been done for event-generators such as PYTHIA. The reason for us to develop them from
the ground up was to illustrate how the solution to the evolution equations, while difficult to
solve analytically, practically appears out of nowhere when applying a Monte-Carlo approach.
Another approach which might be able to validate the leading parton evolution equations, is to
implement them into a leading parton Monte-Carlo shower, and compare the results with the
leading parton distribution of the other shower programs.

There are several results for the leading parton distribution we would have liked to obtain in
Chapter IV. The most obvious one is that the solution obtained in Mellin space for the leading
parton evolution equation is difficult to transform back to momentum space. The consequence
is that the evolution equation can not be compared directly with the results of our Monte-Carlo
parton showers.

Another issue, which is a bit more subtle, is that we would ideally have wanted an evolution
equation for the leading parton in medium, as this allows us to compare with the current
energy-loss distribution. This challenge is closely related to a general search for a more precise
formulation of the energy-loss of a parton traversing a medium. Such an expression would pave
the way for improved calculations of the nuclear modification form factor. Further work could
also extend the formalism to include heavy quarks.
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Appendix A Constructing the DGLAP Equation

The DGLAP equation can be constructed using generating functionals. This is done in [18] for
gluons in medium, a simpler approach with gluons in vacuum is presented here. For vacuum
cascades where an initial gluon at time t0 with momentum p, a generating functional can be
defined as

Z(p, t = 0) = u(p). (A.1)

where u ≡ u(p) indicates a 100% probability of finding a single gluon with momentum p at the
given time. Similarly u(k) gives a gluon with momentum k = xp. From normalization we have
Z(p)|u=1 = 1. Defining the relation of the functions u(p) and u(k) as

δu(p)

δu(k)
= δ

(
1− k

p

)
. (A.2)

Since we are considering vacuum cascades, the only effect that can happen in an interval dt is
a splitting. The generating functional then changes as,

∂

∂t
Z(p, t) =

∫ 1

0
dz P (z)Z(zp)Z((1− z)p)−

∫ 1

0
dz P (z)Z(p) (A.3)

where the first term on the right represents a splitting, and the second term is a correction
corresponding to a virtual loop, where no splittings occur. The inclusive energy distribution is
then found from the generating functional as D(x, t) = xdN

dx = δZ[p]
δu(p) |u=1, which implies

δZ (p)

δu (k)
|u=1 = D

(
k

p
, t

)
= D(x, t) (A.4)

δZ (zp)

δu(k)
|u=1 = D

(
k

zp
, t

)
= D

(x
z
, t
)

(A.5)

therefore Eqn. (A.3) becomes,

∂

∂t

δZ(p)

δu(k)
|u=1 =

∫ 1

0
dz P (z)

[
δZ(zp)

δu(k)
|u=1Z ((1− z)p) |u=1 + Z(zp)|u=1

δZ ((1− z)p)

δu(k)
|u=1

]
−
∫ 1

0
dz P (z)

δZ(p)

δu(k)
|u=1

∂

∂t
D(x, t) =

∫ 1

0
dz P (z)

[
D
(x
z
, t
)
H(z > x) +D

(
x

1− z
, t

)
H(1− z > x)

]
−
∫ 1

0
dz P (z)D(x, t)

working with gluons only we can use Pgg(z) = Pgg(1 − z),
∫ 1
0 dz Pgg(z) =

1
2

∫ 1
0 dz zPgg(z), and

P̃ (z) = 2P (z), to write this as

∂

∂t
D(x, t) =

∫ 1

x
dz P̃ (z)

(x
z
, t
)
−
∫ 1

0
dz zP̃ (z)D(x, t) (A.6)

which is the DGLAP equation for gluon-only cascades.
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Appendix B Sampling the Full Medium Splitting Functions

This appendix will give the procedures for sampling random values from the full medium split-
ting functions by use of Metropolis-Hastings algorithm. The splitting functions for the three
vertices are given to leading logarithmic accuracy by [20]

Kgg(z) =
1

2
2CA

[1− z(1− z)]2

z(1− z)

√
(1− z)CA + z2CA

z(1− z)
(B.1)

Kqg(z) =
1

2
2Nf TF

(
z2 + (1− z)2)

) √CF − z(1− z)CA

z(1− z)
(B.2)

Kqq(z) =
1

2
CF

1 + z2

(1− z)

√
zCA + (1− z)2CF

z(1− z)
. (B.3)

The color factors on the outside of the square roots will be disregarded in the calculations,
as these will cancel out, but we will keep the color factors inside the square roots (which we
usually absorb into q̂, as they have some impacts on the shape of the distributions. We could
set CA = CF = 1, and the algorithms presented here would still sample correctly, but the shape
would be slightly different.

