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Abstract in English

The research presented in this thesis characterizes statistical and dynamical aspects

of dominant wind-generated surface gravity waves inferred from field observations in

intermediate-to-deep water. Dominant waves are the most energetic waves in a sea

state, and as such, understanding their behavior is important in both engineering and

geophysical contexts. Large waves impart considerable impact forces on marine struc-

tures such as oil and gas platforms and offshore wind turbines, and these forces may

multiply manyfold when waves break. Wave breaking in deep water, often referred to

as whitecapping, is also a key, though incompletely understood, process regulating the

transfer of momentum, gas and heat across the air-sea interface, and must thus be ac-

curately parameterized in large-scale weather and climate models. Current theory holds

that the wave breaking process is closely linked kinematically and dynamically to the

group structure inherent in ocean surface wave fields. Wave group dynamics is also be-

lieved to govern the characteristic shape and motion of so-called extreme or rogue waves,

whose correct statistical description is central to many offshore activities.

The work presented herein shows, using state-of-the-art stereoscopic imaging techniques

employed at the Ekofisk platform complex in the central North Sea, that large-scale

wave breaking activity in the open ocean is strongly enhanced in dominant wave groups.

The topic of wave group-modulated wave breaking has received considerable attention in

the past two decades from theoretical, numerical and laboratory perspectives; however,

quantitative field studies of the phenomenon remain comparatively rare. The current

results also support the general notion that the dominant waves in a given sea state

regulate the breaking of shorter waves.

The statistics of extreme wave crest elevations is investigated using a novel long-term

laser altimeter data set, also located at the Ekofisk field. The validity of the extreme val-

ues is verified using a newly developed despiking methodology, and the quality controlled

data set, which covers storm events over an 18-year period, is used to investigate the ef-

fects of wave steepness and directionality on crest height statistics. Narrow directional

spread combined with high wave steepness is found to lead to crest height statistics that
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deviate the most from standard linear and second-order formulations.

Finally, geometric wave shape and crest speed dynamics are analyzed for the highest

wave crests encountered in three-dimensional, spatially and temporally resolved segments

of the stereo-reconstructed sea surface fields. The directly measured crest steepness

is found to conform to the classical breaking limit of Stokes, whereas crest steepness

estimated from one-dimensional time series measurements using the linear gravity-wave

dispersion relation are systematically higher. This may be at least in part explained by

the observation that the directly measured crest speed just before, during and after the

moment of maximum crest elevation slows down compared to the linear gravity-wave

phase speed estimate. For the first time, the crest speed slowdown is shown with field

measurements to apply to both breaking and non-breaking dominant wave crests.



Abstract in Norwegian

Denne avhandlingen er basert p̊a forskningsresultat som behandler statistiske og dy-

namiske egenskaper av dominante vinddrevne overflatebølger i åpent hav. Med uttrykket

dominante bølger refererer vi her til de største bølgene, med størst energi, i en gitt

sjøtilstand. Bølgedrevne prosesser er viktige b̊ade i klimasammenheng via atmosfære–hav

interaksjon som drives i stor grad av bølgebrytning, samt for kommersiell og rekreasjonell

offshorevirksomhet p.g.a. risikoen for å bli utsatt for f.eks. ekstreme enkeltbølger. B̊ade

bølgebrytning og ekstrembølgestatistikk er i skrivende stund ufullstendig representert i

teoretiske og numeriske modeller. Arbeidet som presenteres i denne avhandlingen un-

dersøker de ovennevnte temaene ved bruk av bølgeobservasjoner som er primært samlet

inn p̊a Ekofiskfeltet i den sentrale delen av Nordsjøen. Observasjonsdatasettene best̊ar av

en langtidstidsserie av laser-altimeterm̊alinger og stereoskopiske videodata fra Ekofisk,

samt videomålinger av brytende bølger fra et forskningstokt i nordre Stillehavet.

Forskningsresultatene er presentert i artikkelform med to publiserte verk og ett innlev-

ert manuskript. Det blir p̊avist en tydelig forbindelse mellom økt bølgebrytning og

dominante bølgegrupper, et resultat som tidligere har blitt p̊avist i laboratorie- og mod-

elleksperiment, men sjeldent ved bruk av feltobservasjoner. Tredimensjonale stereo-

rekonstruksjoner viser ogs̊a at ekstreme bølgekammer, b̊ade brytende og ikke-brytende,

følger nylig utviklet teori om ikke-lineær bølgegruppedynamikk. Dette funnet har kon-

sekvenser f.eks. for estimering av geometriske og kinematiske bølgeegenskaper s̊asom

steilhet og kamhastighet fra endimensjonale tidsseriem̊alinger. Som følge av en langtid-

sanalyse av endimensjonal bølgestatistikk blir det vist at enrettet, langkammet og bratt

sjø mest sannsynlig leder til ekstreme enkeltbølger med statistiske egenskaper som

avviker systematisk fra ordinære statistiske modeller. Tredimensjonal, kortsiktig tid-

rom-statistikk av ekstreme bølgekammer blir ogs̊a undersøkt v.h.a. stereom̊alingene

fra Ekofisk. Her blir det vist at statistiske modeller utvidet fra endimensjonale til

tredimensjonale bølgefelt i snitt er velegnet til å beskrive forekomsten av de høyeste

bølgekammene, spesielt for relativt store tid-rom segment.
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Chapter 1

Introduction

1.1 Motivation

Surface gravity waves generated by the wind cover the world’s oceans and are central

to a host of phenomena of interest in engineering, geophysical and even recreational

contexts. From an engineering and shipping perspective, large waves pose a safety hazard

to personnel, operations and equipment, especially if their size exceeds the expectations

for given environmental conditions. Tales of the sudden appearance of single waves (or,

at times, groups of waves) much higher than the surrounding waves abound in historical

oceangoing accounts [see, e.g., Olagnon, 2017]. However, direct evidence of such extreme

waves—sometimes, especially in popular reports, called rogue or freak waves—has only

started to emerge in the past three decades as wave observations at offshore oil platforms

and other monitoring stations have become more widespread [Dysthe et al., 2008; Haver,

2004].

Because extraordinarily large waves are by definition rare, the validity of existing statis-

tical models based on empirical data becomes increasingly uncertain as one approaches

the poorly sampled tails of wave and crest height distributions [Adcock and Taylor, 2014;

Dysthe et al., 2008]. This is especially true in severe storm conditions, during which wave

fields become exceedingly nonlinear and, potentially, susceptible to height-amplifying ef-

fects due to increased wave steepness [Janssen, 2003; Mori and Janssen, 2006]. Moreover,

wave and crest height measurements are traditionally obtained at a single point on the

sea surface using wave buoys or probe-like instruments. Recent research, based on novel

measuring techniques, indicates that neglecting the spatial dimension in realistic, direc-

tionally spread and short-crested wave fields may lead to a significant underestimation

of the maximum expected wave amplitude encountered over a finite-sized patch of the
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ocean surface [Benetazzo et al., 2015; Fedele, 2012].

As waves grow steep they begin to break, as evidenced by the increased abundance of

whitecaps, coherent conglomerations of air bubbles, visible on water surfaces with in-

creasing wind speed. Besides multiplying the forces imparted on structures, large-scale

wave breaking also impacts the height distributions of large waves [see, e.g., Donelan

and Magnusson, 2005; Karmpadakis et al., 2019; Latheef and Swan, 2013]. Further-

more, wave breaking in deep water drives many geophysically significant processes at

the air-sea interface, including gas exchange [Deike and Melville, 2018; Woolf, 1997],

mass and momentum transfer [Deike, 2022; Gemmrich et al., 2008; Melville, 1996], sea

spray production [De Leeuw et al., 2011] and turbulent mixing [Agrawal et al., 1992;

Gemmrich and Farmer, 2004; Thomson et al., 2016]. Advancing our understanding

of the energy-dissipating processes related to wave breaking is also important for the

further development of numerical wave prediction models, which provide important in-

formation about the sea state to beachgoers and ship captains alike [e.g., Ardhuin et al.,

2010; Komen et al., 1994]. Increasingly, numerical wave models are also starting to be

coupled to ocean, weather and climate models in order to better parameterize the small-

scale, wave-driven exchange processes that occur at the air-sea interface [Ali et al., 2019;

Belcher et al., 2012; Cavaleri et al., 2012; Li et al., 2019].

Obtaining open-ocean wave measurements in the full range of possible sea states is chal-

lenging both because of the remoteness of the environment and the risks involved in

deploying and recovering instruments, especially in strongly forced conditions [Sullivan

and McWilliams, 2010]. For this reason, in-situ instruments installed on, e.g., offshore

platforms provide unique data sets from conditions in which direct human involvement

would be irresponsible or impractical. For the past few decades, platform-based instru-

ments and offshore wave buoys have provided valuable data on wave and crest height

statistics [Christou and Ewans, 2014; Forristall et al., 2004; Gibson et al., 2014; Häfner

et al., 2021b]. More recently, stereo camera-based wave sensing systems are becoming

increasingly popular additions to offshore platforms thanks to their relatively inexpen-

sive equipment requirements [Benetazzo, 2006; Benetazzo et al., 2012; Bergamasco et al.,

2017; Vieira et al., 2020]. One consequence stemming from the vast amounts of scientific

data collected on offshore platforms is that robust quality control becomes demanding

on both computational and human resources [Cattrell et al., 2018; Häfner et al., 2021a].

This aspect is especially important in extreme event (e.g., rogue wave) analyses, where

the validity of observed extreme data points is critical [Dysthe et al., 2008].
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1.2 Objectives

The research presented herein is aimed at analyzing the prevalence and behavior of dom-

inant sea surface waves in an open-ocean field setting. The observational techniques used

are mainly based on non-intrusive, close-range remote sensing instrumentation installed

on the Ekofisk offshore platform in the central North Sea. While the experimental data

are largely focused geographically on the North Sea region, the exposed offshore environ-

ment gives the results global relevance. The data sets employed range from long-term,

high-frequency point measurements, which allow us to study the statistical character-

istics of extreme wave crest heights, to spatially and temporally phase-resolving stereo

video measurements, which lend themselves to investigating in detail dynamical processes

such as wave breaking and crest speed kinematics as well as the space-time statistical

properties of extreme wave crests.

The scientific results are presented in two scientific publications and one manuscript

under review, referred to hereafter as Papers I–III. The central objectives of the papers

are summarized below.

• Paper I introduces a novel wave-signal despiking methodology targeted at robust

noise detection and differentiation between artificial measurement errors and gen-

uine extreme wave measurements.

• Paper II is a field study comprising measurements from the North Sea and the north

Pacific Ocean, investigating the manner in which wave breaking is modulated by

wave groups.

• Paper III combines long-term crest height statistics from a newly quality-controlled

set of laser altimeter measurements with co-located stereo video measurements

from selected storm events to investigate the effects of wave steepness and direc-

tionality on crest height statistics and crest speed kinematics.

1.3 Structure

The remainder of this thesis is structured as follows. Relevant theoretical concepts are

reviewed in Chapter 2, and the observational data sets and instrumentation are described

in Chapter 3. Chapter 4 summarizes the papers (Papers I–III) that constitute the main

body of work in the thesis, and Chapter 5 provides concluding remarks regarding the

main takeaways and discusses possible future avenues of applying and extending the

work presented herein. Finally, the full texts of Papers I–III are appended in Chapter 6.
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Chapter 2

Scientific background

2.1 Random waves and the wave spectrum

Perhaps the most conspicuous feature of the water surface in any large body of water,

such as the open ocean or a large lake, is the presence of waves of varying size, ranging

from small ripples to larger waves up to several hundred meters in length depending

on the environmental conditions. These waves are generated by the wind [Miles, 1957;

Phillips, 1957] and driven to oscillate about the mean sea level by the restoring force of

gravity, as opposed to other, larger-scale gravity wave phenomena such as tides, tsunamis

or infra-gravity waves which have different generating mechanisms [see, e.g., Kinsman,

1965]. The wind-generated surface gravity waves, or just surface waves for short, are

seemingly irregular in terms of their amplitude and phase, which makes it a natural

choice to represent the wave field in a stochastic manner. To a reasonable approximation,

the sea surface can be modeled as a linear combination of statistically independent (and

therefore uncorrelated), sinusoidal wave components. In mathematical terms, this can

be expressed as [see, e.g., Holthuijsen, 2007]

η(x, y, t) =
M∑

m=1

N∑
n=1

am,n cos (ωm t− km x cos (θn)− km y sin (θn) + ϕm,n), (2.1)

where sea-surface elevation η(x, y, t) is a sum of discrete wave components defined by

their radian frequency ω and wavenumber vector k = (k cos(θ), k sin(θ)), where θ indi-

cates the wave propagation direction. The wave amplitudes a and phases ϕ are stochastic

(i.e., random) variables. Assuming that the sea surface elevation η forms a zero-mean

Gaussian process, the amplitudes a were shown by Longuet-Higgins [1952] to follow the

Rayleigh distribution [Rayleigh, 1880]. The phases, on the other hand, are generally
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assumed to be uniformly distributed between 0 and 2π.

In the linear (i.e., Gaussian) model, for arbitrary water depth d, there exists a unique

relationship between the wave frequency ω and wavenumber magnitude k = |k| given by

the dispersion relation,

ω2 = gk tanh (kd), (2.2)

where g = 9.81m s−2 is the gravitational acceleration. In the shallow-water limit, where

the wavelength L = 2π/k is much greater than the water depth, kd tends to zero and

ω ≈ k
√
gd. This implies that the phase speed c = ω/k in shallow water is independent

of the wavenumber; i.e., shallow-water waves are non-dispersive. Conversely, in deep

water where kd → ∞, the dispersion relation can be approximated as ω ≈
√
gk; i.e.,

deep-water waves are dispersive. This means that the wave phase speed is dictated by

the wavelength, with long waves (low k) travelling faster than shorter waves (higher k).

The total energy of a wave field is given as Etot = ρgη2, where ρ is the water density.

Consequently, the wave energy is proportional to the variance of the wave amplitudes,

Etot ∼ E{a2/2}. Here, E{·} is the expected value operator for stochastic variables. The

energy content of a stochastic wave field η(x, y, t) is therefore commonly represented with

the variance density spectrum E(ω, θ), defined for vanishing increments in frequency and

direction ∆ω and ∆θ as [Holthuijsen, 2007]

E(ω, θ) = lim
∆ω→0

lim
∆θ→0

1

∆ω∆θ
E{1

2
a2}. (2.3)

Formally, the variance density spectrum (often referred to simply as the wave spectrum

for short) is defined as the Fourier transform of the sea surface auto-covariance function

C(τ) = E{η(t), η(t+ τ)}, shown here for the one-dimensional case with η = η(t),

E(f) = 2

∫ ∞

−∞
C(τ) cos (2πfτ) dτ, (2.4)

where f = ω/2π is the wave frequency in units of Hz. The formal definition in Eq.

(2.4) requires stationarity of the stochastic process η(t), in the sense that its auto-

covariance C must depend only on the time difference τ . As a consequence, real-world

wave energy spectra are generally estimated by applying power spectral analysis [Welch,

1967] on time series measurements of the sea surface elevation η(t), often also called

wave records, collected over short-enough periods such that sufficient stationarity of the

environmental conditions can be assumed. In practice, the standard duration of a wave

record is approximately 20 minutes.

Despite the fact that the real sea surface is neither strictly linear nor stationary, the
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wave energy spectrum is, nonetheless, widely used for describing the wave field (i.e., the

sea state) in practical applications. Many characteristic sea state parameters can be

approximated from the moments of the wave spectrum,

mi =

∫ ∞

0

f iE(f) df. (2.5)

For example, the most common measure of the predominant wave height in a given sea

state is the significant wave height Hs, defined as the mean of the highest one-third of a

sorted sequence of crest-to-trough wave heights in a wave record. If the wave spectrum

is narrow-banded in frequency, Hs is very closely approximated by

Hs ≈ 4
√
m0, (2.6)

where the zeroth-order spectral moment m0 is equal to the variance of the wave ampli-

tudes. Due to the finite frequency bandwidth and weak nonlinearity of realistic wave

fields, Hs estimated from an empirical wave spectrum typically overestimates the value

obtained from an ordered list of wave heights by 5–10% [Longuet-Higgins, 1980].

2.1.1 The shape and evolution of the wave spectrum

To leading order, the wave energy content in a given sea state is determined by the

strength, duration and spatial distance (also known as fetch) covered by the wind that

generated the wave field. The combination of these factors leads the wave spectrum to

evolve over time. The evolution of the wave spectrum in deep water can be expressed

with the energy balance equation [e.g., Komen et al., 1994]

dE(f)

dt
= Sin + Sds + Snl, (2.7)

where the left hand side is the material derivative of the time evolution and advection

of the wave energy by the group velocity cg = ∂ω/∂k, and the right-hand side contains

the main source terms affecting the shape of the wave spectrum. The first term on

the right-hand side, Sin, represents the energy input by the wind, the middle term,

Sds, the dissipation of wave energy by wave breaking and the last term, Snl, represents

nonlinear four-wave resonant interactions which redistribute wave energy between wave

components in the wave spectrum [Hasselmann, 1962; Phillips, 1977].

Figure 2.1 uses a sample storm event, the Andrea storm of Nov 2007 [Donelan and

Magnusson, 2017; Magnusson and Donelan, 2013; Malila et al., 2022a], to illustrate the

evolution of the wave spectrum at different stages of the storm. Four points in time are
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Figure 2.1: (a) The evolution of Hs during the Andrea storm on Nov 8–10 2007 as
recorded by a laser altimeter on the Ekofisk platform. (b) Scalar variance density wave
spectra E(f) at four selected points in time during the storm. The dashed line shows
the f−4 theoretical spectral tail slope. (c) The spectra from (b), with frequencies f
normalized by the peak frequency fp and variance densities E(f) normalized by the
variance density at the peak frequency E(fp).

picked in the early stages of the storm (solid lines), near the peak of the storm (dashed

lines), during the decay stage of the storm (dotted lines) and in the late stages of the

storm (dash-dotted lines). As displayed by Figure 2.1(b), the peak frequency of the wave

spectrum starts out at roughly fp = 0.13 at 12:00 on Nov 8, drops down to fp = 0.08

at 00:00 and 12:00 on Nov 9, before increasing somewhat to fp = 0.09 at 00:00 on Nov

10. This down-shifting of the peak frequency (or, equivalently, the growth of the peak

wave period Tp = 1/fp) happens due to the nonlinear wave-wave energy transfer by the

Snl term in Eq. (2.7), which predominantly reshuffles the energy from high frequencies

to low frequencies as the storm progresses. At the end stage of the storm, once the wind

input has significantly decreased and Hs is back down to its value at the beginning of

roughly 4m, we see from Figure 2.1(b) that the peak frequency remains at a much lower

level than during the storm’s early stages. This reflects the change of the sea state from

a developing, windsea-dominated sea state to a more mature sea state with a larger swell
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component. Swell refers to long-period wave components which travel faster than the

wind, and which are therefore not affected directly by the energy input by the wind.

While the majority of the wave energy is transferred towards lower frequencies (i.e., large

scales) by nonlinear interactions, a smaller fraction of the energy is also transferred to

higher frequencies (i.e., smaller wave scales). At mid-to-high frequencies, the wave energy

is ultimately dissipated by wave breaking. Wave breaking in deep water (i.e., unaffected

by depth-induced shoaling) is also commonly called whitecapping. The normalized wave

spectra in Figure 2.1(c) suggest that there exists a similarity scaling law for the shape of

the spectrum at these high frequencies. That is, while the integrated total energy of the

spectrum (i.e., the variance m0) may change, the spectral profile remains approximately

similar. Following Phillips [1958] and Phillips [1985], the high-frequency tail of a windsea

spectrum is commonly referred to as the equilibrium range. In the equilibrium range, the

source terms for wind input, dissipation and nonlinear interactions are balanced, leading

to the universal power-law decay visible in the tails of the spectra in Figure 2.1.

Initially, Phillips [1958] argued on dimensional grounds, excluding the effects of wind,

viscosity and surface tension, that the slope of the frequency spectrum in the equilib-

rium range should be proportional to f−5. The assumption behind this relation was

that wave amplitudes at scales smaller than the spectral peak are constrained by wave

breaking, which occurs when the local crest acceleration exceeds a certain fraction of

the gravitational acceleration g. In essence, Phillips [1958] assumed that the spectral

density is saturated at high frequencies, such that any excess spectral density at high fre-

quencies is immediately dissipated by breaking. However, the Phillips [1958] formulation

does not explicitly account for the effects on spectral shape due to nonlinear wave-wave

interactions. Later, Phillips revised his formulation of the expected power law behav-

ior of the high-frequency spectral tail to be proportional to f−4 [Phillips, 1985]. The

revised formulation was based on an assumed balance and approximately equal mag-

nitude of all three source terms in Eq. (2.7), and was found to better represent the

shapes of measured open ocean spectra. As highlighted by Kitaigordskii et al. [1975],

dimensional analysis can be strictly applied only to spectra represented in wavenumber

space; therefore, the spectral power laws given in terms of frequency f are necessarily

approximations based on an assumption of the validity of the dispersion relation. The

equilibrium and saturation ranges in wavenumber space correspond to spectral slopes

of k−2/5 and k−3, respectively. However, because most wave spectra are estimated from

sea surface elevation time series, the frequency domain representation is the most widely

used in observational wave spectral analysis.

At present, it is widely accepted that the tails of real-world windsea spectra exhibit

both an equilibrium range with decay proportional to f−4, as well as a saturation range



10 Scientific background

proportional to f−5 [Banner, 1990; Kahma and Calkoen, 1992; Lenain and Melville,

2017]. Recent results indicate that these ranges are present even in swell-dominated wave

spectra [Vincent et al., 2019]. The transition from the equilibrium range to the saturation

range is believed to occur rather abruptly at a high threshold frequency corresponding

to an as of yet uncertain multiple of the spectral peak frequency [Björkqvist et al., 2019;

Lenain and Melville, 2017].

The power-law shape of the spectral tail is used in the work presented herein mainly

to validate the quality control methodology introduced in Paper I [Malila et al., 2022a].

In this study, we compare the tails of wave spectra estimated from noise-corrupted raw

signals of four effectively co-located (spaced in a 2.6-m2 array) laser altimeters (see

Section 3.2.1) before and after a novel quality control (QC) procedure. The paper shows

that the power-law shape of the spectral tail is robustly recovered by applying the QC

procedure.

2.1.2 Parametric spectra

A number of large-scale field experiments have been devoted to measuring the shapes of

wave spectra in varying environmental conditions with the aim of defining a self-similar

spectral profile applicable to a wide range of situations. Pierson and Moskowitz [1964]

estimated an ideal spectral shape for fully developed sea states, in which the wind has

blown over an effectively infinite fetch for long enough such that the wave field is in a

state of equilibrium in terms of wind input and wave breaking. The tail of the idealized

Pierson-Moskowitz spectrum is set to follow the f−5 power law of Phillips [1958].

The most widespread spectral shape for developing sea states is based on the Joint North

Sea Wave Project (JONSWAP) experiment [Hasselmann et al., 1973]. The JONSWAP

spectrum builds on the Pierson-Moskowitz spectral shape by adding a peak enhancement

term, which accounts for the peakedness of the spectrum. The spectral peakedness,

essentially the inverse of the spectral width, is known to be related to the group structure

of the wave field, which arises due to the amplitude and frequency modulation inherent

in random, dispersive deep-water waves [e.g., Kimura, 1980]. A narrow, peaked spectrum

is generally associated with longer, more pronounced wave groups [Goda, 1978; Longuet-

Higgins, 1975].
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2.2 Nonlinear waves

While the Gaussian model introduced above provides a reasonable first-order description

of wave properties, real ocean surface waves are in general nonlinear. In physical terms,

wave nonlinearity is represented by the processes on the right-hand side of Eq. (2.7),

that is, dissipative processes such as wave breaking, wave growth by wind forcing, and

nonlinear energy transfer between wave components. Mathematically, nonlinearity man-

ifests as the breakdown of the assumption of statistical independence, and, consequently,

the breakdown of the Gaussian model [e.g., Trulsen, 2006].

The linear, Gaussian theory of wave mechanics builds on the constraint that wave steep-

ness (i.e., the wave slope) is very low, that is, the wave length is much longer than the

wave amplitude. The dimensionless wave steepness, ϵ, is therefore commonly expressed

as the product of the wave amplitude and the wavenumber (i.e., the inverse wavelength),

ϵ = ak. (2.8)

As the wave steepness grows larger, nonlinear effects become more prevalent. The ele-

mentary theory of nonlinear surface gravity waves was developed by Stokes [1847], whose

model of the sea-surface elevation η is based on a perturbation expansion in terms of

ϵ. The Stokes wave can, therefore, be written in terms of so-called Stokes corrections of

increasing order in steepness,

η(x, t) = ϵη1(x, t) + ϵ2η2(x, t) + ϵ3η3(x, t) + ..., (2.9)

where η1(x, t) = k−1 cos (ωt− kx) is the linear harmonic wave component, and higher-

order corrections follow from nonlinear equations of motion and boundary conditions

expanded to higher order in ϵ [see, e.g., Holthuijsen, 2007, p. 140]. The second-order

Stokes wave can be approximated in deep water as [see, e.g., Lamb, 1932]

η(x, t) = a
(
cos (ωt− kx) +

1

2
ka cos [2(ωt− kx)]

)
. (2.10)

The corresponding, second-order, deep-water dispersion relation is given by

ω2 = gk
(
1 +

1

2
a2k2

)
. (2.11)

The Stokes corrections (to any order in ϵ) are so-called bound harmonics, which implies

that their phase speeds correspond to the phase speed of the first (linear) harmonic.

The most noticeable effect of the Stokes corrections is a modification of the wave profile.

The crests of Stokes waves are somewhat sharper and higher than linear crests, and the
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troughs are somewhat flatter and shallower than linear troughs. It has been shown by

Longuet-Higgins [1963] (for deep water) and Sharma and Dean [1981] (for intermediate

water depth) that the interaction of an arbitrary number of second-order Stokes waves

can be expressed by positive and negative interaction terms. The positive interactions

occur due to the superposition of interacting, phase-locked wave components, and lead

to the aforementioned wave profile modification. The negative interactions are related

to the difference in frequency between interacting wave components, and are responsible

for a slow modulation of the water level that manifests as a setdown under large wave

groups.

Uniform Stokes waves are known to be susceptible to resonant interactions due to small

perturbations in the wave form, which, under certain conditions rarely encountered in the

ocean (including a narrow spectrum combined with steep, long-crested waves), may lead

to an energy-focusing instability mechanism [Benjamin and Feir, 1967; Lighthill, 1965;

Trulsen and Dysthe, 1996; Zakharov and Ostrovsky, 2009]. This instability, often called

modulational instability or Benjamin–Feir instability, has been proposed as a mechanism

responsible for wave breaking [Melville, 1982], and also for the generation of wave crests

of extreme amplitude in the ocean [Dysthe et al., 2008; Janssen, 2003]. The mathematical

treatment of high-order nonlinear wave phenomena is outside of the scope of the present

thesis; however, the practical applicability of these high-order theories to real-world wave

fields is discussed in Section 2.2.2 as well as in Paper III of this thesis [Malila et al., 2022,

under review]

2.2.1 Wave breaking

The strongly nonlinear phenomenon of wave breaking is the dominant sink of wave en-

ergy, and comprises the largest contribution to the dissipation source term in the energy

balance equation of Eq. (2.7) [Ardhuin et al., 2010; Komen et al., 1994]. The dynami-

cal description of wave breaking is a complex hydrodynamical problem, and remains the

topic of active ongoing research [e.g., Barthelemy et al., 2018; Craciunescu and Christou,

2020; Derakhti et al., 2020; Pizzo and Melville, 2019; Stringari et al., 2021].

Breaking onset and its relation to wave groups

The onset of wave breaking can be described from geometric, kinematic and dynamic

perspectives [e.g., Perlin et al., 2013]. The underlying principle behind all descriptions is

that the particle velocity at the wave crest exceeds the phase speed of the wave [Stokes,

1880]. In geometric terms, it can be shown that the profile of an idealized (i.e., stationary
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and one-dimensional) Stokes wave in deep water becomes unstable and disintegrates (i.e.,

breaks) when the crest forms a 120◦ angle, corresponding to a local steepness value of

ϵ = 0.443 [Michell, 1893]. The breaking-constrained wave steepness limit was later

extended to intermediate water depth by Miche [1944]. While a number of studies have

found that breaking regularly starts at much lower bulk wave steepness than that implied

by the Stokes and Miche limits [Banner and Peirson, 2007; Holthuijsen and Herbers,

1986], the validity of the Stokes breaking-limited profile in the immediate vicinity of

incipient breaking crests has been verified with open-ocean stereo video measurements

by Schwendeman and Thomson [2017].

The kinematic breaking criterion is generally described as the aforementioned point at

which the horizontal velocity of a particle at the wave crest exceeds the phase speed of the

wave, leading to wave-crest overturning. The observational verification of the kinematic

criterion, especially in field conditions, is complicated by the difficulty of measuring

the particle velocity and ambiguities in defining the phase speed in broad-banded and

directionally spread wave fields [Perlin et al., 2013].

Finally, the classical dynamic breaking criterion states that wave profile overturning

commences when the downward acceleration of the water surface on the front face of a

wave crest exceeds a threshold level [e.g., Babanin, 2011]. Recent research has focused on

dynamical breaking criteria based on the local rate of wave energy convergence [Banner

and Peirson, 2007; Barthelemy et al., 2018; Derakhti et al., 2020; Saket et al., 2017; Song

and Banner, 2002]. Wave group dynamics is also believed to play a key role in the onset

of wave breaking. First observed by Donelan et al. [1972], the amplitude modulation

experienced by wave crests as they propagate through a wave group envelope naturally

steepens the crests periodically, pushing their profile closer to the limiting geometry.

Similarly, the long-wave modulation of shorter wave components is known to impact the

breaking onset of short waves at scales (i.e., frequencies and wavenumbers) above the

spectral peak [Dulov et al., 2002; Longuet-Higgins and Stewart, 1960]. In the recently

developed wave breaking framework of Barthelemy et al. [2018], the wave crest profile

disintegrates as a consequence of intra-group energy focusing. Formally, their wave-crest

breaking criterion depends on the ratio of the local energy flux to the local energy density

normalized by the crest propagation velocity.

Real-world, dispersive and nonlinear temporally evolving wave groups are governed by

complex kinematic and dynamic behavior, as initially described by Banner et al. [2014].

Compared to steady (i.e., non-evolving) wave crests which have constant phase speed,

wave crests in unsteady wave groups tend to slow down as they grow in amplitude

and steepness, followed by an acceleration as they progress past the maximum group

envelope (i.e., wave-group focus). This behavior is in contrast to the steady nonlinear
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theory of Stokes [1847], which predicts an increase of the phase speed with growing

steepness. The crest speed kinematics of realistic wave groups are a key factor in wave

breaking onset through the kinematic breaking criterion, as well as in the breaking crest

length distribution framework of Phillips [1985]. Field observations of the crest speed

slowdown are still relatively rare; however, existing studies have found comparatively

similar results of focused wave crests momentarily slowing down roughly 20% from the

linear phase speed estimate [Banner et al., 2014; Fedele et al., 2020; Schwendeman and

Thomson, 2017, see also Paper III of this thesis].

Field measurements of wave breaking

Large-scale wave breaking events in the open ocean are easily identified visually by

the formation of foamy patches of air bubbles called whitecaps.1 Photographing the sea

surface from above and separating the brightly-colored whitecap features from the darker

unbroken background thus readily allows for the estimation of the fraction of the visible

area that is covered by whitecap foam [Callaghan and White, 2009; Kleiss and Melville,

2011; Scanlon and Ward, 2013]. This quantity is known as the whitecap coverage, and

is typically denoted by W [Monahan, 1971]. Thanks to the relatively straightforward

means of acquisition, the whitecap coverage is a commonly used proxy for quantifying

momentum, gas and heat exchange processes at the air-sea interface [Brumer et al., 2017;

Callaghan et al., 2008; Kleiss and Melville, 2010; Scanlon and Ward, 2016; Schwendeman

and Thomson, 2015]. The detection of whitecaps in optical imagery is also central in

estimating breaking crest speed distributions in the wave breaking dissipation framework

introduced by Phillips [1985].

Most commonly, the whitecap coverage is related to the wind speed U10, measured or

estimated at 10-m height above the sea surface, through a power-law relation [Mona-

han and Muircheartaigh, 1980], above a threshold wind speed. According to the reviews

of historical whitecap coverage data sets provided by Anguelova and Webster [2006],

Schwendeman et al. [2014] and Brumer et al. [2017], the most common W (U10) parame-

terizations either use a tunable power-law coefficient or assume a cubic relation between

the parameters.

The work presented in this thesis addresses the topic of wave group-induced modulation

of wave breaking through field measurements of the whitecap coverage combined with

coherent measurements of the sea-surface elevation from the Ekofisk stereo video data

set (Paper II). Moreover, the crest speed dynamics of breaking and non-breaking focused

1Very small-scale micro-breakers do not entrain air bubbles, and thus do not create an optically
discernible signal [Jessup et al., 1997; Sutherland and Melville, 2013].
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wave groups is investigated, also with the Ekofisk stereo video data, in Paper III. Paper

III also investigates the validity of the geometric steepness limits of Stokes and Miche

on extreme wave elevations using the long-term Ekofisk LASAR data set.

2.2.2 Extreme waves and wave statistics

Waves much taller than the characteristic height of the surrounding wave field, typically

quantified by Hs, are commonly referred to as extreme waves. In the scientific literature,

the term rogue wave is generally applied to waves whose measured crest height C or

trough-to-crest height H exceeds some predefined multiple of Hs. The most common

rogue crest and rogue wave thresholds are [Dysthe et al., 2008]

C = 1.25Hs and H = 2Hs. (2.12)

While the thresholds given in Eq. (2.12) are essentially arbitrary, they represent rel-

atively rare events. For instance, assuming one-dimensional, linear waves distributed

according to the Rayleigh distribution (see Section 2.1), a rogue wave twice the height

of the significant wave height would occur approximately once for every 10,000 waves

[Dysthe et al., 2008]. The statistics of large waves and crests change mainly as a result

of two factors: increasing wave steepness (i.e., nonlinearity) and increasing wave-field di-

mensionality (e.g., extending point time series measurements to space-time) [e.g., Fedele

et al., 2013]. Below, the relevant theory of extreme wave statistics is summarized, first

in terms of classical point statistics and, subsequently, according to more recent theory

on space-time statistics. More detailed reviews of these topics can be found in Paper III,

as well as in the references mentioned herein.

Point statistics

At the time of writing, common means of measuring waves include wave buoys, wave

staffs or range-measuring devices, all of which provide a one-dimensional time series mea-

surement of a single point in the ocean (see Section 2.3.1). The statistical distribution of

1D random, linear wave and crest heights can be shown to follow the so-called Rayleigh

distribution [Longuet-Higgins, 1952]. However, it is widely acknowledged that the lin-

ear approach underestimates the heights of the largest wave crests in storm conditions

characterized by waves of finite steepness [e.g., Dysthe et al., 2008].

Second-order bound-wave effects have been incorporated into crest height distributions

by, notably, Tayfun [1980] and Forristall [2000]. While second-order effects generally
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amplify crest elevations, the crest-to-trough wave heights are essentially unaffected by

second-order effects [Tayfun and Fedele, 2007]. To second-order, the shapes of crest

height distributions are modified from the linear distribution in proportion to the mag-

nitude of the characteristic wave steepness. The Tayfun [1980] model uses the third

centralized statistical moment, i.e., the skewness, to represent the wave steepness, while

the Forristall [2000] model uses a spectral definition based on Eq. (2.8) together with

the Ursell number, which represents the steepening of wave crests due to shallow-water

effects. The existing second-order crest height distributions are based on numerical sim-

ulations due to the lack of a direct method of deriving the distributions theoretically.

However, comparisons with field data generally support the applicability of second-order

models in many typical storm sea states [Buchner et al., 2011; Gibson et al., 2014; Lian

and Haver, 2015; Tayfun and Fedele, 2007, see also Paper III of this thesis]. It may be

noted that crest height models based on third-order approximations have also been for-

mulated in order to explain occasionally observed deviations from second-order theory

[Fedele et al., 2017]. Moreover, Gemmrich and Cicon [2022] recently argue that the oc-

currence of very large waves which considerably exceed the rogue wave thresholds of Eq.

(2.12) may be explained through fourth-order Stokes corrections.

Space-time statistics

Because of the short-crested, directionally spread nature of realistic sea-surface wave

fields, the one-dimensional statistical approach is limited in its ability to fully describe

wave-field characteristics over finite regions such as the areas covered by offshore plat-

forms or large ships. The analysis of the joint spatial and temporal statistical properties

of surface waves builds on the works of Adler [1981] and Piterbarg [1996] on multi-

dimensional Gaussian fields. Space-time effects are in general believed to enhance the

exceedance probabilities of large wave crests in regions of finite area, when compared

against point estimates [Baxevani and Rychlik, 2006; Benetazzo et al., 2015, 2017, 2020;

Fedele, 2012; Fedele et al., 2013; Krogstad et al., 2004]. This enhancement is due both

to the geometric effect of including the often highly focused point of a wave crest maxi-

mum in the observable domain, as well as the higher likelihood of capturing an evolving

wave group at its moment of spatial and temporal focus [see, e.g., Boccotti, 2000].

Wave and crest height distributions have been extended to account for three-dimensional

space-time effects following the extreme value principles of Gumbel [1958] by Fedele

[2012], for linear crest heights, and by Benetazzo et al. [2015], for second-order crest

heights following Tayfun [1980]. Due to the asymptotic fitting of Gumbel-type distribu-

tions, the space-time maximum formulations are generally valid for relatively large (side

lengths comparable to the dominant wavelength) areas [Benetazzo et al., 2021]. The the-
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oretical space-time formulations are reviewed in more detail in Paper III of this thesis.

Paper III also evaluates the validity of the linear and second-order extended crest height

distributions using space-time resolving stereo video measurements collected at Ekofisk

(see also Sections 2.3.2 and 3.2.2 of this thesis).

2.3 Wave measurement techniques

2.3.1 Time domain measurements

Ocean surface waves are traditionally observed by measuring the time evolution of the

sea surface elevation at a fixed point. The most common instruments include wave buoys,

wave staffs and range-measuring remote sensing instruments such as platform-mounted

laser altimeters and radars [see, e.g., Holthuijsen, 2007]. Time series point measurements

are routinely used for estimating bulk parameters such as the significant wave height Hs

or the peak period Tp, both for monitoring and model validation purposes. Zero-crossing

analysis also allows for the estimation of wave-by-wave metrics such as trough-to-crest

wave height and crest height distributions. By choosing a time window that ensures wave-

field stationarity, commonly taken as 20–30 minutes, a mean sea level can be estimated

from the time series, and individual waves can be defined through the mean-zero crossings

of the instantaneous sea-surface elevation. Although commonly used, the zero-crossing

method does not provide a measure of the instantaneous wave height, because the wave

trough and wave crest elevations are measured approximately one wave period apart in

time. The crest height, which is simply the maximum elevation above the mean level

recorded between two zero crossings, can in this sense be seen as a more intuitively

conceptualized variable.

Different instrumentation may also return differing estimates of the mean sea level and

crest elevations [see, e.g., Barstow et al., 2004]. Fixed probes and rangefinders pro-

vide so-called Eulerian measurements of the exact same point in space, where second-

order Stokes nonlinearities materialize as the aforementioned asymmetric wave profiles.

Surface-following, Lagrangian measurements such as freely drifting (i.e., untethered)

wave buoys, on the other hand, spend a relatively longer time near the pointy wave

crests and a shorter time at the flatter troughs, which leads to a higher estimate of

the mean sea level. Because of this, bound-wave nonlinearities are nearly cancelled

out in buoy records [Holthuijsen, 2007]. The sea-surface elevation can also be inferred

from sub-surface pressure sensors, but this technique relies on converting the pressure

measurements to elevation signals using the linear dispersion relation, which in essence
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linearizes the signal [e.g., Forristall, 2000; Holthuijsen, 2007].

Besides providing amplitude estimates, one dimensional temporal wave signals are also

frequently used to deduce geometric and kinematic wave properties such as steepness

and crest/phase speed [Gemmrich and Thomson, 2017; Toffoli et al., 2010]. A limitation

of this approach, discussed at length in Paper III of this thesis, is that the conversion

from the time domain to the spatial domain necessitates the application of the dispersion

relation (either the linear one or a higher-order approximation). If the wave crests indeed

slow down, as predicted and shown by Banner et al. [2014] and others, this approach

may introduce biases in the estimates of wave steepness and crest speeds.

2.3.2 Stereoscopic space-time measurements

The point time series representation provided by wave buoys and laser rangefinders

provides only a limited description of the directionally spread, short crested nature of

real-world surface wave fields. While the bulk directional properties of a wave field can

be estimated from the rotational or translational motion of wave buoys [Herbers et al.,

2012; Kuik et al., 1988], obtaining a phase-resolved representation of the spatial sea sur-

face profile requires a different approach. In general, the reconstruction of wave fields

in high spatial resolution relies on remote sensing techniques such as nautical radars

[Støle-Hentschel et al., 2018], scanning LIDAR [Reineman et al., 2009] or polarimetric

imaging [Zappa et al., 2008]. In recent years, techniques based on stereoscopic digital

photography have increased in popularity thanks to their relatively inexpensive equip-

ment requirements and the publication of open source image processing software aimed

at wave imaging applications [Benetazzo, 2006; Benetazzo et al., 2012; Bergamasco et al.,

2017; Schwendeman and Thomson, 2017; Vieira et al., 2020]. Stereo-reconstructed sea

surface fields obtained from, e.g., offshore platforms or research vessels are typically of

high spatial resolution, and therefore allow for the direct measurement of wave charac-

teristics such as the steepness and crest speed without the need to invoke the dispersion

relation [e.g., Schwendeman and Thomson, 2017].

Stereoscopic imaging is a well-established technique for reconstructing a three-dimensional

structure from a pair of images taken from slightly different vantage points [Klette et al.,

1998]. For static objects, a pair of stereo images may be obtained by moving a sin-

gle camera around an object; however, the constant, rapid movement of the sea surface

wave field requires an effectively instantaneous capture of the same scene with two syn-

chronized cameras. Early efforts of applying stereo photography to the measurement of

surface wave characteristics include the studies of Holthuijsen [1983] and Banner et al.

[1989]. Due to limited image processing capacity at the time, these studies analyzed spa-
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tial wave characteristics obtained from single (still) stereo snapshots of the sea surface.