The gg vertex

The full ggg splitting kernel is given by Eqn. (B.1). To generate a random value from this
function, we need to go back to the Metropolis-Hastings algorithm. For this we need a propor-
tional dummy-function, we can use the simplified kernel given by Eqn. (5.7), the integral can
be generally shown to be,∫

Kdummy
gg (z) dz =

∫
2

(z(1− z))3/2
dz = 2

4z − 2√
−z(z − 1)

. (B.4)

Sampling random momentum fractions for the distribution is again done by solving Eqn. (6.7)

R
∫ 1−ε

ε
Kdummy

gg (z) dz =

∫ y

ε
Kdummy

gg (z) dz

R
∫ 1−ε

ε
Kdummy

gg (z) dz = 2
4y − 2√
−y(y − 1)

− 2
4ε− 2√
−ε(ε− 1)

R
2

∫ 1−ε

ε
Kdummy

gg (z) dz +
4ε− 2√
ε(1− ε)

=
4y − 2√
y(1− y)

1

2

∫ 1−ε

ε
Kdummy

gg (z) dz

(
R− 1

2

)
=

4y − 2√
y(1− y)

. (B.5)
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Reinserting the initial factors of the integral, by setting a = 1
2

∫ 1−ε
ε Kdummy

gg (z) dz
(
R− 1

2

)
, this

equation can be solved using Mathematica,

y =
16 + a2 ∓ a

√
16 + a2

2(16 + a2)

y =
1

2
∓ a

√
16 + a2

2(16 + a2)

y =
1

2
∓ a

2
√
16 + a2

. (B.6)

We now have a method for randomly drawing a sample from the dummy splitting function, and
can follow the procedure of Section 6.3 to implement Eqn. (B.6) into a MH algorithm to draw
samples from the full splitting function. The plots of the original histogram, and MH corrected
histogram is given in Figure B.1.

Figure B.1: Probability density of the medium Kgg splitting function, compared to the his-
togram of the dummy splitting function, and the Metropolis-Hastings corrected results. Simu-
lated with 1, 000, 000 points, and an acceptance rate of 0.82.

The qg vertex

Continuing now with the qg splitting function, Eqn. (B.2). With some inspiration from the
previous section, we can propose the following dummy function

Kdummy
qg (z) =

1√
z(1− z)

(B.7)

whose integral can be shown to be,∫
Kdummy

qg (z) dz =

∫
1√

z(1− z)
dz = −2 sin−1(

√
1− z). (B.8)
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When evaluating Eqn. (6.7) we get

R
∫ 1−ε

ε
Kdummy

qg (z) dz =

∫ y

ε
Kdummy

qg (z) dz

R
∫ 1−ε

ε
Kdummy

qg (z) dz = −2 sin−1(
√
1− y) + 2 sin−1(

√
1− ε)

−R
∫ 1−ε

ε
Kdummy

qg (z) dz + 2 sin−1(
√
1− ε) = 2 sin−1(

√
1− y) (B.9)

setting a = −R
∫ 1−ε
ε Kdummy

qg (z) dz + 2 sin−1(
√
1− ε), and finally solving for y

a = 2 sin−1(
√
1− y)

y = 1−
(
sin
(a
2

))2
. (B.10)

Using Eqn. (B.10) to sample values for the dummy function, we can run the MH algorithm as
in previous sections and obtain Figure B.2.

Figure B.2: Probability density of the medium Kqg splitting function, compared to the his-
togram of the dummy splitting function, and the Metropolis-Hastings corrected results. Simu-
lated with 5, 000, 000 points, and an acceptance rate of 0.71.

The qq vertex

Finally we have the gq vertex, of Eqn. (B.3). From this we might try a dummy function such
as

Kdummy
qq (z) =

4

z1/2(1− z)3/2
(B.11)

whose integral is ∫
Kdummy

qq (z) dz =

∫
4

z1/2(1− z)3/2
dz =

8
√
z√

1− z
. (B.12)
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And we can solve Eqn. (6.7)

R
∫ 1−ε

ε
Kdummy

qq (z) dz =

∫ y

ε
Kdummy

qq (z) dz

R
∫ 1−ε

ε
Kdummy

qq (z) dz =
8
√
y

√
1− y

− 8
√
ε√

1− ε

R
8

∫ 1−ε

ε
Kdummy

qq (z) dz +

√
ε√

1− ε
=

√
y

√
1− y

(B.13)

setting a = R
8

∫ 1−ε
ε Kdummy

qq (z) dz +
√
ε√

1−ε
, we can again solve for y,

y =
a2

1 + a2
. (B.14)

Implementing Eqn. (B.14) into the MH algorithm, we will obtain the distribution given in
Figure B.3.

Figure B.3: Probability density of the medium Kqq splitting function, compared to the his-
togram of the dummy splitting function, and the Metropolis-Hastings corrected results. Simu-
lated with 1, 000, 000 points, and an acceptance rate of 0.82.
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