Modern digital video cameras and computer processing capacity enable the spatial re-

construction of sequences of stereo images acquired at high frame rate, thus resolving

both the spatial and temporal evolution of the wave field in high resolution [Benetazzo,

2006]. Below, we provide a brief overview of the concepts behind space-time wave field

reconstructions from digital stereo video images based largely on the textbook by Szeliski

[2010].

The basic principle behind stereo reconstruction relies upon matching pixels between two

overlapping stereo images, and using triangulation based on the known geometry of the

stereo camera setup to infer the three-dimensional positions of the pixels in real-world

coordinates. A pair of matched pixels in a stereo image pair are related via their epipolar

geometry, as illustrated in Figure 2.2. The line segment from the optical center of the

left camera cL to a 3D point p within the field of view of both cameras appears merely as

a point from the perspective of the left camera. The same line segment viewed from the

right camera appears as the epipolar line lR. The same but mirrored geometry applies

for the opposite perspective. The line connecting the two optical centers, known as the

baseline, passes through the epipoles eL and eR. In fact, all possible epipolar lines pass

through the epipoles, leading to different epipolar planes for the projections of different

points p. As a consequence, the epipoles can be found by searching for the intersection

of all epipolar lines.

Once known, the epipolar geometry of a stereo camera system greatly simplifies the

search for matching pixels between a pair of stereo images. In practical applications,

stereo image pairs are typically transformed such that the epipolar lines of both images

lie parallel to the horizontal axes of the image (pixel) coordinate system (j, i). This

transformation, known as image rectification, ensures that matching pixels between the

two images are found on the same horizontal pixel rows. Formally, the mapping between

pixel coordinates on an epipolar plane is given by the epipolar constraint,

xT
RExL = 0, (2.13)

where the superscript T stands for transpose and E = t×R is the essential matrix, which

is composed of the cross product of the 3× 1 translation vector t and the 3× 3 rotation

matrix R relating the geometric composition of the stereo camera setup. This extrinsic

geometry is generally estimated through an external calibration or feature-matching

process (see Section 3.2.2).

The epipolar constraint, as described by Eq. (2.13), assumes that the line segments

between the camera optical centers and 3D points p are projected onto the image plane
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Figure 2.2: Schematic of the epipolar geometry of a stereo camera system. cL and cR are
the optical centers (i.e., principal points) of the left and right cameras, respectively. (j, i)
denote pixel coordinates on the camera image planes (only drawn on the right camera
image plane), and (X, Y, Z) denote world coordinates. The line cL–p is seen as a point
from the perspective of the left camera; the same line is seen as the epipolar line lR
(traversing between the epipole eR and the point xR on the right image plane) from the
perspective of the right camera. The gray triangular plane illustrates the epipolar plane.

undistorted through an infinitesimal opening (i.e., aperture). This assumption forms the

basis of the pinhole camera model. In practice, a modern digital camera consists of a

charge-coupled device (CCD) sensor to register the arrangement of incoming photons as

well as a lens to focus light rays onto the CCD sensor. In general, the configuration of the

CCD sensor (representing the image plane) and lens are not perfectly aligned as assumed

by the pinhole model. This configuration is described by the focal length and principal

point, also collectively called the intrinsic parameters. The intrinsic parameters must

be estimated for each separate camera–lens combination through an intrinsic calibration

process (see also Section 3.2.2). The intrinsic calibration seeks to estimate the intrinsic

matrix K, defined as

K =

fx 0 cx

0 fy cy

0 0 1

 , (2.14)
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where fx and fy are measures of the focal length (i.e., the distance from the optical center

to the image plane) in pixel units normalized by the pixel width and height, respectively,

and cx and cy are the pixel coordinates of the principal point (i.e., the optical center). In

a camera-centric coordinate system, the principal point is typically taken as the origin,

while the focal length represents the distance from the optical center to the image plane.

In most real-world applications, the line segments (i.e., light rays) from a scene to the

image plane pass through a camera lens instead of an infinitesimal pinhole. The lens

introduces distortions to the projection of the pictured scene onto the image plane. One

type of lens distortion causes straight lines to appear bent; this is commonly referred to

as radial distortion. Another type of distortion due to the misalignment of the lens and

the image plane is known as tangential distortion. Commonly used intrinsic calibration

algorithms, therefore, typically also estimate coefficients to correct for the radial and

tangential distortion (contained by the vectors kr and kt) in the pixel coordinates [e.g.,

Heikkilä and Silvén, 1997].

Once the extrinsic geometry of the stereo camera setup is known through the essential

matrix E, and the intrinsic parameters of both stereo cameras have been estimated,

the mapping between pixel coordinates of the image plane [j, i]T (corrected for lens

distortion) and world coordinates X = [X, Y, Z]T is given by
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Here, the last two terms describe the transformation between camera-centric and world

coordinates. Thus, the geometric constraint implied by Eq. (2.15) can be used to

triangulate the 3D positions of matching pixels detected in a pair of stereo images. The

triangulation process is based on the disparity principle, which states that the 3D depth

of a point is inversely proportional to the horizontal distance between matching points

in pixel space (assuming rectified stereo images where matching pixels are found on

horizontally aligned epipolar lines).

The 3D reconstruction of a scene from a pair of stereo images described above returns in

essence a cloud of 3D positions for each matched pair of pixels. To infer useful wave-field

characteristics from stereo images of the sea surface requires additional knowledge of

the mean sea level about which the depicted wave field oscillates. Following Benetazzo

[2006], the mean sea level can be estimated as the mean plane of a large number of

sequential 3D point clouds (corresponding to at least 10 characteristic wave periods).

The orientation of the mean plane can then be used to further rotate the point clouds
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into Earth-referenced world coordinates in which the Z axis is aligned with the direction

of the gravitational acceleration. This mean-plane estimation concept is also applied in

the Waves Acquisition Stereo System (WASS) software [Bergamasco et al., 2017] used

for stereo wave field reconstructions in the scientific analysis presented in the current

thesis (see Section 3.2.2).



Chapter 3

Data and methods

3.1 Wave observations at the Ekofisk field – a his-

torical perspective

The Ekofisk platform complex is the site of the earliest commercial oil extraction activity

on the Norwegian continental shelf [Hanisch and Nerheim, 1992]. Oil exploration activ-

ities were launched by Phillips Petroleum (now ConocoPhillips), which was granted oil

exploration commission to the area—known in technical terms as block number 2/4 in

the Norwegian concession system—by the Norwegian government in the 1960s. The com-

mercial extraction of oil was initiated in 1971 from a mobile platform named Gulftide.

The first bottom-mounted platform (fixed to the seabed at approximately 70 m depth),

the Ekofisk 2/4 A platform, was built shortly thereafter and began oil production in

April 1974. A second fixed platform, Ekofisk 2/4 B, was built in 1972 several kilome-

ters to the north of 2/4 A; production at 2/4 B commenced in October 1974. In 1987,

an accompanying water injection and housing platform, 2/4 K, was built next to 2/4 B

and connected to it with a footbridge. At the time of writing, the main Ekofisk plat-

form complex is located 2.3 km south of the 2/4 B and 2/4 K platforms, which form the

focus of the observational data sets in this thesis.

The exposed location of the Ekofisk field in the central North Sea puts high demands on

the monitoring and forecasting of environmental conditions—especially strong winds and

high waves—which may pose a danger to personnel and operations at the field. Early

monitoring efforts from before the 1980s are poorly documented; however, the Norwegian

Meteorological Institute archives contain environmental reports starting in January 1980.

A sample wind and wave time series from a March 1980 report is shown in Figure 3.1.

The wave measurements were made with a Datawell Waverider non-directional wave
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buoy, and the wave model predictions were made with the first-generation NOWAMO

numerical wave model, which simulated the energy content of the wave field based on

wind information derived from digitized air pressure maps [Haug, 1968].

Figure 3.1: Monthly time series from March 1980 of wind speed [knots](top panel),
wind direction [degrees, coming from] (second panel), wave height [dm] (third panel)
and wave period [s] (bottom panel) at the Ekofisk platform, compiled by the Norwegian
Meteorological Institute. The thick lines are observed values from a Datawell Waverider
wave buoy, and thin lines are model predictions generated with the NOWAMO numerical
wind and wave model.

The earliest archived environmental reports coincide historically with the March 27 1980

accident in which the Alexander Kielland housing platform in the Ekofisk field collapsed

in heavy seas, resulting in 123 deaths. The platform collapse was determined to be

caused by fatigue failure due to a weld defect in the supporting structure [Moan, 1985],

and the prevailing 16–20 m/s winds and 6–8 m waves (see Figure 3.1) combined with

cold water and air temperatures made the rescue efforts extremely challenging.1

In 1984, it was discovered that the seabed on which the platforms were mounted had

subsided by as much as 4 m as a result of the oil extraction [Sulak, 1991]. To avoid

damage by large waves overtopping the subsided structures, most platform legs were

1https://www.ptil.no/en/technical-competence/explore-technical-subjects/features/

2020/worst-that-can-happen/; accessed on June 10 2022
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raised by 6 m in a costly operation in 1986. Elevation of the 2/4 T storage and water

treatment platform was deemed too costly and instead it was decided to build a 106-m

high protective concrete wall (completed in 1989) around the platform. At the time of

writing, the subsidence continues, albeit at a slower rate due to water injection, with the

seabed level approximately 7 m below its original level in 1971.2

On December 12 1990, a severe storm hit the Ekofisk area. The maximum significant

wave height (i.e., the average height of the highest one-third of the waves recorded) was

measured by the Waverider buoy as 13.2 m [Magnusson et al., 2008]; to date, this is the

highest value ever observed at Ekofisk. In the aftermath of the storm, which did not re-

sult in fatalities, the offshore industry expressed increased interest in robust observation

systems and accurate forecasts of extreme sea states. In response, the Norwegian Mete-

orological Institute was commissioned to provide forecasts of the wave height in extreme

sea states through the Ekofisk eXtreme Wave Warning (EXWW) project. Updated ev-

ery 3 hours during storm events, the close-range wave height forecasts were aimed at

allowing sufficient time for the evacuation of personnel from the platforms if faced with

dangerously high sea states. The observational systems were also updated to allow for

more reliable forecast validation, as documented by Magnusson et al. [2008]. Two pre-

existing range-measuring altimeters were found to suffer from lee effects from the 2/4

T tank under northerly wave directions, and new Optech laser altimeters were installed

in more exposed locations in 1995. An X-band marine radar was also installed on the

helideck of the 2/4 K platform in 1995; this instrument has since been used to provide

directional wave spectra through the commercial WaMoS systems [Reichert et al., 1999].

More recent instrument additions to the 2/4 K–B complex are described in Section 3.2

below.

3.2 Ekofisk wave data sets

The observational analysis presented in the papers included in this thesis (Papers I–III) is

largely focused on two instruments located on the Ekofisk 2/4 K–B complex (Figure 3.2).

These two instruments, the infrared laser array (LASAR) and the stereo camera system,

are described in detail below. A third instrument, the X-band marine radar providing

directional wave spectra through the WaMoS II system, located on the roof of the 2/4 K

platform, has also been used for validation purposes, but does not constitute an integral

part of the analysis. Paper II [Malila et al., 2022b] uses wind measurements from the 2/4

L platform in the main Ekofisk platform complex 2.3 km south of 2/4 K–B. Moreover,

Paper III [Malila et al., under review 2022] uses the recently published NORA3 wave

2https://snl.no/Ekofisk; accessed on June 10 2022.
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Figure 3.2: Aerial photograph of the Ekofisk 2/4 K (left) and 2/4 B (right) platforms
(photo copyright owned by Husmo foto/ConocoPhillips/Norsk oljemuseum; reprinted
with permission). The approximate locations of (A) the LASAR array and (B) the
stereo camera system are marked by the squares. The inset map shows the location of
the Ekofisk field in the central North Sea.

model hindcast covering the North Sea region [Breivik et al., 2022; Haakenstad et al.,

2021] to estimate directional wave parameters. Wave height estimates from an earlier,

lower-resolution hindcast [NORA10EI; Haakenstad et al., 2020] were also included in

Paper I [Malila et al., 2022a]. Descriptions of the hindcast models can be found in the

articles referenced herein, and will not be detailed here.

3.2.1 Laser altimeter array (LASAR)

Roughly a decade after the two Optech laser altimeters were installed at the main Ekofisk

complex, the decision was made to replace one of them with a new instrument. The

platform operator ConocoPhillips Norway ASA (COPNO) consulted Mark Donelan (at

the University of Miami) and Anne Karin Magnusson (at the Norwegian Meteorological

Institute) for the optimal location and type of instrument to be installed. The consultants

recommended installing an array of downward-pointing laser altimeters on the footbridge
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Figure 3.3: Housings of the four laser altimeters in the LASAR instrument, located on
the footbridge connecting the Ekofisk 2/4 B and 2/4 K platforms. Photo by the author.

between the 2/4 K and B platforms. The array configuration would provide independent

sea-surface elevation profiles, and could also be used to estimate the directional properties

of the wavefield from the phase differences in the wave profiles recorded by the individual

altimeters [Donelan et al., 1996]. The suggestion was accepted, and the final 2.6 × 2.6

m2 altimeter array (LASAR) consisting of four Optech (now Teledyne Optech) Sentinel

3100 laser altimeters was made operational in February 2003 (see Figure 3.3).

The LASAR altimeters operate in the infrared band with a signal wavelength of 905 nm,

and provide measurements of the instantaneous distance to the sea surface by convert-

ing the time of flight of discrete pulses emitted, reflected by the sea surface, and received

by the instrument into range distance using the speed of light. The range measurements

can be converted to sea-surface elevation by removing the mean level (estimated over

a period of stationary wave conditions) from the signal. The operational sampling fre-

quency, after built-in processing of raw signals emitted at 2 kHz, is 5 Hz, and data is

acquired continuously throughout day and night. The 5-Hz data from all four altimeters

is archived on MET Norway’s servers. However, for operational purposes (such as fore-

casting and model validation), MET Norway has historically used a 2-Hz down-sampled

signal from only one of the altimeters. The main reason for this is that the raw 5-Hz

signals are often corrupted by artefacts such as spikes (i.e., unphysical range measure-
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ments) and dropouts (i.e., missing measurement points), which cause errors that can be

difficult to both detect and correct in the observed wave profiles and spectral parameters

derived therefrom. Invalid measurements in the LASAR data appear to occur most of-

ten in calm sea states, which suggests that increased specular reflection by a smooth sea

surface causes errors in the timing of received pulses [Magnusson and Donelan, 2013].

It is also known that infrared pulses at wavelengths used by the LASAR altimeters are

sensitive to absorption and reflection by atmospheric aerosols (e.g., sea spray) [Toffoli

et al., 2011], which may explain the sporadic occurrence of artefacts also in more strongly

forced conditions.

Some studies [Donelan and Magnusson, 2017; Magnusson and Donelan, 2013] have been

made of the full 5-Hz LASAR observations for analyses of extreme waves, but those have

only focused on storm events of limited duration, which make it feasible to quality control

the data manually. Because extreme wave analysis by definition focuses on rare events,

the inclusion of undetected spikes in a data set can significantly skew the conclusions

drawn from the analysis [Dysthe et al., 2008]. Gramstad et al. [2018], who despiked

(using a combination of automated and manual verification) a full year’s worth of down-

sampled 2-Hz LASAR data from 2016, found that only 42% of the included 20-minute

records were of adequate quality to be used for statistical extreme wave analysis.

In an effort to exploit the full LASAR time series, the author implemented a number of

existing despiking algorithms and applied them on the raw 5-Hz signals. Several of the

algorithms implemented were originally designed to be used on turbulent velocity time

series [Goring and Nikora, 2002; Mori et al., 2007; Wahl, 2003]. It was concluded that,

while some of the algorithms were quite effective in “de-noising” the signals, the spike

detection methods were generally unable to distinguish between large spikes and valid

high wave crests. Consequently, processing the raw LASAR data in an unsupervised

fashion with these algorithms was considered problematic due to the high likelihood of

rejecting a large number records containing real extreme wave measurements. Further-

more, the high prevalence of noise corruption in the LASAR signals, especially in low

sea states, essentially ruled out the implementation of semi-automated quality control

measures aimed at quality controlling long wave measurement time series [Cattrell et al.,

2018; Christou and Ewans, 2014; Gramstad et al., 2018].

To address the limitations of existing algorithms, Paper I [Malila et al., 2022a] presents

a novel approach to wave record despiking. The new method, which builds on work by

Bohlinger et al. [2019], was shown to be highly efficient in distinguishing between spikes

and valid extreme waves in the LASAR 5-Hz signals. While the method was validated

with measurements from the Ekofisk LASAR instrument, it can in all likelihood be

applied successfully to measurements from other similar sensors. For Paper III, the full
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5-Hz LASAR time series spanning 2003–2020 was quality controlled with the method

introduced in Paper I. Moreover, all four co-located LASAR signals were used to verify

the shapes of the most extreme waves and wave crests in the data set. The full quality-

controlled LASAR time series will be made publicly available on a MET Norway server

during the review process of Paper III.

3.2.2 Stereo video camera system

The stereo camera (SC) wave observation setup on the Ekofisk 2/4 Kilo (EKOK) oil

platform located in the central North Sea was installed in December 2017 in a joint effort

by the Norwegian Meteorological Institute (MET Norway) and the National University

of Ireland, Galway (NUIG). The installation was funded by ConocoPhillips Norway ASA

and Equinor ASA through the Joint Industry Project StereoWave. The SC setup was

largely designed, built and installed by and under the supervision of Brian Scanlon, who

at the time was a postdoctoral researcher at NUIG.

Setup

The EKOK SC setup (Figure 3.4) consists of two PointGrey (at present known as FLIR)

PGE Blackfly 50S5C cameras equipped with 2/3” Sony Pregius CMOS sensors. Initially,

the cameras were fitted with Computar M1614-MP2 2/3” 16 mm f1.4 lenses, but these

were replaced with Edmund Optics 12 mm f1.4 MegaPixel lenses in February 2019.

The cameras are contained in custom-made housings mounted 5.11 m apart on a north-

northwest-facing railing approximately 28 m above mean sea level. The camera mounts

use Delrin ball bearings, which allow for adjustments of the yaw and pitch levels of the

camera views. From December 2017 until August 2019 the stereo cameras were inclined

35◦ from nadir (i.e., the downward-pointing vertical) and pointed 4.625◦ towards one

another in the horizontal plane. The cameras were levelled using levels and inclinometers

during installation in 2017, and the yaw values were calibrated using lasers. On August

7 2019, the yaw angle of both cameras was set to zero (so that the cameras point straight

forward perpendicular to the railing on which they are mounted) and the viewing angle

was raised to approximately 70◦ from nadir such that the upper edges of the stereo frames

lie just below the horizon (to avoid exposure problems due to light from the sky). The yaw

angle adjustment was performed in order to simplify the SC rig geometry (minimizing

the rotational asymmetry between the cameras), and viewing angle adjustment was

performed in order to maximize the sea-surface area covered by the overlapping stereo

camera footprints. In the current work, only the latest (i.e., post-August 2019) SC
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setup with 12 mm lenses and large field of view has been used. This choice was largely

motivated by access to high-quality camera calibration materials for the latest SC setup

(described in more detail below).

Figure 3.4: The Ekofisk stereo camera system in February 2019. Note that the stereo
camera viewing angles in this photograph are steeper than in the current (post-August
2019) configuration used in this work. The white frame in the background belongs to
the footbridge connecting the K and B platforms which houses the LASAR instrument.
Photo by the author.

The stereo cameras are controlled by a dedicated PC located on-site at EKOK. The

PC is connected via Ethernet cables to the local intranet and the two cameras, and

can be accessed via remote login by MET Norway and NUIG. The camera triggering

is controlled by an Arduino Uno microcontroller attached to the PC by USB. The PC

is fitted with five removable 5 TB hard drives onto which the SC image frames are

stored continuously in cyclic fashion. In the current configuration, the stereo frames are

acquired and stored at a frame rate of 5 frames per second (fps) and at a resolution of

5 megapixels (MP). Timestamps at microsecond resolution are embedded in the image

pixels and also saved in the individual image filenames. The acquisition system is hard-

coded with daily updating daylight length, such that stereo frames are only acquired

during daylight hours. When one hard drive is full, the system automatically switches to

over-writing frames onto the following hard drive in sequence. Depending on the time of

year, this system leaves MET Norway and NUIG with between approximately nine days

and two weeks (depending on available daylight) to offload selected stereo frames onto
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a separate hard drive before the images are overwritten. In a typical scenario, stereo

frames are offloaded in continuous batches of approximately 1–10 hours following the

passage of a wave event of interest.

The main limitations of the current SC system are twofold. First, the current maximum

data offload bandwidth is 100 Mb/s, which makes the offload process slow when the

data batches are large. Second, due to the relatively high 5-fps frame rate and 5 MP

single-image resolution, the amount of data quickly grows very large, which puts high

demands on the storage servers. The SC system also intermittently suffers from minor

malfunctions, such as recurring lost stereo frames. During an eight-day test period in

January 2020, the daily stereo frame loss was 7–24%. However, subsequent tests have

shown lower daily loss rates of around 1 %, suggesting that the issue is time-varying.

The exact cause of the missing frames is as of yet unknown; however, it may be related

to timing issues due to the physical transfer of image data over approximately 100 m of

cable from the cameras to the hard drives. Other potential causes include the mismatch

timestamping of individual image pairs due to buffering lag time and variable exposure

times between the two stereo cameras due to automatic exposure settings. The stereo

frame losses generally occur sporadically, and long gaps (more than 1–2 consecutive

missing frames) are uncommon.

The stereo image acquisition is largely controlled with custom C++ code (courtesy of

Brian Scanlon) wrapped around FlyCapture, the commercial image acquisition software

provided by the camera manufacturer. While the triggering of the stereo cameras occurs

simultaneously through the Arduino Uno microcontroller, the image exposure of both

stereo cameras is set to automatic mode, in which the shutter time and gain levels

are optimized independently by each camera. Due to the close proximity and identical

makeup of the stereo cameras, however, the automatic exposure settings generally lead to

very similar image quality between the two cameras. Nevertheless, strict synchronization

of the exposure settings may in the future help alleviate the intermittent issues regarding

frame loss and other sporadic timing errors.

Calibration

The intrinsic calibration of the stereo camera lenses is a crucial step in the success-

ful application of stereo imagery for sea-surface reconstruction [Benetazzo et al., 2012].

However, if performed in an organized manner and in a controlled environment, the in-

trinsic calibration is a fairly straightforward task thanks to the large number of publicly

available tools which can be used to facilitate the process. Traditionally, the estima-

tion of the geometry of the stereo camera setup has also required a separate extrinsic
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calibration; however, recent stereo processing software such as the open source Wave

Acquisition Stereo System (WASS) pipeline (see below) estimates the extrinsic param-

eters automatically. For this reason, we focus here on describing the estimation of the

intrinsic parameters for the Ekofisk SC setup.

(a) (b)

Figure 3.5: Example stereo frame (left-camera frame in (a), right-camera frame in (b))
from the unsuccessful December 2017 field calibration.

After the initial installation of the SC setup on EKOK in late 2017, a field calibration was

conducted on 20 December 2017 by filming a RIB boat with a large checkerboard pattern

on board within the field of view of the SC setup (Figure 3.5). These images were planned

to be used for both intrinsic and extrinsic calibration of the cameras. In hindsight, it

was found that the distance from the cameras to the calibration targets was too large for

accurate detection of the checkerboard pattern, leading to highly inconsistent estimates

of the intrinsic parameters. The sequence of images acquired during the December 2017

calibration exercise was, therefore, not suited to be used for calibration purposes.

A new calibration exercise was performed on August 7 2019 on the deck of the EKOK

platform using a checkerboard pattern consisting of 10×10 squares of 81 mm side length

printed on a rigid aluminum board as a calibration target (Figure 3.6). On this occasion,

care was taken to hold the calibration target close (within approximately 2–5 m) to the

cameras, such that the checkerboard corners could be resolved with high accuracy. The

calibration target was also tilted at various angles and positions relative to the cameras

in order to allow a robust estimation of all six rotational degrees of freedom. The stereo

camera calibration was performed using a subset of images from the August 7 2019

calibration exercise with Jean-Yves Bouguet’s Matlab toolbox,3 which implements the

calibration method of Heikkilä and Silvén [1997]. The resulting intrinsic parameters for

both stereo cameras, applied to all stereo reconstructions in the current work, are listed

3http://robots.stanford.edu/cs223b04/JeanYvesCalib/index.html; accessed on June 10 2022.
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(a) (b)

Figure 3.6: Sample left-camera frame from the successful August 7 2019 on-deck intrinsic
calibration at Ekofisk. (a) is the original raw frame, and (b) is the undistorted version
of the same frame, in which the distortion correction has been done using the intrinsic
parameters listed in Table 3.1.

in Table 3.1.

Left camera Right camera
Focal length [fx, fy] (px) [3475, 3472] [3486, 3481]
Principal point [cx, cy] (px) [1232, 1073] [1246, 1031]
Radial distortion kr [-0.0859, 0.2999, 0.0017] [-0.0899, 0.3411, -0.0001]
Tangential distortion kt [0.0007, 0.0000] [0.0001, 0.0000]

Table 3.1: Intrinsic parameters of the Ekofisk stereo cameras from the August 2019
calibration.

Processing

The stereo images acquired by the Ekofisk SC system were processed with the open-

source Waves Acquisition Stereo System (WASS) software developed by researchers at

the Institute of Marine Sciences (ISMAR) and the Ca’ Foscari University in Venice, Italy

[Benetazzo, 2006; Benetazzo et al., 2012; Bergamasco et al., 2017]. WASS is specifically

developed for the purpose of wave field reconstruction from stereo video imagery, and

consists of a streamlined pipeline including processes for automated extrinsic calibration,

mean sea-plane estimation and dense 3D point cloud reconstruction. The main features

of WASS and its application to the Ekofisk stereo video imagery are summarized here; for

a more complete description of the processing software, the reader is advised to consult

the references herein.

An innovative feature of WASS is its automated algorithm for estimating the extrinsic

parameters (i.e., the essential matrix E in Eq. (2.13)) of a stereo camera setup without
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requiring a complex and potentially hazardous field calibration (see Figure 3.5). The

automatic extrinsic calibration consists of two subprocesses called wass-match and wass-

autocalibrate. The matching process involves selecting a random subset of stereo frame

pairs from the full sequence of stereo frames provided (a typical stereo sequence duration

is similar to that of a conventional wave record, i.e., approximately 20 minutes), detecting

a set of robust features in each frame pair, and matching the defined features following

the approach of Albarelli et al. [2012]. The matched features are then used to estimate

the extrinsic parameters for each pair of stereo frames. The subsequent auto-calibration

process uses all matched features to optimize the global extrinsic parameters of the SC

system.

Figure 3.7: (a) Sample left-camera raw stereo frame from a stereo video acquisition on
the Ekofisk platform on March 28 2020. (b) The WASS 3D reconstructed point cloud
projected over the raw image in (a). (c) The Earth-referenced regular grid corresponding
to the point cloud in (b), cropped to a range between 50 and 200 m from the cameras
(in the Y direction). The color scale in (b) and (c) represents the sea-surface elevation
η.

Once the extrinsic parameters have been estimated (and provided that the intrinsic

parameters of the stereo cameras are known), the following subprocess in the WASS

pipeline is called wass-stereo. In this stage, epipolar geometry is used to reconstruct dense

3D point clouds for each stereo frame pair by matching and triangulating all common

pixels in the sequence of stereo frames provided. This process is independent for each

stereo frame pair, which makes it straightforward to parallelize the processing. After the

stereo reconstruction, a subset of 3D point clouds is chosen randomly for the estimation

of the mean sea plane. The mean sea plane was estimated within a limited, close-range

sub-region of the reconstructed scene to avoid the influence of potentially erroneously

reconstructed 3D positions in the far field. Finally, the orientation of the mean sea

plane is used to reproject the point clouds to an Earth-referenced world coordinate

system, followed by a gridding operation resulting in regularly spaced (X, Y, Z) sea

surface elevation grids at 0.5-m horizontal resolution (Figure 3.7).

The Ekofisk stereo video data set was processed on the computing nodes of the MET
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Norway’s post-processing infrastructure (PPI). Pre and post-processing routines and

technical documentation for the processing of stereo imagery from the Ekofisk SC system

have been published by the author at https://github.com/mikapm/wass-pyfuns.

Validation

The Ekofisk SC system is central in the analysis of Papers II [Malila et al., 2022b] and III

[Malila et al., under review] of the current thesis. These studies use nearly the identical

set of stereo video data: in Paper II, 28 20-minute space-time sea-surface reconstructions

from 5 separate days in the winter season of 2019–2020 are used; in Paper III, the same

data set is used with the addition of one 20-minute segment (starting at 10:40 UTC

on February 11 2020) which was processed after Paper II was submitted. Table 3.2

summarizes selected one-dimensional (frequency) spectral parameters estimated for the

stereo video acquisition periods from three independent observational instruments (all

located on the 2/4 K platform): the quality-controlled LASAR signals (L), virtual wave

staffs from the stereo video data (S) and the X-band WaMoS radar spectra (W). Hourly

output from the nearest grid point in the NORA3 hindcast (N) is also included in the

comparison. The 1D parameters compared are the significant wave height Hs (Eq. (2.6)),

the mean wave period Tm = m0/m1 and the spectral steepness ϵ =
√
2m0km, where

√
2m0

is taken as an estimate of the wave amplitude (following Serio et al. [2005]) and the mean

wavenumber km is estimated from Tm using the linear dispersion relationship (2.2). It

should be noted that Table 3.2 is a more comprehensive reproduction of Table 1 of Paper

III, which only shows daily averages and omits the WaMoS measurements. The stereo

video frequency spectra were also validated graphically against LASAR and WaMoS in

Fig. 2 of Paper II.

The comparison of 1D spectral parameters displays overall consistency, with some de-

gree of scatter, in the spectral estimates from the different sources. Importantly, none

of the instruments is focused on the exact same patch of ocean. Apart from poten-

tial systematic differences between the sensors’ sampling properties, statistical sampling

variability (both spatial and temporal) may therefore explain a large part of the vari-

ability in the spectral parameters seen in Table 3.2 [Bitner-Gregersen and Hagen, 1990;

Bitner-Gregersen and Magnusson, 2014; Donelan and Pierson, 1983].

The directional spectral properties of the Ekofisk SC system are validated against WaMoS

and NORA3 frequency–directional spectra E(ω, θ) in Tables 3.3 and 3.4. These two

tables are more complete (i.e., not averaged) versions of Table 2 in Paper III. Due to

the limited overlapping footprint of the stereo cameras, which prevented resolving the

largest spatial scales (i.e., wavelengths) during the majority of the acquisition periods, the
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Hs [m] Tm [s] ϵ
Date Record L N S W L N S W L N S W

2019-12-09 12:00 6.07 5.96 5.48 5.96 8.01 8.59 8.06 8.37 0.13 0.11 0.12 0.12
2019-12-09 12:20 6.06 5.96 6.71 6.05 8.21 8.59 9.37 8.59 0.13 0.11 0.11 0.12
2019-12-09 12:40 6.38 6.52 6.81 6.63 8.53 9.08 9.02 8.85 0.12 0.11 0.12 0.12
2019-12-09 13:00 7.18 6.52 6.19 7.05 9.03 9.08 8.85 8.97 0.13 0.11 0.11 0.12
2019-12-09 13:20 7.46 6.52 6.46 6.27 9.37 9.08 8.96 8.80 0.12 0.11 0.11 0.12
2019-12-09 13:40 6.32 6.53 7.02 6.07 8.88 9.18 9.26 8.68 0.11 0.11 0.12 0.11
2019-12-09 14:00 6.82 6.53 6.54 6.64 8.98 9.18 8.67 8.78 0.12 0.11 0.12 0.12
2020-01-04 09:00 5.84 5.09 5.57 5.72 9.71 8.70 8.97 8.66 0.09 0.10 0.10 0.11
2020-01-04 09:20 6.40 5.09 5.90 5.27 10.20 8.70 9.35 8.40 0.09 0.10 0.10 0.11
2020-01-04 09:40 5.41 4.98 5.46 5.50 9.46 8.73 9.25 8.34 0.09 0.09 0.09 0.11
2020-01-04 10:00 5.36 4.98 5.77 6.26 9.19 8.73 9.56 8.70 0.09 0.09 0.09 0.12
2020-01-04 10:20 5.77 4.98 5.42 5.70 9.73 8.73 9.11 8.53 0.09 0.09 0.09 0.11
2020-01-04 10:40 5.74 4.81 5.23 5.28 9.22 8.74 8.80 8.26 0.10 0.09 0.10 0.11
2020-01-04 11:00 5.06 4.81 5.99 5.04 9.12 8.74 9.94 8.17 0.09 0.09 0.09 0.11
2020-01-04 11:40 5.76 4.60 5.10 5.60 9.74 8.75 8.93 8.40 0.09 0.09 0.09 0.11
2020-02-11 10:00 5.56 5.11 5.35 5.11 7.99 7.50 7.99 7.98 0.12 0.13 0.12 0.11
2020-02-11 10:40 5.59 5.23 5.57 5.78 8.06 7.45 8.00 8.00 0.12 0.13 0.12 0.13
2020-02-11 12:00 5.08 5.39 5.89 5.31 7.94 7.56 8.04 8.12 0.11 0.13 0.13 0.11
2020-03-28 15:00 2.85 2.98 2.77 3.01 5.82 5.68 5.85 6.26 0.12 0.13 0.12 0.11
2020-03-28 15:20 2.83 2.98 3.11 3.22 5.96 5.68 6.00 6.31 0.11 0.13 0.12 0.12
2020-03-28 16:20 3.25 3.33 3.39 3.28 6.18 6.01 6.10 6.70 0.12 0.13 0.13 0.10
2020-03-28 17:20 3.99 3.71 4.43 4.46 6.73 6.30 6.97 7.11 0.13 0.13 0.13 0.13
2020-03-28 17:40 4.65 4.06 4.40 4.44 7.07 6.59 7.05 7.22 0.13 0.13 0.13 0.12
2020-04-13 08:00 4.44 4.22 4.83 4.47 8.25 8.29 8.66 8.01 0.09 0.09 0.09 0.10
2020-04-13 08:20 4.77 4.22 4.71 4.61 8.55 8.29 8.60 7.96 0.09 0.09 0.09 0.10
2020-04-13 08:40 4.68 4.13 4.61 4.79 8.76 8.30 8.72 7.96 0.09 0.09 0.09 0.11
2020-04-13 09:00 4.50 4.13 5.07 4.87 8.62 8.30 8.96 8.02 0.09 0.09 0.09 0.11
2020-04-13 09:20 5.20 4.13 4.24 4.34 9.08 8.30 8.02 7.80 0.09 0.09 0.09 0.10
2020-04-13 10:00 4.72 4.05 4.27 5.06 8.36 8.27 8.29 8.00 0.10 0.08 0.09 0.11

Table 3.2: Significant wave height Hs, mean wave period Tm and spectral steepness ϵ
during the 20-minute stereo video acquisition periods (of which the start times, in UTC,
are indicated in the second column) from the hourly output of the NORA3 wave model
hindcast (N) and the co-located LASAR (L), WASS stereo video (S) and WaMoS X-band
radar (W) observations.

frequency–directional stereo video spectra were estimated using the extended maximum

entropy principle (EMEP) method [Hashimoto et al., 1994; Lygre and Krogstad, 1986]

from 1D sea-surface elevation time series at different grid points within the reconstructed

grid.

Lx [m] Ly [m]
Date Record N S W N S W

2019-12-09 12:00 80.62 87.20 68.73 99.05 98.37 93.24
2019-12-09 12:20 80.62 92.27 71.05 99.05 98.29 96.34
2019-12-09 12:40 88.32 98.21 67.95 108.71 97.89 99.51
2019-12-09 13:00 88.32 93.49 66.94 108.71 97.16 96.31
2019-12-09 13:20 88.32 102.10 65.15 108.71 96.23 96.70
2019-12-09 13:40 90.14 104.15 65.15 108.75 86.54 91.36
2019-12-09 14:00 90.14 81.09 64.33 108.75 82.84 91.34
2020-01-04 09:00 76.23 92.73 79.08 88.55 104.00 84.58
2020-01-04 09:20 76.23 97.41 77.99 88.55 106.69 82.51
2020-01-04 09:40 77.47 94.11 78.91 88.68 102.92 85.09
2020-01-04 10:00 77.47 104.30 78.01 88.68 121.21 83.32
2020-01-04 10:20 77.47 99.70 75.24 88.68 111.36 80.72
2020-01-04 10:40 76.44 92.38 75.33 86.13 108.52 80.73
2020-01-04 11:00 76.44 112.94 73.99 86.13 127.38 84.15
2020-01-04 11:40 75.08 103.79 73.93 84.25 116.75 79.04
2020-02-11 10:00 65.35 95.24 100.83 76.57 102.85 95.42
2020-02-11 10:40 63.78 86.95 102.80 76.67 93.92 94.10
2020-02-11 12:00 66.26 95.94 104.74 78.59 109.09 99.71
2020-03-28 15:00 40.67 50.17 56.32 50.41 58.40 67.10
2020-03-28 15:20 40.67 52.98 56.32 50.41 64.56 66.47
2020-03-28 16:20 44.93 62.61 53.28 55.48 71.99 67.65
2020-03-28 17:20 48.63 72.31 48.75 60.15 91.01 65.03
2020-03-28 17:40 52.01 68.08 48.44 63.98 81.81 62.17
2020-04-13 08:00 69.50 77.76 52.59 82.50 91.12 71.08
2020-04-13 08:20 69.50 80.22 51.62 82.50 92.32 67.47
2020-04-13 08:40 69.04 82.79 50.36 81.25 95.13 70.46
2020-04-13 09:00 69.04 86.13 48.80 81.25 105.82 71.03
2020-04-13 09:20 69.04 82.59 49.40 81.25 100.25 69.69
2020-04-13 10:00 68.49 77.63 47.45 81.46 91.56 65.65

Table 3.3: Wavelength Lx and crestlength Ly during the stereo video acquisitions esti-
mated from frequency–directional spectra from the NORA3 hindcast (N), WASS stereo
video (S) and WaMoS (W).

The wavelength Lx and crestlength Ly were estimated from the spectra rotated such that
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the the x axis was aligned with the peak wave direction. The expressions for Lx and

Ly are given by Lx = 2π
√
m000/m200 and Ly = 2π

√
m000/m020, where mijl represent

directional spectral moments, defined as [Fedele, 2012]

mijl =

∫ 2π

0

∫ ∞

0

ki
xk

j
yω

lE(ω, θ) dω dθ. (3.1)

More variability is seen among the different Lx and Ly estimates in Table 3.3 compared to

the 1D parameters in Table 3.2, especially in the stereo video estimates. This variability

is also apparent in the stereo video estimates of the directional spread σθ (Table 3.4),

defined following Kuik et al. [1988] as

σ2
θ =

(
1−

√(∫
sin(θ)E(ω, θ) dω dθ∫

E(ω, θ) dω dθ

)2

+

(∫
cos(θ)E(ω, θ) dω dθ∫

E(ω, θ) dω dθ

)2
)
. (3.2)

The directional spread of the stereo video spectra is in general wider than the other

estimates. This contrasts with the findings of Donelan et al. [2015], who found that

EMEP generates narrower spectra than other commonly used methods. The mean wave

direction θm is highly consistent among all three spectral sources.

θm [deg] σθ [deg]
Date Record N S W N S W

2019-12-09 12:00 159.67 157.75 158.62 30.41 43.50 32.39
2019-12-09 12:20 159.67 157.80 160.75 30.41 46.91 32.39
2019-12-09 12:40 161.29 161.55 162.58 29.58 48.54 31.94
2019-12-09 13:00 161.29 163.15 163.86 29.58 51.04 30.98
2019-12-09 13:20 161.29 164.05 163.82 29.58 46.81 31.80
2019-12-09 13:40 162.07 163.89 164.71 29.82 52.46 32.37
2019-12-09 14:00 162.07 163.05 166.67 29.82 53.55 31.14
2020-01-04 09:00 143.60 144.66 149.69 37.31 49.85 40.14
2020-01-04 09:20 143.60 141.31 149.27 37.31 47.68 41.06
2020-01-04 09:40 146.55 147.49 147.66 36.67 47.39 40.21
2020-01-04 10:00 146.55 153.95 152.09 36.67 44.45 37.78
2020-01-04 10:20 146.55 150.99 154.00 36.67 45.33 39.14
2020-01-04 10:40 148.40 145.32 153.48 36.08 47.41 40.73
2020-01-04 11:00 148.40 152.16 150.68 36.08 43.70 39.22
2020-01-04 11:40 149.78 146.55 153.16 35.52 45.51 39.83
2020-02-11 10:00 86.45 80.96 73.64 36.06 44.06 31.57
2020-02-11 10:40 88.96 80.46 74.61 36.08 46.42 32.31
2020-02-11 12:00 90.21 85.02 79.67 36.01 43.90 33.44
2020-03-28 15:00 174.39 172.86 177.17 31.98 53.21 28.39
2020-03-28 15:20 174.39 174.85 179.04 31.98 53.37 27.45
2020-03-28 16:20 174.85 168.79 181.35 31.78 50.96 30.63
2020-03-28 17:20 175.80 179.24 181.04 31.59 45.01 30.21
2020-03-28 17:40 176.82 178.23 181.25 31.43 47.39 29.96
2020-04-13 08:00 173.62 168.21 175.08 26.23 45.92 29.17
2020-04-13 08:20 173.62 172.22 175.11 26.23 44.26 29.42
2020-04-13 08:40 174.00 173.36 174.19 26.16 44.69 30.25
2020-04-13 09:00 174.00 172.24 174.29 26.16 40.80 29.68
2020-04-13 09:20 174.00 174.71 173.81 26.16 41.47 29.29
2020-04-13 10:00 174.21 171.53 175.02 25.99 43.71 28.52

Table 3.4: As Table 3.3, but for the mean wave direction θm and the directional spread
σθ.

3.3 North Pacific cruise data set

In addition to the Ekofisk data sets, Paper II [Malila et al., 2022b] is supplemented with

whitecap coverage observations made during a December 2019 cruise onboard the R/V
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(a) (b)

Figure 3.8: (a) The port-side three-camera system onboard R/V Sikuliaq. The casing
between the two leftmost cameras houses the IMU-GNSS system. The instrument to
the right of the cameras is an infrared camera system, which was not used in this work.
Photo by the author. (b) Daily positions along the cruise track marked with gray circles.
The location of Ocean Station Papa is marked with a star.

Sikuliaq in the North Pacific (see Figure 3.8). The cruise departed from Dutch Harbor,

Alaska, on December 5, made a stop at Ocean Station Papa in the central Gulf of Alaska

for a wave buoy recovery and deployment, and concluded in Seattle, Washington, on

December 23. To summarize the instrumentation, of which a more detailed description

can be read in Paper II and references therein, two triple-camera systems were mounted

on the port and starboard sides on the bridge deck of the vessel, at approximately 16-m

height above the water surface. Both camera systems consisted of two PointGrey Flea2

cameras with 9-mm lenses on the sides plus one PointGrey Flea2G camera with a wider-

angle 2.8-mm lens in the middle. While all cameras were in use during the experiment,

frames were only analyzed from the middle, wide-angle cameras. The two cameras on the

sides were used with the aim of performing stereo video reconstructions similar to those

reported by Schwendeman and Thomson [2017]. This plan was, however, abandoned

due to problems experienced with the alignment of the combined intertial motion unit

(IMU)–global navigation satellite (GNS) system required for motion correction, as well as

the frequent severe rolling motion of the vessel, which often made the overlapping stereo

camera footprints excessively small. Wave measurements during the cruise were made

with freely drifting SWIFT buoys [Thomson, 2012] which were deployed and recovered

daily during the course of the cruise.
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Summary of the scientific results

The scientific findings of the current thesis are reported in the three academic papers

summarized here. The full papers are attached in Chapter 6 of this thesis.

4.1 Paper I: A Nonparametric, Data-Driven Ap-

proach to Despiking Ocean Surface Wave Time

Series

Mika P. Malila, Patrik Bohlinger, Susanne Støle-Hentschel, Øyvind Breivik, Gaute Hope

and Anne Karin Magnusson.

The laser altimeter array (LASAR), located between the Ekofisk 2/4 K and 2/4 B plat-

forms, constitutes a unique, long-term, high-temporal resolution sea-surface elevation

data set spanning nearly 20 years at the time of writing. Due to the complicated noise

characteristics of the instrument, the data set has previously not been exploited to its

full potential, with a handful of prior studies focusing largely on short-term event anal-

yses. In this paper, we develop and validate a novel quality control methodology for

wave measurements applicable to laser altimeter and related observations, using sample

data from the LASAR instrument. The methodology, which is based on Gaussian Pro-

cess (GP) regression, is an extension of the recent wave model validation methodology

of Bohlinger et al. [2019]. The main findings of Paper I are summarized below.

• A data-based despiking and data replacement methodology aimed at post-

processing quality control (QC) of surface wave measurements is developed. The
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methodology, based on GP regression, extends the wave model validation method-

ology of Bohlinger et al. [2019] to high-resolution sea-surface elevation data.

• The probabilistic approach provides an uncertainty estimate around the non-

parametric GP regression mean function. This functionality is used for spike

detection and subsequent interpolation of missing and discarded erroneous data

points.

• Applying the proposed methodology on a sample LASAR data set from a storm in

November 2007 (also analyzed by Magnusson and Donelan [2013] and Donelan and

Magnusson [2017]), is shown to lead to improved signal correlation among the four

effectively co-located laser altimeters as well as improved spectral tail consistency.

• The performance of the proposed methodology is also compared against the re-

cently published phase space-based despiking method of Voermans et al. [2021].

While the phase space method is considerably more efficient computationally, the

GP method is found to be more robust with regards to false positive spike detection

and removal.

• The relatively high computational cost of the proposed QC methodology makes

it, at present, best suited to offline post-processing applications. Lastly, while

the proposed methodology is fully automated, it is stressed that thorough quality

control of wave measurements aimed at extreme wave analysis should not neglect

human verification of the most extreme measurements.

4.2 Paper II: On the groupiness and intermittency

of oceanic whitecaps

Mika P. Malila, Jim Thomson, Øyvind Breivik, Alvise Benetazzo, Brian Scanlon and

Brian Ward.

First described qualitatively by Donelan et al. [1972], the modulation of deep-water wave

breaking activity (i.e., whitecapping) due to the wave-field group structure has been stud-

ied extensively in controlled settings and theoretically [e.g., Banner and Peirson, 2007;

Perlin et al., 1996; Rapp and Melville, 1990; Saket et al., 2017; Song and Banner, 2002],

but relatively few studies have quantified the process with field measurements [Dulov

et al., 2002, 2021; Holthuijsen and Herbers, 1986; Smith et al., 1996]. In this paper, we

investigate the relationship between wave groups and the instantaneous whitecap cov-

erage within the footprint of the Ekofisk stereo cameras. For this analysis, the WASS
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stereo-reconstructed sea surface is used to detect wave groups using a threshold of the

instantaneous wave energy, and coherent whitecap coverage W is estimated from the

unprocessed raw input frames. In addition, incoherent (i.e., not co-located) measure-

ments of the whitecap coverage from ship-based cameras and wave spectral parameters

from nearby drifting wave buoys are used as a supplemental data set for investigating

the periodicity and intermittency of whitecapping. The main findings of Paper II are

summarized below.

• The coherent wave breaking and wave group measurements from the Ekofisk stereo

cameras show that the instantaneous whitecap coverage is significantly enhanced

during wave group passage, indicating that wave breaking activity is strongly mod-

ulated by wave groups. The result holds both for the total whitecap coverage W ,

for which we observe a two-to-threefold enhancement during wave groups, and for

the actively breaking whitecap coverage WA, for which the enhancement is approx-

imately fivefold.

• The group modulation is also observed in temporally averaged estimates of the

whitecap coverage W and WA.

• An analysis is also performed on the time scales of wave breaking using time series

of the instantaneous whitecap coverage from both the Ekofisk and North Sea data

sets. It is found that, on average, inter-breaking timescales are aligned with the

periodicity of the dominant waves, supporting previous findings regarding the long-

wave modulation of short-wave breaking [Dulov et al., 2002, 2021].

• A spectral analysis of the instantaneous whitecap coverage time series shows that

the peak spectral density of W is aligned with the peak wave spectral density, pro-

viding additional evidence for the importance of the dominant waves in determining

the periodicity of wave breaking [see also Donelan et al., 1972].

• Finally, the spectral density of the inter-breaking time scales, estimated using the

telegraphic approximation (TA) approach of Sreenivasan and Bershadskii [2006],

is found to approximately conform to a theoretical power-law shape for general

stochastic processes.
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4.3 Paper III: Statistical and dynamical character-

istics of extreme wave crests assessed with field

measurements from the North Sea

Mika P. Malila, Francesco Barbariol, Alvise Benetazzo, Øyvind Breivik, Anne Karin

Magnusson, Jim Thomson and Brian Ward.

Following the publication of the GP regression-based despiking protocol in Paper I, the

full 5-Hz, four-laser LASAR time series covering the time period from February 2003

to October 2020 was quality controlled using the methodology described in Paper I.

After the automated despiking of the LASAR signals, all remaining rogue wave (Hmax ≥
2Hs) and rogue crest (Cmax ≥ 1.25Hs) events were visually controlled by comparing the

simultaneous wave profiles obtained from the effectively co-located laser altimeters. A

number of individual-laser records were thus found to contain spurious rogue events (i.e.,

undetected spikes); such records were subsequently discarded from the quality controlled

data set.

In Paper III, the quality controlled LASAR data set is used to investigate the statistical

properties of extreme wave crests in a wide range of sea states categorized by their

spectral steepness and directional spread. Furthermore, the Ekofisk stereo video data

set from Paper II is reused with the aim of investigating the space-time statistics, crest

geometry and crest speed dynamics of extreme wave crests. The main findings of Paper

III are summarized below.

• The quality control (QC) procedure reveals that the Ekofisk LASAR instrument

returns high-quality sea-surface elevation measurements only when the sea state

is sufficiently energetic. A lower bound for acceptable signal quality is found at

approximately Hs = 3 m. The post-QC LASAR data set covers storm events in the

2003–2020 period, with a total wave count of approximately 7 × 106 zero-crossing

waves.

• Extreme individual wave heights in the LASAR data set largely conform to the

Stokes–Miche breaking-constrained steepness limit. Bulk wave steepness computed

in terms of Hs and km is compared to the empirical limit found by Zippel and

Thomson [2017]. While the majority of sea states are constrained by the bulk

limit, sea states with steepness in the highest percentile lie above the limit.

• The high-order statistical moments of skewness and kurtosis, computed from sea-
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surface elevation time series, are only weakly related to common spectral param-

eters used to describe the susceptibility of a sea state to increased rogue wave

probability.

• Empirical crest height exceedance probabilities estimated from the LASAR data set

are classified by sea-state steepness and directional spread, where the directional

spread is estimated from NORA3 hindcast spectra. A clear indication is found

for a systematic deviation of the empirical distributions from standard linear and

second-order distributions with increased sea-state steepness and narrowing direc-

tional spread. This result is consistent with prevailing theory on modulational

instability, although the directional properties of the sea states in the LASAR data

set generally exceed those of laboratory and numerical experiments in which the

process has been shown to be active.

• The statistics of space-time extreme (STE) crest heights within the Ekofisk stereo

camera footprint conform on average well to second-order theoretical estimates,

especially for large relative space-time volumes.

• Geometric STE crest steepness is found to be systematically lower than the crest

steepness of the same waves estimated with the linear dispersion relation applied

to the maximum crest point time series. The highest directly measured values of

the crest steepness conform to the Stokes limit, whereas the maximum steepness

inferred from dispersion is found to exceed the Stokes limit by up to 25%.

• Directly measured STE crest speeds are shown, on average, to slow down to ap-

proximately 80% of the linear phase speed. The slowdown is highly localized on the

moment of wave group focus, supporting previous observations and theory of the

phenomenon [Banner et al., 2014; Fedele et al., 2020; Schwendeman and Thomson,

2017]. As opposed to previous studies, both breaking and non-breaking focused

wave crests are shown to slow down at a similar rate. The crest speed slowdown

is proposed as an explanation for the discrepancy between directly measured crest

steepness and crest steepness inferred from dispersion.
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Chapter 5

Conclusions

5.1 Main takeaways

Geometric, kinematic and dynamic characteristics of dominant (i.e., the most energetic)

ocean-surface gravity waves have been studied using close-range remote sensing field

measurements. Stereo imagery-based sea-surface reconstructions from a platform-based

stereo camera system at the Ekofisk platform complex in the central North Sea and ship-

based single-camera imagery from a cruise in the North Pacific were used to investigate

the wave-group influence on the intermittency of the oceanic whitecap coverage. The

Ekofisk stereo reconstructions were also used to study the shape and motion character-

istics of the largest crests encountered in spatially and temporally resolved sea-surface

segments.

Statistical properties of large wave crests were studied with a long-term, high-resolution

laser altimeter time series of the sea-surface elevation located on the same Ekofisk plat-

form as the stereo camera system. A novel, data-driven quality control procedure was

used to validate extreme wave measurements in the time series. Moreover, space-time

statistics were also investigated with the stereo reconstructions. The main takeaways

from the research described in this thesis are summarized in brief below, and more thor-

oughly in the previous chapter.

• Modern data-driven machine learning tools can be successfully applied to quality

controlling wave measurements. However, human intervention is still necessary for

the verification of extreme observations.

• Spatially and temporally resolved wave-field measurements obtained via stereo

camera systems are a valuable complement to traditional point measurement sys-
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tems such as wave buoys and laser altimeters. The use of stereo video data has been

illustrated here through observations of enhanced wave breaking in wave groups

and crest-speed slowdown of extreme wave crests.

• Care should be taken when applying low-order, idealized approximations, such as

the linear dispersion relation, to characterize the properties of steep, nonlinear

waves in the open ocean.

5.2 Outlook and future perspectives

Observational studies such as those presented in this thesis are especially valuable when

their results can be used to improve predictive models of the processes they represent.

The representation of incipient wave breaking, for instance, is a notoriously complex

problem in commonly used phase-resolving numerical wave models based on high-order

spectral (HOS) methods [e.g., Seiffert et al., 2017]. In this regard, observational evidence

on the role of group dynamics in the breaking process, such as that presented in the

current thesis, helps validate the theoretical frameworks [e.g., Barthelemy et al., 2018] on

which many breaking parameterizations are formulated. Dominant (long) wave-induced

breaking modulation has also been implemented in a spectral dissipation source term

parameterization for phase-averaged wave models by Romero [2019]. In his formulation,

the modulation factor is considerably larger than the modulation magnitude observed

in the current work (Paper II) and other recent studies [Dulov et al., 2002, 2021], which

goes to show that more experiments focused on the phenomenon are needed to reach

a consensus on the magnitude, and potential sea-state dependence, of the influence of

wave groups on wave breaking.

A limitation inherent in the remote sensing techniques on which the research presented

in this thesis is focused is that only surface processes are resolved. Quantifying climato-

logically relevant variables, such as the energy dissipation or bubble entrainment rates

associated with wave breaking events, requires additional subsurface measurements. If

combined with coherent surface-sensing measurements acquired via, e.g., stereo imagery,

measurements of sub-surface dissipation rates or bubble plume depths can significantly

advance the general understanding of the dynamics of wave-driven processes at the air-

sea interface [Callaghan et al., 2016]. At the time of writing, the author is aware of such

ongoing and upcoming experiments in Italy, Norway (Ekofisk) and California, which in-

dicates that exciting progress will be made on this front in the near future. Moreover,

recent advances in image processing software for stereo wave sensing [e.g., Bergamasco

et al., 2021] suggest that high-resolution sea surface reconstructions may, also in the near
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future, be monitored in real time.
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ABSTRACT: We propose a methodology for despiking ocean surface wave time series based on a Bayesian approach to
data-driven learning known as Gaussian process (GP) regression. We show that GP regression can be used for both robust
detection of erroneous measurements and interpolation over missing values, while also obtaining a measure of the uncer-
tainty associated with these operations. In comparison with a recent dynamical phase space–based despiking method, our
data-driven approach is here shown to lead to improved wave signal correlation and spectral tail consistency, although at a
significant increase in computational cost. Our results suggest that GP regression is thus especially suited for offline quality
control requiring robust noise detection and replacement, where the subsequent analysis of the despiked data is sensitive
to the accidental removal of extreme or rare events such as abnormal or rogue waves. We assess our methodology on meas-
urements from an array of four collocated 5-Hz laser altimeters during a much-studied storm event in the North Sea cover-
ing a wide range of sea states.

KEYWORDS: In situ oceanic observations; Instrumentation/sensors; Quality assurance/control; Bayesian methods;
Uncertainty

1. Introduction

In situ instruments capable of measuring time series of the
instantaneous sea surface displacement, such as wave buoys,
wave staffs, and laser altimeters, are routinely used for vali-
dating and assessing the performance of spectral wave model
forecasts and hindcasts (e.g., Cox and Swail 2001; Chawla et al.
2013; Haakenstad et al. 2020). Such phase-resolving wave
measurements are also often used for investigating the statisti-
cal distributions of extreme wave heights, the understanding
of which is vital to conducting safe offshore operations (e.g.,
Dysthe et al. 2008; Christou and Ewans 2014). Unless filtered
by built-in software, raw sea surface displacement time series
are often corrupted by noise in the form of spikes, dropouts,
lock-ins, and other artifacts due to, e.g., instrument malfunc-
tion or environmental effects (see, e.g., Voermans et al. 2021).
It is known that noise-corrupted measurements may lead to
spurious effects on estimated energy spectra, which in turn
may skew integrated wave-field parameters used for model
validation (Magnusson et al. 2021; Thomson et al. 2021). Des-
piking, the process of detecting, removing, and replacing mea-
surement errors, is therefore an essential step in the initial
quality control of wave measurement time series. However,
especially if the phenomena of interest are extreme or rare
events (e.g., exceptionally steep or high waves relative to the
prevailing sea state), care must be taken not to remove valid
measurements which often get flagged as outliers by auto-
mated despiking algorithms (Dysthe et al. 2008; Starkenburg
et al. 2016; Häfner et al. 2021).

A basic despiking method detects erroneous measurements
on the basis of a global threshold derived from the raw time
series. For surface wave records, a commonly applied global
threshold [see, e.g., Thomas 2016; Integrated Ocean Observ-
ing System (IOOS); IOOS 2019] is some multiple of the sig-
nificant wave height

Hs 5 4s, (1)

where s is the standard deviation of the wave signal. How-
ever, if one is interested in the extreme wave or crest height
statistics of the wave records, the global threshold must be set
higher than the highest physically possible wave crest for the
prevailing sea state to avoid the accidental removal of valid
measurement points (e.g., Dysthe et al. 2008). Consequently,
the utility of the global threshold method is limited to remov-
ing only large-amplitude spikes, and has restricted applicabil-
ity for automated despiking of surface wave records. For this
reason, the global threshold method is commonly combined
with manual inspection of suspicious measurements (Makri
et al. 2016; Cattrell et al. 2018; IOOS 2019). However, as the
amount of data to control grows large, and especially if the
noise corruption is extensive, manual inspection becomes
labor-intensive and susceptible to human error. The subjectiv-
ity of manual inspection also raises the issue of reproducibil-
ity. Thus, while it is unlikely that manual inspection can be
fully replaced by automated methods, it can be argued that
quality control measures such as despiking can be made more
objective and consistent by minimizing the need for human
intervention (Thomas 2016).

A conventional premise for automated despiking of fluid
mechanical time series builds on the assumption that theCorresponding author: Mika P. Malila, mikapm@met.no
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dynamical properties of the flow, such as fluid particle speed
and acceleration, form a predictable pattern in phase space.
Goring and Nikora (2002) originally introduced a despiking
algorithm for acoustic Doppler velocimeter (ADV) measure-
ments of turbulent flow in a channel, in which the phase space
was defined in terms of the fluid velocity and its first and sec-
ond derivatives. Spikes were defined as measurement points
whose phase space properties placed them on the outside of
two-dimensional ellipses, the shapes of which were deter-
mined by the theoretical maxima of normally distributed flow
properties. The stepwise phase space thresholding procedure
of Goring and Nikora (2002) was streamlined into a single
three-dimensional thresholding operation by Wahl (2003),
who also emphasized the issue of the nonrobustness of apply-
ing thresholds based on the normal distribution (typically
defined in terms of, e.g., the mean and standard deviation of
the flow variables) to measurement error-contaminated, pos-
sibly highly non-Gaussian time series. As Wahl (2003) points
out, the sample mean and standard deviation are extremely
sensitive to outliers, and therefore any despiking threshold
based on these estimators is likely to be influenced by the
presence of undesired, faulty measurements in the dataset.
Wahl (2003) thus suggests replacing the sample mean and
standard deviation with robust estimators that are compara-
tively insensitive to outliers, such as the sample median and
median of the absolute deviations (MAD).

Recently, Voermans et al. (2021) reformulated the phase
space despiking framework to apply to surface wave time
series by defining the phase space in terms of wave physics. In
their formulation, Voermans et al. (2021) argue that the rele-
vant phase space parameters for surface waves are the instan-
taneous surface displacement h(t) and its acceleration ­2h/­t2.
They define the phase space ellipse that encloses valid meas-
urements in terms of key sea state properties, namely, the
wave period and the bandwidth of the wave energy spectrum.
Voermans et al. (2021) also highlight the important distinction
between despiking and anomaly detection, where the former
refers to the identification (and, commonly, replacement) of
spikes that contaminate the high-frequency tail of the energy
spectrum, and the latter involves identifying longer-duration
erroneous events in the time series that typically affect the
low-frequency region of the spectrum. While spikes lasting
from one to a few consecutive sampling intervals can be rela-
tively straightforward to replace by interpolation, the removal
of larger chunks of wave records due to anomalous, long-
duration events requires careful consideration of whether to
repair or discard the data. Wave record error characteristics
tend to vary with instrument type, with single or multipoint
spikes commonly produced by range-measuring instruments
such as laser altimeters, while wave buoy records more typi-
cally exhibit complex anomalous events attributable to, e.g.,
mooring line interference (Dysthe et al. 2008; Thomas 2016;
IOOS 2019; Voermans et al. 2021).

In this paper, we present a robust approach to both detecting
and replacing spikes and dropouts in point-measurement time
series of surface wave elevation. Our approach is based on
Gaussian process (GP) regression, which, in contrast to the
dynamically based phase space methods described earlier, is a

data-driven, nonparametric, and probabilistic method designed
for optimized functional fitting conditional on empirical input
data (Rasmussen and Williams 2006). GP regression has in the
last decade grown in popularity within marine and geophysical
applications. Bohlinger et al. (2019) recently introduced a GP-
based approach to the alignment of satellite altimeter observa-
tions of the sea state with numerical wave model output, taking
advantage of the intrinsic uncertainty quantification of the GP
framework to both detect erroneous data points and provide
probabilistic model validation statistics. In another recent effort,
Smith et al. (2014) coupled GP regression with extreme value
theory to produce a robust dynamical model for the automatic
detection of anomalous ship GPS tracks.

The remainder of this paper is structured as follows. We
describe the test dataset, a 36-h record of 5-Hz laser altimeter
surface wave measurements from the Ekofisk field in the cen-
tral North Sea, in section 2. In section 3 we introduce the
basics behind standard GP regression and motivate our appli-
cation of the method for despiking surface wave time series
with the use of examples from the Ekofisk laser altimeter
dataset. In section 4 we demonstrate the performance of the
GP-based despiking method outlined in section 3 on the full
Ekofisk dataset. Section 5 discusses the advantages and limita-
tions of the method in broader terms, and section 6 summa-
rizes the work presented herein. Finally, a sample algorithm is
provided in the appendix which outlines our implementation
of the GP framework for spike detection.

2. The field dataset

We demonstrate and validate our proposed despiking
method with real field measurements of surface waves from
an array of laser altimeters placed on the ConocoPhillips Nor-
way–operated Ekofisk oil and gas field in the central North
Sea, the approximate location of which is shown in Fig. 1a.
The laser altimeter array consists of four Optech Sentinel
3100 laser altimeters arranged in a 2.6-m square array inside
a footbridge connecting two bottom-mounted platforms
approximately 20 m above mean sea level (see Krogstad et al.
2006, 2008; Magnusson and Donelan 2013; Donelan and Mag-
nusson 2017). The footbridge on which the laser altimeters
are situated, depicted in Fig. 1c, is oriented approximately
east-northeast–west-southwest, with a 698 compass heading
between the axis of the footbridge and north, allowing waves
approaching from the northwest to be measured free from
platform interference.

The laser altimeters measure the distance to the instanta-
neous sea surface by emitting and receiving reflected infrared
pulses at 2-kHz temporal resolution. To avoid interference,
the four laser altimeters are designed to fire pulses in a stag-
gered sequence at 45-ms intervals. Herein we label the laser
altimeters with numbers from 1 to 4 according to the order in
which they sample. While important to consider if using the
laser array to investigate, e.g., wave-field directionality (e.g.,
Donelan et al. 1996), for this work the ordering has no pra-
ctical implications. The reflected and received pulses are aver-
aged by built-in processing into range readings at 0.2-s
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intervals, leading to an end product in the form of raw range
time series at 5-Hz temporal resolution. These range time
series zi can be converted to sea surface displacement meas-
urements hi by

hi 5 z2 zi, (2)

where z is the time average of zi over a representative time
window (taken here as 20 min to ensure stationary wave con-
ditions). The intrinsic laser altimeter processing has a thresh-
old on the number of good (i.e., high signal intensity) return
pulses received within each sampling interval, and unless this
threshold is exceeded the range reading is set to zero in final
5-Hz product. In our experience, such dropouts typically
occur in relatively calm sea states during which the laser
pulses may be more prone to specular reflections from the sea
surface than during more energetic sea states, which tend to
produce a rougher sea surface and enhanced reflected pulse
intensity. However, the short wavelength of the infrared
pulses (on the order of 1 mm) makes signal attenuation by the
presence of sea spray aerosols of comparable size to the laser

pulses another factor that may negatively impact the return
intensity, occasionally leading to considerable numbers of
dropouts also in rough seas (see, e.g., Toffoli et al. 2011).

The laser altimeter signals are also regularly corrupted by
apparently erroneous range measurements, which manifest as
spikes in the hi signals. The spikes in the Ekofisk laser altime-
ter signals are generally high-frequency artifacts that persist
for one to several consecutive sampling intervals; more pro-
longed anomalous measurements, such as the anomalous
waves reported by Voermans et al. (2021) in their wave buoy
records, are in our experience uncommon in the Ekofisk laser
altimeter measurements. As discussed in section 1, spikes that
indisputably result from instrumentation error, i.e., unphysi-
cally high or low hi measurements, can be safely removed
from the dataset with a constant global threshold, so long as
the applied threshold is sufficiently conservative. For surface
wave time series it is commonplace to define the global
threshold as a multiple of the significant wave height Hs,
defined in terms of the signal standard deviation (e.g., IOOS
2019). However, the sample mean and standard deviation are

FIG. 1. (a) The location of the Ekofisk field in the central North Sea marked with a red dot.
(b) Sketch of the dimensions and orientation of the four-laser altimeter array located on the
footbridge connecting the Ekofisk K and B platforms. The distances between the lasers
(L1–L4) are given in mm, based on measurements reported by Krogstad (2006). (c) Photo from
2019 of the footbridge that houses the laser altimeter array, looking southwest toward the B
platform. (d) Time series of significant wave height Hs over the duration of the 8–9 Nov 2007
storm at the Ekofisk field. The connected blue-hued circles represent Hs computed from the
standard deviations of the four QC.0-level laser altimeter time series. The connected squares
are bulk Hs values recorded by two separate wave sensors at Ekofisk, namely, a Datawell Wav-
erider buoy (black) and a Miros range finder radar (green). The disconnected purple triangles
are hourly NORA10EI hindcast estimates of Hs at the model grid point nearest to the Ekofisk
field. (e) The time series of standard deviations of the four concurrent Hs estimates from the
QC.0-level laser altimeter records.

MA L I L A E T A L . 73JANUARY 2022

Brought to you by Meteorologisk institutt | Authenticated mikapm@met.no | Downloaded 07/02/22 06:15 PM UTC



known to be unstable estimates of location and scale of noise-
corrupted time series, as one single anomalous measurement
(e.g., a high-amplitude spike) can result in considerable biases
in these estimates (e.g., Donoho and Huber 1983). A more
robust approach involves replacing the mean and standard
deviation with the sample median med{hi} and the MAD,
defined as

MAD(hi)5 1:483 med hi 2med{hi}
∣∣ ∣∣{ }

, (3)

where the scale factor 1.483 stems from the reciprocal of the
cumulative distribution of the Gaussian distribution, and
ensures that the MAD estimate asymptotically converges to
the Gaussian standard deviation (see, e.g., Huber 1981, p. 108).

The test dataset in this paper covers a 36-h storm event on
8–9 November 2007, during which each of the four Ekofisk
laser altimeters was recording continuously at a 5-Hz sam-
pling rate. This event was chosen because it comprises a wide
range of sea states, with young, rapidly developing seas in the
first 6 h, followed by a roughly 14-h period of consistently
high waves during the peak of the storm, and finally a 16-h
gradually aging sea state. The winds during the storm event
were northwesterly and sustained at approximately 20 m s21

from 1200 UTC 8 November until 0600 UTC 9 November
(see Magnusson and Donelan 2013). The evolution of the sig-
nificant wave height Hs, estimated independently from
sequential 20-min segments of each of the four 5-Hz laser
altimeter time series, is shown in Fig. 1c alongside Hs esti-
mates from nearby wave buoy and radar rangefinder meas-
urements as well as wave model hindcast results. The laser
altimeter Hs estimates in Fig. 1c were computed using Eq. (1)
from the raw laser altimeter records after prominent spikes
had been removed with a 10MAD(hi) global threshold above
and below the record median. The 10MAD(hi) threshold cor-
responds to a robust estimate of 2.5Hs, and we argue that this
relatively conservative threshold is unlikely to lead to the
removal of physically realistic wave crests or troughs—after
all, the height of surface wave crests is known to be limited by
wave geometry (viz., the wave steepness), and we are
unaware of reliable field measurements containing individual
crest heights exceeding approximately 1.7Hs (see, e.g., Toffoli
et al. 2010; Donelan and Magnusson 2017). Hereinafter, we
refer to raw laser altimeter records that have undergone this
global threshold–based quality control as QC.0-level wave
records. The spread in Hs estimates derived from the four
QC.0-level laser records, shown in Fig. 1d, is relatively high
both during the beginning and end phases of the storm,
whereas the Hs estimates converge during the peak of the
storm between approximately 0000 and 1200 UTC 9 Novem-
ber. This indicates that the laser altimeter signals were more
likely to be corrupted by noise such as spikes during the com-
paratively low sea states in the developing and decaying
phases of the storm, whereas noise corruption was greatly
reduced during the highly energetic peak phase of the storm.

The difference between filtering out prominent spikes with
MAD-based thresholds versus the more common s-based
thresholds is illustrated in Fig. 2: while the value of the 10s
threshold increases with increasing magnitude of the noise

(Figs. 2c,d), leading to a failure of the threshold to detect the
largest-amplitude spikes, the value of the 10MAD threshold is
comparatively unaffected by the noise and manages to remove
the highest-amplitude spikes in Figs. 2c and 2d. Figure 2 also
clearly displays the varying noise characteristics between the
four laser altimeters, with the signals from lasers 1 and 2 often
relatively free of contamination by spikes and dropouts, while
the signals of lasers 3 and 4 typically contain more frequent
moderate and high-amplitude spikes and more numerous
dropouts.

Notably, the 8–9 November 2007 storm at Ekofisk pro-
duced one of the most extreme individual waves on
record—the approximately 22-m-high Andrea wave, named
after its namesake storm (Magnusson and Donelan 2013;
Donelan and Magnusson 2017). The Andrea wave occurred
shortly after midnight on 9 November, and was measured
with virtually identical shape by all four lasers, making it a
rare occurrence of a verified rogue wave. The Andrea wave
is included in our test dataset (see Figs. 8a and 12e), and its
inclusion provides an appropriate sanity test for our pro-
posed despiking method: while our aim is to develop a
method that is able to robustly remove and replace

FIG. 2. Example segments of four concurrent laser records (laser 1–
laser 4) from 8 Nov. The thin black lines are the raw laser measure-
ments, and the thick magenta lines are the QC.0-level raw signals in
which individual measurements above and below 10 MAD from the
median (dotted line) have been removed. The 10s threshold (dashed
line) has been included for reference.
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undesired spikes from the wave records (i.e., improve the
laser array signal correlations at the beginning and end
stages of the test dataset), we also require that real, verified
extreme events such as the Andrea wave should be left
untouched.

3. Despiking model description

a. GP regression

In this section we briefly summarize the basics of standard
GP regression as applied to one-dimensional time series data,
following Rasmussen and Williams (2006). GP regression is
based on Bayesian formalism, in which prior assumptions of a
system are combined with observations to infer a posterior
probability of the state of the system in a predictive sense. In
our case we seek to model the noisy output y(t) of an underly-
ing process measured at times t with a function f(t) such that

y t( )5 f t( )1«y, (4)

where «y ∼N 0,s2
y

( )
represents independent, normally distrib-

uted measurement noise with variance s2
y. Instead of provid-

ing one single function as the optimal model for the
measurements, as in a polynomial fit, the GP framework con-
siders a probability distribution of possible functions, not con-
strained by polynomial order, such that any finite collection of
possible function values at a time t has a joint Gaussian distri-
bution. A process with this property is by definition a Gauss-
ian process, and is fully determined by its mean and
covariance functions m[f(t)] and cov[f(t)]. We further assume
that the covariation between function values is uniquely
determined by their separation in time s 5 |ti 2 tj|, so that
cov[f(t)]5 k(s).

We choose to parameterize the stationary covariance func-
tion k(s) in the form of a squared exponential

kSE s( )5s2
f exp 2

s2

2l2

( )
, (5)

where s2
f is the signal variance and l is the so-called length

scale parameter that controls the smoothness of the covari-
ance function. The squared exponential covariance function is
infinitely differentiable, which leads to smoothly varying
regression functions in which the length scale parameter l
determines the input-space distance over which subsequent
function values are correlated. The covariance matrix can also
be parameterized by various other functions with different
characteristics from the squared exponential; see, e.g., Ras-
mussen and Williams (2006) for an overview of popular
options. Common to all stationary covariance functions is,
however, that they decrease monotonically with increasing
input separation s, reflecting the physically consistent
decrease in covariability between measurements with increas-
ing temporal separation.

To account for imperfect, noisy measurements as in (4), it is
customary to add a noise term to the covariance function.
Assuming independent, Gaussian measurement noise, the GP

prior covariance matrix can be written as (Rasmussen and
Williams 2006)

cov y( )5K1s2
yI, (6)

where K 5 k(ti, tj) is the prior covariance function matrix (5)
evaluated at all possible combinations of training inputs in t 5
{t1, … , tn}; s2

y is the assumed measurement noise variance and
I is the identity matrix. The diagonal entries of cov y( ) are
given by s2

f 1s2
y, while the off-diagonals are given by (5). The

parameters s2
f , l, and s2

y are known as hyperparameters, and
can be varied to best suit the purpose of the GP regression.

We apply GP regression to predict the posterior proba-
bility of the model function f*5 f t*( ) at prediction times
t*5 {t*,1, :::, t*,n*}, from the marginal likelihood of the meas-
urements p y t( )[ ] ∼N 0,K1s2

yI
( )

and a zero-mean Gaussian
prior assumption on f(t). In practice, most observational
data can be made to fit the zero-mean assumption by nor-
malization. The predictive equations for m f*

( )
and cov f*

( )
,

the posterior mean and covariance at the prediction times t*,
are given by, e.g., Rasmussen and Williams (2006) as

m f*
( )

5KT
* K1s2

yI
[ ]2 1

y, (7)

cov f*
( )

5K** 2KT
* K1s2

yI
[ ]2 1

K* · (8)

In (7) and (8), the n*3n matrix K*5K(t*,i, tj) is the covari-
ance between prediction times t* and training times t, and
K**5K(t*,i, t*,j), an n*3n* matrix, is the covariance function
evaluated for combinations of all n* prediction times t*. As
(7) reveals, the posterior mean function at any prediction
point t*,i is a weighted sum of the observations y, with the
weights determined by the parameterization of the covariance
function and the measurement noise parameter sy. Since the
inversion of the n 3 n matrix (K1syI) is an O n3( ) operation,
it is also apparent that standard GP regression becomes
exceedingly computationally expensive as the number of
training points X increases. However, the computational com-
plexity is unaffected by the number of prediction points X*.

The posterior predictive Eqs. (7) and (8) include the hyper-
parameters l, sf, and sy from our covariance parameterization
(5), and their values are as of yet unknown. To find the GP
regression that best models the observations, the hyperpara-
meters are optimized by maximizing the log marginal likeli-
hood of the observations, the form of which is given by, e.g.,
Rasmussen and Williams (2006) in their Eq. (2.30). In our
numerical implementation of GP regression, we use the
scikit-learn Python package (Pedregosa et al. 2011), and we
perform the optimization with its default limited-memory
Broyden–Fletcher–Goldfarb–Shanno (BFGS) gradient descent
method (Byrd et al. 1995). The details of our numerical imple-
mentation can be seen in the public code that accompanies this
paper (see acknowledgments).

Figure 3 demonstrates the application of GP regression on
a sample of 100 laser altimeter measurements from the Eko-
fisk dataset. In Fig. 3a, the 5-Hz range signal z has been
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inverted to a sea surface height signal h5z2z; to be consis-
tent with the notation used for observations above, we refer
to the individual h measurements as yi. In Fig. 3b, we have
trained a GP regression on the observations yi assuming that
the observations are noise-free, i.e., sy 5 0. In other words,
the only free parameters in this case are the length scale
parameter l and the signal variance sf. Here, and henceforth
in this text, we generally use the GP model to give predictions
of the mean function and its related uncertainty at the mea-
surement times, i.e., t5 t*. More specifically, the prediction
time vector t*5 {t*,1, :::, t*,n} is always defined as a set of equi-
distant measurement times, where the sampling interval
Dt*50:2s in accordance with the 5-Hz sampling rate of the
Ekofisk laser altimeters. The sampling interval of the meas-
urements is, however, not always necessarily equidistant due
to occasional dropouts caused by instrument malfunction.
The initial removal of high-amplitude spikes with a
10MAD(yi) threshold (see section 2) also occasionally results
in individual missing measurement points.

Figure 3b illustrates the effect of neglecting the measure-
ment noise sy in the training of the GP model. In this case,
the GP model regards the observations as the ground truth,
which results in the GP posterior mean function m f*

( )

following the observations exactly. We also notice that the
length scale parameter has been optimized as l 5 1, meaning
that the correlation time scale between the posterior predic-
tion points is equal to the observation sampling interval Dt,
resulting in nearly uncorrelated prediction points. This illus-
trates a phenomenon known as overfitting, where the poste-
rior GP model may exhibit a good fit to the training data, but
lacks the ability to perform predictions from the posterior.
The first point is problematic with respect to our goal of using
the GP prediction to differentiate valid measurements from
measurement errors (e.g., the two obvious large-amplitude
spikes in the example training data in Fig. 3), whereas the lat-
ter point is especially problematic if the prediction times are
different from the training times (such as when interpolating
over long intervals of missing data). Furthermore, setting
sy 5 0 and t*5 t in (8) gives cov f*

( )
50, meaning that the GP

posterior prediction in Fig. 3b has zero uncertainty.
In the example shown in Fig. 3c, we have performed a sec-

ond pass through the data by training another GP model on
the same training data points, with the difference that the
measurement noise parameter sy has been optimized along-
side l and sf. Compared to the previous, noise-free prediction,
the noisy prediction has a more smoothly varying mean func-
tion m f*

( )
owing to the longer correlation time scale l ≈ 11Dt*.

The nonzero covariance has here been used to construct a
95% confidence interval around the mean function as 1.96S,
where

S5
������������������
diag

[
cov(y)]√

· (9)

We can see that the two obvious, large-amplitude spikes in
the raw measurements fall outside the 95% confidence inter-
val around the mean function. This example illustrates our
proposed methodology for spike detection using the GP
regression uncertainty estimate S; a similar approach was
recently taken by Bohlinger et al. (2019) for detecting erro-
neous wave height measurements derived from satellite
altimetry.

Finally, in Fig. 3d the two spikes that were detected in
Fig. 3c were removed from the training data, and a new GP
regression was trained on the remaining observations. We see
that the 95% confidence interval around the new posterior
mean function is markedly narrower than in the previous
example, leading to at least one new measurement (at 2135:35
UTC) being placed outside the confidence interval. Depend-
ing on the purpose of the despiking process, the newly
detected spike may be removed and a third pass can be per-
formed with a GP model trained on the further-reduced set of
observations, or the measurement may be considered valid
and the removed measurements can be interpolated using the
posterior mean function in Fig. 3d. While one could argue for
the removal of this fairly obvious moderate-amplitude spike,
one should also keep in mind that the resulting uncertainty
(represented by S) of a third consecutive GP regression in
this case is likely to narrow down even further. At a certain
point, therefore, even very slight deviations from the posterior
mean function may end up outside the confidence interval

FIG. 3. (a) Sample segment of a raw laser altimeter wave record
(laser 4 from 8 Nov 2007). Two large-amplitude spikes are visible
just before and after the 2135:30 UTC time stamp, and one poten-
tial low-amplitude spike at approximately 2135:35 UTC. (b) The
optimized mean prediction of a GP regression m f*

( )
trained on the

raw measurements, where the measurements are assumed to be
noise-free (i.e., prior sy 5 0). The inset lists the values of the opti-
mized posterior hyperparameters l, sf, and sy. (c) As in (b), but
with prior measurement noise set to sy 5 1.0, leading to sy being
optimized alongside l and sf. The shaded contours enclose the 95%
confidence interval around the mean function m f*

( )
. (d) The two

measurements circled in red that lie outside the 95% confidence
interval in (c) have been removed, after which a new GP prediction
has been made on the remaining data points.
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and become flagged as spikes, potentially leading to an unde-
sired amount of intervention on the raw measurements (e.g.,
smoothing of the wave profiles). As a potential solution for
avoiding this issue, we define a threshold on the coefficient of
determination R2,

R2 5 12

∑
i

(yi 2m*,i)2
∑
i

yi 2 y( )2 , (10)

between the observations yi and the corresponding GP poste-
rior mean function values m*,i. The maximum value R2 can
attain is 1, which implies a perfect match between the model
prediction and the observations. The R2 scores for the exam-
ples presented herein were R2 5 0.624 and R2 5 0.990 for the
cases in Figs. 3c and 3d, respectively. Although not shown, a
third GP regression with the moderate spike at 2135:35 UTC
removed from the training observations returns a posterior
mean function that closely follows the remaining, seemingly
valid, observations, with R2 5 0.999. For this example wave
record, a threshold of R2 5 0.990 would, consequently, end
the spike detection iterations at the second GP regression
iteration, leaving the moderate-amplitude spike at 2135:35
UTC in the dataset, while a higher threshold would lead at
minimum to a third spike detection iteration. Note that in the
example described here we have only used the final posterior
mean function to interpolate over detected spikes; all other
measurements (i.e., those considered valid) have been left
intact to minimize unnecessary altering of the original obser-
vations. This principle of minimizing the intervention on raw
measurements (as advocated by, e.g., Press et al. 1992) is fol-
lowed throughout this paper.

b. Optimizing the performance of the GP model on clean
wave records

In this section we seek to optimize the fitting performance
while minimizing the computational expense of the GP model
by performing regressions on a subset of clean, or spike-free,
20-min wave records from the Ekofisk laser altimeter dataset.
The clean records were inspected manually for lack of obvi-
ous spikes by visually comparing the four instantaneous laser
signals. The clean records were also required to be fully sam-
pled; i.e., no dropouts were allowed within the 20-min
records. In addition, only one laser signal was used in the case
of two or more records fulfilling these criteria during the same
20-min period. In total, 32 independent records between 1620
UTC 8 November and 1440 UTC 9 November, measured by
either laser 1 or laser 2, fulfilled all of the aforementioned cri-
teria and were chosen as clean test records. All computational
tests in this section were performed with a standard laptop
computer running Ubuntu 18.04.5 LTS (processor: Intel Core
i7-8650U CPU, 1.90 GHz3 8; RAM: 31.2 Gb).

We initially focus on the effect of the number of prediction
points on GP model performance and computational cost.
This effect was investigated by splitting the 6000-sample (20
min sampled at 5 Hz) test records into successively smaller,

nonoverlapping “blocks” of data, over which regressions were
run independently. For this test, the prior hyperparameters
(i.e., the first guess) were set to sf 5 1.0, sy 5 1.0, and l 5 1.0,
and were allowed to be optimized freely in the posterior pre-
diction (i.e., without lower or upper bounds). Since the test
records were required to be fully sampled, the prediction
inputs t*5 {t*,1, :::, t*,n*} were set equal to the training inputs
t5 {t1, … , tn}.

To assess the fit of the blockwise GP regressions to the
noise-free sample records, we use the block-average coeffi-
cient of determination 〈R2

b〉, following the definition in
Eq. (10). A perfect match between model and observations
gives 〈R2

b〉51, and due to the noise-free training datasets
and high sampling rate relative to the characteristic motion
of the wave field, our test regressions on the noise-free
sample records predictably return high values of 〈R2

b〉 ranging
between approximately 0.9980 and 0.9999, as shown in
Fig. 4a. While the ensemble mean 〈R2

b〉 values are relatively
insensitive to regression block size, the scatter in 〈R2

b〉
between the test records appears to be at least in part
explained by the mean period of the wave field Tm, with
longer-period wave fields scoring high and shorter-period
wave fields generally scoring somewhat lower. While a mod-
est improvement in 〈R2

b〉 is achieved by using a GP regres-
sion block size of 600 samples or higher, Fig. 4b shows
that this comes at a cost of rapidly decreasing time effi-
ciency owing to the O n3( ) computational complexity of the
matrix inversions performed during GP model training
and optimization.

FIG. 4. Performance evaluation of GP regressions performed on
the 32 clean 5-Hz laser altimeter test records. (a) Regression score
per test record averaged over nonoverlapping blocks (〈R2

b〉) as a
function of block size (number of samples). The small circles repre-
sent 〈R2

b〉 for individual test records, and the large circles are
ensemble averages for each block size. (b) Total GP regression run
time as a function of block size. The small circles represent the run
times for each individual GP regression, and the large circles are
ensemble averages. The dashed line is a cubic fit to the ensemble
average run times. The color scale represents the energy-weighted
mean wave period Tm of each test record.
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c. Avoiding overfitting to noise-corrupted measurements

Unsurprisingly, the test regressions performed on the clean
wave records in the previous section produced very close
model fits even with extremely short correlation length scales
l. However, as shown earlier in Fig. 3b, when the measure-
ments are corrupted by noise (e.g., spikes), a posterior length
scale that is approximately equal to the time scale of the noise
can lead to overfitting issues, where the posterior mean func-
tion cannot distinguish between valid and corrupted measure-
ments. To avoid overfitting, it is therefore advisable to
prevent the length scale from being optimized too low (i.e.,
close to the time scale of the noise). We do this by setting a
lower bound lmin on the posterior length scale. Based on the
noise characteristics of the Ekofisk laser altimeter signals, we
find that lmin55Dt* is long enough to generally avoid overfit-
ting to spikes of lengths between Dt and 3Dt. However,
because setting lmin too high may also negatively impact the
model fit to valid measurements, Fig. 5 shows the block-aver-
aged coefficient of determination 〈R2

b〉 as a function of lmin

based on GP regressions on the same subset of clean wave
records used in Fig. 4. We see that 〈R2

b〉 is more or less insensi-
tive to the choice of minimum length scale up to lmin 5 5, after
which the model fit begins to deteriorate, with accelerated
deterioration in sea states with lower mean period Tm. This
further supports our choice of using lmin 5 5 to avoid overfit-
ting to noise while simultaneously obtaining a good model fit
to apparently valid training data points.

Figure 3 exposes another concern related to the overfitting
issue, namely, the fact that the uncertainty estimate of the GP
regression, S, may become excessively low if the training data
are very smooth. This typically happens when training the GP
model on comparatively noise-free data, and if S is used to
construct a confidence interval for detecting invalid measure-
ments, the low uncertainty can lead to valid data being erro-
neously flagged as invalid. Based on our experience with the
Ekofisk laser altimeter dataset, such false positive spike detec-
tion is especially likely to occur in segments of steep gradients

in the sea surface displacement time series, such as the
front faces of steep, nonlinear waves. A possible solution
for avoiding this undesired effect would be to inflate the pos-
terior covariance in the regions of steep gradients. In fact,
McHutchon and Rasmussen (2011) address this issue by
assuming that noise is present in the input locations t in addi-
tion to the common assumption that the measurements y(t)
are corrupted by noise (represented by sy). McHutchon and
Rasmussen (2011) parameterize the input noise st by scaling
the posterior covariance with the square of the slope of an ini-
tial, standard GP posterior mean function trained on the
observations. A second, noisy-input GP (NIGP) regression is
then performed with the altered covariance, and the log mar-
ginal likelihood is maximized by optimizing the four hyper-
parameters l, sf, sy, and st. We applied the input-noise
parameterization of McHutchon and Rasmussen (2011) on
the laser altimeter dataset, and found that we were indeed
able to avoid certain false positive detections by using the
inflated covariance to determine the confidence interval
around the posterior mean function. However, we also found
that the increased model complexity resulting from optimizing
four instead of three hyperparameters resulted in an
increased tendency for overfitting to the noise. The NIGP
approach was hence not pursued further. Instead, we use the
approach described in section 3a, where a threshold on the
blockwise model fit score R2

b is used to determine whether to
use the blockwise GP posterior uncertainty S b to flag outliers
or, if R2

b exceeds the threshold, to assume that the block is
composed of valid measurements, and spike detection is
unnecessary and likely to lead to false positives. In other
words, we use R2

b as a proxy for the signal-to-noise ratio of the
raw measurements.

d. Signal reconstruction

In this section we demonstrate how GP regression can be
used to replace (i.e., interpolate over) missing values in the
wave record, whether they are dropouts due to instrument
failure or spikes removed after being flagged by the despiking
process. In Fig. 6, we compare the errors generated by replac-
ing missing values with the GP posterior mean function
against two standard techniques, linear and cubic spline inter-
polation, as well as a recent method developed by Støle-
Hentschel et al. (2021) based on the convolution theorem.
This novel method is included here because of its previously
demonstrated potential for improved accuracy in signal recon-
struction over traditional interpolation methods for large gap
sizes. The deconvolution method for signal reconstruction is
based on the observation that the operation of masking a
wave signal due to, e.g., the removal of spikes or other faulty
measurements is equivalent to a convolution in spectral space.
Supposing that the underlying wave signal is sufficiently nar-
row banded, Støle-Hentschel et al. (2021) showed that the
full signal can be reliably reconstructed by deconvolving a
reduced system that covers a limited range of frequencies
[ f1, f2] containing the majority of the energy of the underlying
wave signal. Støle-Hentschel et al. (2021) showed that, for the
optimal choice of frequency range, their method was able to

FIG. 5. Block-average regression score 〈R2
b〉 as a function of min-

imum length scale lmin of GP regressions performed on the clean
test records. The small circles represent each test record, and the
large circles are ensemble averages. The GP regression block size
has been held constant at 200 samples, i.e., 40 s, and the color scal-
ing represents the mean period Tm.
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reproduce both real and synthetic sea surface displacement
records corrupted with artificial gaps up to one-half peak
wave periods in length with exceptionally high accuracy. For
our test data, we have applied a frequency range constrained
by f1 5 0.05 Hz and f2 5 0.3 Hz, which we expect to capture
the majority of the energy within the wave field in the sea
states encountered on 8–9 November 2007. For more details
on the method and the optimal choice of frequency range, the
reader is advised to refer to the original study by Støle-Hent-
schel et al. (2021).

The interpolation tests here have been performed on the
sample dataset of 32 clean wave records used in Figs. 4 and 5
by introducing successively longer gaps Lg centered on the
crests of the wave signals h, and comparing the root-mean-
square errors (RMSE) normalized by the full-signal standard

deviations sh resulting from interpolating over the gaps with
the different methods. We have chosen to focus the interpola-
tion tests on the wave crest regions because of the negative
impact that the accidental removal and improper replacement
of high crests may have on, e.g., high-order statistical
moments derived from the wave signals. It has also been
shown that interpolation over wave crests produces the larg-
est differences in performance between interpolation methods
(e.g., Støle-Hentschel et al. 2021).

For the interpolation with GP regression, we employ the
approach described in section 3b, where the full 6000-sample
test records are split into 200-sample blocks for more efficient
computing. The gaps are then interpolated with correspond-
ing values of the posterior mean functions of the GP fits to
the test records with the crests removed. The linear and cubic

FIG. 6. Interpolation tests performed on the test dataset of 32 clean 20-min wave records used
in Figs. 4 and 5. The interpolation methods included are linear interpolation (“linear”), cubic
spline interpolation (“spline”), GP regression (“GP”), and deconvolution (“deconv”). (a) The
root-mean-square error (RMSE) of the interpolated measurements vs the raw QC.0-level
observations normalized by the observation standard deviation sh as a function of artificially
inserted holes of varying size Lg. The artificial holes have been centered at wave crests (i.e.,
local maxima in h) separated temporally by a minimum of one peak wave period Tp. Note that
only the interpolated gap regions of the wave records were included in the RMSE calculations.
(b),(c) Example segments of test records in which crests have been replaced with holes of 9-
sample and 15-sample lengths, respectively. The dashed curves show the original measurements,
and the colored curves show the interpolation results by the four tested methods. The 200-sam-
ple blocks of the GP interpolations are represented by the vertical dotted lines in (b) and (c).
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spline interpolations were performed on the full 20-min sig-
nals, while the deconvolution tests were performed with
blocks of 500-sample length for computational efficiency.

Figure 6a indicates that cubic spline interpolation performs
comparably to interpolation with the GP posterior mean func-
tion until the gaps reach a length of more than 9 consecutive
data points, while both the GP and spline methods consis-
tently outperform linear interpolation which, by definition,
simply cuts down the wave crests, as shown in Figs. 6b and 6c.
For gaps shorter than 3Dt in length, the deconvolution
method leads to the highest average errors of the methods
included in the comparison; however, the mean error magni-
tude resulting from the deconvolution interpolation displays
very little variation over the range of gap lengths. As the gap
lengths exceed 9Dt, or approximately 2 s, the errors induced
by interpolation with the GP posterior mean function begin
to grow faster than the errors induced by cubic spline interpo-
lation. This is most likely because the GP prediction is opti-
mized with regard to the correlation length scale parameter l
which, for the training data used here, generally lies in the
range 5Dt–10Dt. One cannot, therefore, expect the GP poste-
rior to deliver robust replacements for gaps whose length
exceeds the optimized correlation scale of the prediction. The
cubic spline, on the other hand, produces a smooth interpola-
tion which, for the gap sizes included herein, is well behaved
and fairly accurately approximates the removed wave crests.
Care should however be taken if gaps grow much longer, as
the behavior of the cubic spline interpolator over long sec-
tions of missing data may become more erratic (see, e.g., Liu
et al. 2014). If extended gaps resulting from, e.g., the removal
of multipoint spikes or long periods of missing data are
encountered, Fig. 6 suggests that the deconvolution method
of Støle-Hentschel et al. (2021) may give improved robustness
over the GP-based or the more conventional linear or cubic
spline interpolation methods. However, the limited results
presented herein are insufficient to justify recommending one
specific method for multipoint sea surface reconstruction over
another, as this topic is outside of the scope of quality control
and demands a dedicated, in-depth study of its own.

e. Full despiking pipeline

Here we propose a full stepwise despiking methodology for
surface wave time series based on the optimized GP regres-
sion settings and parameters determined in the preceding sec-
tions. The despiking process involves both spike detection
and replacement (i.e., interpolation), and the results of apply-
ing the methodology on the Ekofisk laser altimeter test data-
set are presented in section 4. To highlight different stages in
the despiking methodology, we break up the processing into
quality control (QC) steps QC.0–QC.4, in which QC.0 refers
to the crudest level of despiking (by a constant global thresh-
old), and QC.4 is the final, highest level of quality control.

• QC.0: To decrease the potential for overfitting in the spike
detection stage (QC.1), we remove prominent, unphysical
spikes with a global threshold of 10MAD above and below
the record median from the raw wave record.

• QC.1: We detect potential remaining spikes that evaded
the QC.0-level thresholding by training a GP regression to
the QC.0-level record divided into blocks of n*,b5200
training data points. In addition to improving the computa-
tional efficiency, the division of the QC.0 records into
blocks of O 100( ) samples in length for despiking also
focuses the spike detection and replacement operations on
the segments of the records that are most contaminated
with intermittent noise. In this way the GP posterior uncer-
tainty is correctly inflated during signal sequences with ele-
vated noise corruption, reducing the probability of overfit-
ting the model to the noise, while noise-free segments can
be passed over without intervention. We use the diagonal
entries of the GP covariance matrix Sb to flag and remove
training data points that lie outside a specified confidence
interval around the GP posterior mean function m f*

( )
within each block. We define the confidence interval as
1.96Sb (i.e., 95%). To determine whether to remove the
detected spikes or proceed without intervention, we use a
threshold on the blockwise coefficient of determination R2

b,
which acts as a proxy for the signal-to-noise ratio of the
GP fit to the training data. This spike detection step for a
block is repeated until the R2

b threshold is exceeded, or
until a specified number of spike detection iterations has
been performed (to speed up the processing and avoid
underfitting). In our implementation of the method, we
choose to use a signal-to-noise threshold of R2

b50:995 and
a cap of three consecutive spike detection iterations per
block of training data. The maximum limit on iterations
per block is set both for reasons of computational effi-
ciency as well as to avoid issues related to underfitting.
The latter issue may arise if sufficiently many measure-
ments within a block are flagged as spikes and subse-
quently removed, leaving an insufficient number of meas-
urements to perform a robust interpolation over the
resulting gaps.

• QC.2: We replace initial missing measurements (dropouts)
and detected spikes in the QC.1-level product by fitting a
final GP regression to the QC.1-level record (with both
dropouts and spikes removed), and replace them using the
values of the posterior mean function. Alternatively, e.g., if
computational efficiency is required, the missing and
removed measurements can be interpolated with another
method of choice. Based on Fig. 6, the cubic spline method
is both efficient and reliable for short to moderate gap sizes
(0.2–3 s), whereas the recent deconvolution-based method
of Støle-Hentschel et al. (2021) may be used for increased
robustness for gaps longer than approximately 3 s. Regard-
less of the interpolation method of choice, we advocate (in
accordance with, e.g., Press et al. 1992) only replacing the
missing and removed data points in order to minimize
intervention on the raw measurements.

• QC.3: This quality control stage applies only if the signal
reconstruction in stage 2 was performed using a GP model.
To gauge the quality of the despiked and interpolated
QC.2 product, the block-averaged model fit score 〈R2

b〉 of
the final, replacement-step posterior mean function can be
used to evaluate the quality of the despiked signal. This is
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especially advisable if, as in most field measurement data-
sets, only one measurement record is available such that
the despiked signal cannot be compared with one or more
collocated signals, as in the Ekofisk laser altimeter test
dataset. For example, a threshold can be defined on 〈R2

b〉,
over which the signal-to-noise ratio of the QC.2-level
record is assumed to be sufficiently low, and the record
passes the automated quality control. This may be beneficial,
because setting a limit on the number of spike-detection iter-
ations (in the QC.2 step) means that highly noise-corrupted
signal blocks may end up with an R2

b score significantly
below the blockwise R2

b threshold.
• QC.4: To validate the results of the automated despiking

described in the previous steps, a final manual quality con-
trol is recommended for QC.2- or QC.3-level records that
contain anomalous measurements. This final quality check
may be implemented by following standard guidelines, as
described in, e.g., IOOS (2019).

f. The phase space despiking method

Here we give a brief summary of the recent phase space–based
despiking method of Voermans et al. (2021), as we will apply it
in section 4 in order to evaluate the performance of our proposed
GP-based despiking methodology. Following Voermans et al.
(2021), we define the phase space in terms of the normalized
QC.0-level raw measurements yi=syi and their standardized
acceleration (i.e., the second derivative) ai=sa5y′′i =sa, where
syi and sa are the standard deviations of yi and ai, respectively.
We compute the sea surface acceleration ai using a nine-
point central difference scheme on the QC.0-level sea surface dis-
placement measurements, following the recommendation of
Voermans et al. (2021) for 5-Hz laser altimeter data. The radius
of the semimajor axis x1 of the normalized phase space ellipse is
defined, following Voermans et al. (2021), as

x1 5
��
2

√
p, (11)

where p is a multiple that defines the expected fraction of
measurements that would fall inside the normalized ellipse if
the measurements were drawn from a normal distribution. In
line with Voermans et al. (2021), we choose p5 6 for our des-
piking purposes, corresponding to a Gaussian confidence
interval of 6s. The radius of the semiminor axis was defined
by Voermans et al. (2021) as

x2 5C
�����
nsa

syi

√
Tm02, (12)

where C 5 0.2 is an empirical constant, and the spectral

parameters n5 m0m2=m2
121

( )1=2
—the spectral bandwidth of

Longuet-Higgins (1975)—and the mean wave period Tm02 5
(m0/m2)

1/2 are computed from the truncated spectral moments

mn 5

� f2

f1
f nE f( )df · (13)

Voermans et al. (2021) compute the wave energy spectrum
for (13) from a subset of raw displacement measurements

from which individual measurements whose magnitude exceeds
4syi from the mean have been iteratively removed until no
measurements exceed the threshold. This iterative filtering
procedure is performed in order to obtain representative
estimates of n and Tm02, which, due to their dependence on
spectral moments up to second order, are sensitive to the
potential presence of high-frequency spikes. While such a
low threshold is bound to also remove legitimate wave
crests, this is deemed acceptable due to the comparatively
minor impact this has on the higher-order spectral moments.
Instead of following the iterative filtering process of Voer-
mans et al. (2021), we apply a more robust 4MAD threshold
only once to remove high-amplitude measurements for the
spectral estimation. We then estimate the spectra for (12)
after the removed measurements (and potential initial drop-
outs) have been interpolated over with a cubic spline func-
tion. To account for the effects of this crude filtering process
on both the low- and high-frequency range of the spectra,
we truncate the spectra at a lower bound of f1 5 0.05 and a
maximum frequency f2 5 1.0.

In our implementation of the phase space despiking
method, we perform the replacement of flagged spikes and
dropouts with cubic spline interpolation. In the original
description of the method, Voermans et al. (2021) do not
address the issue of spike replacement. Prior studies on phase
space methods applied on ADV data, including Goring and
Nikora (2002) and Jesson et al. (2013), recommend cubic
polynomial interpolation for replacing moderate-length
spikes. Our Fig. 6 indicates that the cubic spline interpolation
method is able to reasonably reconstruct wave crests cut by
artificial holes up to approximately 1–2 s (or 5–10Dt) in length.
For this range of gap lengths, the cubic spline also performs
very similarly to the GP mean function–based interpolation.
We therefore argue that using a cubic spline to replace spikes
detected with the phase space method of Voermans et al.
(2021) provides a fair comparison to the interpolation with
the GP posterior mean function employed in our GP-based
despiking methodology. For gaps exceeding 3 s the deconvo-
lution method of Støle-Hentschel et al. (2021) may provide
added robustness, as suggested by section 3d; however, in our
test dataset we very rarely encounter gaps of such extent due
to the high-frequency nature of the spikes in the laser altime-
ter data (see section 4). For the sake of simplicity, we there-
fore only perform interpolation with the cubic spline method
when despiking with the phase space method.

4. Results

In Figs. 7 and 8, we apply the despiking pipeline outlined in
section 3, and summarized in Table 1, on representative seg-
ments from the 8–9 November 2007 Ekofisk laser altimeter
test dataset. Two separate 20-min segments were selected, for
which each of the four laser altimeter wave records were des-
piked independently. The first sample segment, 1500–1520
UTC 8 November, was characterized by high noise levels,
apparent especially in the time series of lasers 3 and 4, as
shown in Fig. 7a and as implied by the relatively low QC.
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0-level signal correlations displayed in Fig. 7b. Conversely,
the second sample segment, 0040–0100 UTC 9 November,
had highly correlated time series from all four lasers, suggest-
ing low initial noise levels (Figs. 8a,b). It should be noted,
however, that a perfect correlation between any two of the
four laser signals is extremely unlikely due to both the finite
spatial distance between the laser altimeters (array side length
of 2.6 m) and their staggered sampling sequences (45-ms time
staggering). Regardless, the four despiked wave records in
Fig. 7c and the corresponding signal correlations (above the
diagonal) in Fig. 7d show that significant improvements in sig-
nal correlations were achieved after despiking the noise-
contaminated laser signals with the GP-based method. For
instance, the signal correlation between lasers 3 and 4
increased from 0.76 to 0.97 before versus after despiking with
the GP method. The GP method also performed favorably

on the comparatively clean test signals, as shown in Figs. 8c
and 8d, with the signal correlations remaining effectively
unaltered.

The phase space despiking algorithm of Voermans et al.
(2021) was included in the tests shown in Figs. 7 and 8 to allow
for comparison against our proposed GP-based despiking
algorithm. Because the empirical constant C 5 0.2 in Eq. (12)
was originally determined on the basis of field observations
collected in relatively calm sea states (Hs , 3 m), Voermans
et al. (2021) mention that the functional form of x2 may have
to be changed if their method is to be applied in more ener-
getic situations or to measurements obtained with a different
sampling frequency. Furthermore, the value of C 5 0.2 was
originally defined for p 5 2, which theoretically requires a
scaling of x2 by a factor of 3 if p 5 6 is chosen, as in our appli-
cation of the method. We found, however, by despiking the

FIG. 7. (a) Simultaneous, spike-contaminated 20-min QC.0-level raw wave records measured by the four nearly col-
located laser altimeters during 1500–1520 UTC 8 Nov 2007. (b) The correlation matrix of the QC.0 wave time series
in (a). (c) The wave records from (a) despiked with the GP regression–based despiking method outlined in section 3.
(d) As in (c), but despiked following the Voermans et al. (2021) phase space despiking method. (e) Correlation coeffi-
cients between the despiked wave records; the correlations between the GP despiked records are displayed above
the diagonal in black font, while the phase space despiked correlations are displayed beneath the diagonal and col-
ored blue.
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test case shown in Fig. 7d with a range of values of the cons-
tant C (other variables unchanged), that for this case, in which
Hs ≈ 5.5 m, using the default value of C 5 0.2 in (12) resulted
in the highest correlations between the despiked wave
records. We therefore applied (12) exactly as defined by
Voermans et al. (2021) in our implementation of their method.

While the signal correlations resulting from applying the
phase space despiking method on the noisy test records (see
the blue-colored correlation matrix entries in Fig. 7e) largely
increase to similar levels as with the GP method, a close

inspection of the phase space despiked time series (Fig. 7d)
reveals that several moderate-amplitude spikes pass the con-
trol undetected, especially for lasers 3 and 4. Therefore,
despite producing comparable improvements in signal corre-
lations, as shown in Fig. 7c the GP-based despiking method
appears to more consistently recover the wave signal from
behind the noise than the phase space method. In the compar-
atively clean test case of Fig. 8, neither the GP nor phase
space method results in appreciable changes in signal correla-
tion. It is, however, worth noting that the extreme wave
recorded just after 0054 UTC (i.e., the Andrea wave), whose
maximum crest registered at 14.97, 14.89, 14.92, and 14.73 m
above the record mean levels in the QC.0-level raw records of
the four lasers, passed through the GP despiking process unal-
tered, while the phase space method combined with cubic
spline interpolation flagged and cut the crest heights down to
11.85, 12.42, 11.73, and 12.27 m, respectively.

A complementary presentation of the results in Figs. 7 and
8 is shown in Fig. 9, where we compare the scalar wave energy
spectra E(f) of the two test cases before and after despiking
with the GP and phase space methods. The impact of the

FIG. 8. As in Fig. 7, but for a set of comparatively clean QC.0-level wave records from 0040 to 0100 UTC 9 Nov 2007.

TABLE 1. Summary of the GP regression parameters used in
the despiking of the North Sea laser altimeter test dataset.

Parameter description Fixed value(s)

GP regression block size n*,b 200
R2

b threshold 0.995
Max number of GP iterations 3

Prior l, sf, sy 5.0, 1.0, 1.0
Posterior l bounds (lmin, lmax) (5.0, 30.0)

Spike detection confidence interval 1.96S b
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presence of spikes on the high-frequency tails of the spectra is
evident in the QC.0-level raw records from 1500 to 1520 UTC
8 November (Fig. 9a), especially for lasers 3 and 4, in the devi-
ations of the spectral tails from the theoretical f24 slope of the
spectral equilibrium range (e.g., Kitaigorodskii 1983; Phillips
1985). As Fig. 9b shows, the GP-based despiking method pro-
posed herein leads to highly coherent spectra from all four
lasers up to approximately 1 Hz. The phase space method,
shown in Fig. 9c, also improves on the spectral tail conver-
gence, although the spectra of lasers 3 and 4 begin diverging
from the f24 slope at a somewhat lower frequency of approxi-
mately 0.5 Hz. This lower divergence frequency is most likely
due to the moderate-amplitude spikes that evaded the spike
detection, as seen in Fig. 7d. For the comparatively clean test
case from 0040 to 0100 UTC 9 November, the QC.0 spectra
(Fig. 9d) display strong coherence up to nearly 1 Hz. In this
case the GP-based despiking method removes one moderate-
amplitude spike from the laser 3 time series (Fig. 8c), improv-
ing the overlap slightly in the 1-Hz range, as shown in Fig. 9e.
The phase space method, on the other hand, appears to
improve the spectral coherence even marginally beyond 1 Hz
(Fig. 9f). The smoothing of the highest wave crest induced by
the phase space method has, however, little noticeable effect
on the spectral estimates.

To verify that the GP method performs consistently also on a
larger dataset than the test cases assessed above, we have proc-
essed all QC.0-level wave records from the 8–9 November storm
dataset using the GP regression parameters summarized in
Table 1. Figure 10 shows a clear improvement in the agreement
between the QC.2-level significant wave height estimates
between the four lasers compared to the QC.0-level estimates
presented in Fig. 1. Here we have estimated the significant wave
height according to Eq. (1), i.e., in terms of syi , in order to be
able to directly compare the QC.0 and QC.2 estimates. Hs can
also be estimated from the zeroth-order spectral moment m0,
which for normally distributed surface displacements h(t) can be
shown (see, e.g., Holthuijsen 2010) to relate to syi by

Hs 5 4syi ≈ 4
����
m0

√ · (14)

Due to its sole dependence on m0, the significant wave height
is therefore comparatively insensitive to the high-frequency
effects of typical spikes in the laser altimeter measurements.
However, Fig. 11 shows that the higher-order moments (up to
m4) of the QC.2-level despiked wave records also remain
well constrained throughout the entire 36-h dataset. The only
exception occurs in the 1000–1020 UTC record on 9 November,
during which a high-amplitude spike in the laser 3 signal has

FIG. 9. Comparisons of wave spectra estimated from the sample wave records in Figs. 7 and 8. (a)–(c) Spectra of
the raw QC.0 and despiked QC.2-level records from 1500 to 1520 UTC 8 Nov 2007, and (d)–(f) corresponding spec-
tra for the records from 0040 to 0100 UTC 9 Nov 2007. The dashed lines illustrate the theoretical f24 slope of the
spectral tail.
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escaped detection, leading to prominent spikes in the corre-
sponding m3 and m4 time series (see also Fig. 12f). This exam-
ple demonstrates that a close examination of the high-order
spectral moments can be used as an additional quality check of
despiked wave records.

For extreme value statistical analysis, a more thorough qual-
ity control of the despiked wave records involves a visual
examination of the highest wave crests in the QC.2-level wave
signals. Figure 12 shows close-ups of all QC.2-level despiked
wave crests hc in the Ekofisk laser altimeter test dataset whose

heights in at least one of the laser signals exceed the commonly
used rogue wave threshold of hc $ 1.25Hs (e.g., Dysthe et al.
2008). It is apparent from Figs. 12f, 12g, and 12i that three mod-
erate to large-amplitude spikes have passed through the despik-
ing stage undetected. While the spikes in the 1000–1020 and
1900–1920 UTC records (Figs. 12f,g) are obvious enough to be
detectable visually even if only one wave signal were available,
the validity of the QC.2 wave crest of laser 4 in the 2040–2100
UTC record (Fig. 12i) may be more difficult to ascertain from
one signal only. Furthermore, Fig. 12b includes a potential case
of a false positive spike detection, where the highest crest of the
laser 4 signal may have been erroneously cut off.

In Fig. 13 we plot the crest height exceedance probabilities
from the three distinct stages of the Andrea storm test data-
set. Based on the variousHs estimates shown in Fig. 1, we can
identify a buildup stage with rapid wave growth lasting from
the start of the test dataset until approximately 1800 UTC
8 November. After this, there is a peak stage of comparatively
stable, high seas lasting until approximately 0800 UTC 9
November, followed by a decay stage during which the waves
gradually decrease in height. Two standard theoretical exceed-
ance probability distributions are included in Fig. 13 for refer-
ence, namely, the Rayleigh distribution of linear, narrowband
wave crests, and the second-order, narrowband Tayfun (1980)
distribution. As expected, the theoretical distributions underes-
timate the probability of encountering high wave crests during
all stages of the storm, most markedly during the peak stage.
However, the relatively small number of wave crests
included—approximately 3100, 5200, and 6900 in the buildup,
peak, and decay stages, respectively—may lead to somewhat
overestimated exceedance probabilities for the highest wave
crests (e.g., Støle-Hentschel et al. 2018). Notably, at least one
of the four laser altimeters recorded two arguably valid rogue
wave crests in both the buildup and peak stages of the storm.
During the decay stage, however, three out of the four possible
rogue waves turned out to be attributable to undetected spikes,
and the remaining extreme crest only exceeds the rogue wave
threshold in one of the wave signals.

5. Discussion

The results presented in Figs. 7–13 indicate that our pro-
posed despiking method based on GP regression is able to
both reliably filter out most spikes and leave seemingly valid
measurements unaltered. In terms of improving wave signal
correlations and spectral tail consistency, our method outper-
forms another state-of-the-art despiking method, the wave
physics–based phase space method of Voermans et al. (2021).
However, it should be noted that the sea states included in
our test dataset are significantly more energetic than those
which were used by Voermans et al. (2021) to validate the
phase space method, and the phase space coefficients applied
herein may require further adjustment for optimal perfor-
mance. By using the coefficient of determination of the final
GP fit to the despiked measurements as a proxy for the sig-
nal-to-noise ratio, our methodology was also able to pass the
exceptionally high Andrea wave unaltered through the spike

FIG. 10. (a) Time series of significant wave height Hs over the
duration of the 8–9 Nov 2007 storm at the Ekofisk field, estimated
from both the QC.0-level raw records (blue circles; the same as in
Fig. 1c) and the QC.2-level despiked wave records (gray/black
circles). (b) The standard deviation of concurrent Hs estimates
from the QC.2-level laser altimeter records (solid line). The dashed
line shows the initial spread of the concurrent QC.0-level Hs esti-
mates from Fig. 1d.

FIG. 11. (a)–(d) Time series of the high-order spectral moments
m1–m4, respectively, over the duration of the 8–9 Nov 2007 storm
at the Ekofisk field, estimated from the QC.2-level despiked wave
records.
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detection stage, while the phase space method erroneously
removed the top 2–3 m of the wave from each of the four sep-
arate laser signals. However, these improvements come at the
expense of significantly increased computational cost com-
pared to the phase space method.

Arguably the most significant limitation of using GP regres-
sion for despiking purposes is its high computational complex-
ity. For example, to sequentially perform one GP regression
on one 20-min, 5-Hz laser altimeter record split up into 200-
sample blocks, the GP method requires roughly 50 times
more wall time than the phase space method of Voermans
et al. (2021) (which, additionally, does not require splitting up
the signal into blocks). Additionally, our proposed GP-des-
piking pipeline involves potentially rerunning GP regressions
on individual blocks up to a user-defined number of itera-
tions, further increasing the computational requirements.
Finally, we propose using a final GP posterior mean function,
trained on observations from which all detected noise has
been removed, to fill in the gaps generated by initial dropouts
and detected, and subsequently removed, spikes. While
improvements in computational efficiency may be achieved

by parallelizing the processing of each independent block, the
high computational requirements make the GP method (as
presented herein) unlikely to be applicable with current tech-
nology to, e.g., real-time despiking of wave measurements.
However, if the application is less time constrained (e.g., post-
processing of wave records for statistical analysis), the convinc-
ing improvements in signal correlation and spectral consistency
achieved by the GP method (Figs. 7–11) support its utility as a
robust quality control tool. Additionally, continued increases
in computational power and cost efficiency may make the GP
method viable for real-time processing in the near future.

Being a data-driven method instead of a physically moti-
vated framework such as, e.g., the phase space method of
Voermans et al. (2021), the GP method proposed herein may
also be vulnerable to mistaking more complex measurement
errors than spikes as valid wave phenomena. The buoy meas-
urements analyzed by Thomas (2016) and Voermans et al.
(2021), for instance, include large-scale anomalous wave fea-
tures possibly induced by mooring interference or other exter-
nal influence on the wave buoys. If the time scales of such
anomalous events are comparable to the characteristic time

FIG. 12. Close-ups of all QC.2-level despiked waves in the 8–9 Nov 2007 Andrea storm dataset whose crest heights
hc in at least one of the four laser altimeter signals exceed the rogue wave threshold of hc $ 1.25Hs, the level of which
is marked in each subplot with a dashed horizontal line. The QC.2 wave signals are color coded, while the raw QC.0-
level measurements are plotted with gray dots. The subplot titles indicate the start times of the 20-min wave records
during which the waves occurred.
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scales of the wave field (and within the bounds set on the GP
correlation length scale hyperparameter l), the standard GP
method described herein may lack information on which to
reject the events as erroneous, whereas a phase space method,
for instance, can potentially be used to differentiate between
physically realistic and unrealistic sea surface displacements
and accelerations from such complex erroneous phenomena.
Consequently, given the superior spike-detection perfor-
mance of the GP method on highly noise-corrupted wave
records (see Fig. 9), and the superior computational efficiency
of the phase space method, a hybrid method may be contem-
plated in which GP regression is used for despiking, coupled
with anomaly detection with a phase space method. Also,
spectral and time-domain quality control criteria (e.g., Tucker
1993; Thomson and Emery 2014; IOOS 2019) should always
be employed to manually verify anomalous measurements,
especially if the wave records are to be used for extreme value
statistical analysis where undetected measurement errors
may bias the high-order statistical moments of empirical

distributions. Future studies may focus on extending the GP
methodology presented herein with more physically moti-
vated premises. Following the phase space philosophy, a
potential extension may for example involve applying GP
regression on time series of the raw signal accelerations.

6. Summary

Wave height measurements recorded by an array of four
vertically oriented laser altimeter rangefinders during a storm
in the North Sea have been used to demonstrate and evaluate
a despiking methodology based on Gaussian process (GP)
regression. The probabilistic and nonparametric nature of GP
regression allows for flexible spike detection performance by
using the intrinsic uncertainty of the GP regression, and the
method is also suited for replacing flagged or missing meas-
urements. The performance of the method was validated by
despiking the four nearly collocated and simultaneously sam-
pled wave records independently of one another. We showed

FIG. 13. Exceedance probabilities of QC.2-level crest heights hc normalized by the 20-min significant wave heightsHs during the (a)–(d)
buildup (1200–1800 UTC 8 Nov), (e)–(h) peak (1800 UTC 8 Nov–0800 UTC 9 Nov), and (i)–(l) decay (0800 UTC 9 Nov–0000 UTC 10
Nov) stages of the Andrea storm. The dashed vertical line indicates the rogue wave threshold hc/Hs $ 1.25, and the red circles in (k) and
(l) are around the rogue wave crests mark the erroneous crests (i.e., undetected spikes) identified in Figs. 12f, 12g, and 12i. The blue curve
is the theoretical Rayleigh distribution for linear crest heights, and the red curve is the second-order Tayfun (1980) distribution.
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that the method significantly improved the signal correlation
and spectral shape consistency of noise-corrupted wave
records, while clean raw wave records that lacked obvious
measurement errors were passed through the processing unal-
tered. An extensive, 36-h dataset covering the entire North
Sea storm event was later used to convincingly demonstrate
the consistency of the method in despiking laser altimeter
records in a wide range of sea states and various levels of
noise corruption. The GP-based despiking method was also
compared against a state-of-the art phase space method
(Voermans et al. 2021). While the GP method performed
favorably in comparison to the phase space method in
improving the spectral consistency of a noise-corrupted test
dataset, the GP method also comes at the price of significantly
higher computational complexity, reducing its appeal for real-
time despiking applications. Furthermore, it is uncertain
whether the phase space parameters applied herein, based on
validations performed with limited field data by Voermans
et al. (2021), are optimal for the energetic sea states encoun-
tered in our North Sea test dataset. The interpolation capabil-
ity of GP regression was shown to be comparable to standard
cubic spline interpolation for short to moderate data gaps up
to approximately 2 s in length, and our results also support
the applicability of a recent interpolation method based on
deconvolution (Støle-Hentschel et al. 2021) for cases in which
the data gaps exceed 3 s. However, the topic of multipoint
spike replacement is outside of the main scope of the current
study and warrants further dedicated investigation. The results
presented herein suggest that the GP-based despiking method-
ology is most suited to offline postprocessing of surface wave
records. Last, although our proposed methodology was shown
to lead to significant improvements in terms of spectral coher-
ence and signal correlation, a visual examination of the highest
wave crests in the despiked wave records revealed that manual
quality control procedures remain essential for studies con-
cerned with extreme wave and crest height statistics.
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APPENDIX

Stepwise Example GP Despiking Algorithm

Algorithm 1 is a step-by-step example of our spike detec-
tion algorithm based on GP regression. Since our imple-
mentation is based on the scikit-learn Python package, the
syntax in algorithm 1 mimics the actual Python syntax. GP
regression packages with similar syntax can at the time of
writing also be found for most other popular data analysis
languages, such as MATLAB or R. We recommend using
preexisting packages for performing the GP regression
because of their optimal computational performance;

however, a stepwise sample GP algorithm is also provided
in, e.g., Rasmussen and Williams (2006, their algorithm 2.1).

The function outlined in algorithm 1 takes as input 1D
arrays with the raw data y and the corresponding inputs
array x. It is assumed that missing data points, including
large-amplitude spikes detected, e.g., with a MAD thresh-
old, have been assigned a recognizable value (e.g., NaN in
Python or MATLAB). Algorithm 1 returns a Boolean
mask which indicates the indices of detected spikes in the
input raw data array y. While the algorithm does not show
the spike replacement step, it can readily be modified to do
so by adding a line of code that replaces the detected spikes
in y with corresponding values of the posterior mean func-
tion m. The coefficient of determination R2, which we use
to determine whether or not to replace detected spikes, is
commonly available as an optional output from the GP regres-
sion packages; if not, it can be computed as in Eq. (10).

Algorithm 1 GP-based spike detection algorithm
1: procedure DetectSpikesGP (x, y) . Input: x(inputs),

y(raw data) . Output: mask (spike indices)
Initialize training data yt and corresponding training

inputs xt.
2: yt:5 mean(y) 2 y . Zero-mean training data yt
3: xt:5 x(isnan(y)) . Valid training inputs xt
Construct covariance kernel by combining a squared

exponential function [Eq. (5)] with length scale bounded
from below by lmin with Gaussian (white) noise with initial
noise level sy 5 1, and use the kernel to initialize the GP
regression (GPR).

4: kernel:5 SquaredExponential(1_min 5 lmin) 1 White-
Noise(sy 5 1)

5: gp:5 GPR(kernel)
Fit a GP model to the training inputs xt and training data

yt by optimizing the hyperparameters by maximizing the
log-marginal likelihood.

6: gp.fit(xt, yt)
Predict the posterior mean function m and standard devi-

ation S (the square root of the diagonals of the covariance
matrix) for the prediction inputs x based on the optimized
GP fit to the training data.

7: m, cov 5 gp.predict(x)
8: S5

��������������
diag cov( )√

Flag raw data points that fall outside the 95% confidence
interval around the posterior mean.

9: mask:5 (y , m 2 1.96S) & (y . m 1 1.96S)
10: return mask
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1.  Introduction
The breaking in deep water of wind-generated ocean surface waves is an intermittent process, scattered unevenly 
in space and time and occurring over a variety of scales. Breaking waves dissipate wave energy as turbulence 
and entrain air in bubbles just below the surface (Thorpe, 1982). Turbulent dissipation rates immediately beneath 
breaking waves are orders of magnitude above values encountered in non-breaking regions (Agrawal et al., 1992; 
Derakhti, Thomson, & Kirby, 2020; Gemmrich & Farmer, 1999; Sutherland & Melville, 2015; Terray et al., 1996; 
Thomson et al., 2016). The bubbles generated during wave breaking are a dominant mechanism driving air-sea gas 
exchange (Melville, 1996; Zappa et al., 2007). In engineering applications, large-scale breaking can cause critical 
loading on offshore structures (Chella et al., 2012). The energy dissipation due to wave breaking limits wave 
growth, and balances the energy input by wind and wave-wave energy transfer in the spectral equilibrium range 
(Komen et al., 1994; Phillips, 1985). The steep forward faces of breaking waves also induce airflow separation, 
which may significantly enhance the local momentum transfer between air and sea (Banner & Melville, 1976; 
Buckley & Veron, 2016; Reul et al., 2008). Wave breaking also affects the roughness and emissivity of the sea 
surface, and is therefore important to account for in remote sensing applications (Anguelova & Webster, 2006; 
Monahan & O’Muircheartaigh, 1986; Salisbury et al., 2013).

Considerable effort has been directed in recent decades into formulating a framework that successfully describes 
and predicts the evolution of wave crests toward the onset of breaking (Babanin et al., 2007; Banner et al., 2000; 
Banner & Peirson, 2007; Barthelemy et al., 2018; Derakhti & Kirby, 2016; Derakhti, Kirby, et al., 2020; Saket 
et al., 2017; Song & Banner, 2002). The onset is closely linked to wave geometry, which for simple plane waves 

Abstract  The enhancement of wave breaking activity during wave group passage is investigated using 
coherent field observations of the instantaneous sea surface elevation and whitecap coverage from platform-
based stereo video measurements in the central North Sea. Passing wave groups are shown to be associated 
with a two to threefold enhancement in the probability distribution of total whitecap coverage W whereas the 
enhancement of active whitecap coverage WA is approximately fivefold. Breaking time scales and intermittency 
characteristics are also investigated with the inclusion of a secondary data set of W and WA observations 
collected during a research cruise in the North Pacific. The time scale analysis suggests a universal periodicity 
in wave breaking activity within a representative sea-surface area encompassing approximately one dominant 
wave crest. The breaking periodicity is shown to be closely linked to the peak period of the dominant wave 
components, suggesting that long-wave modulation of wave breaking is a predominant mechanism controlling 
the intermittency of wave breaking across scales.

Plain Language Summary  In the open ocean, wind waves of similar wavelength, period and 
direction combine to form wave groups, also known as sets to surfers and other beachgoers. In deep water, 
the individual waves in groups travel twice as fast as the groups themselves, and momentarily grow in height 
and steepness in the wave group center, making them theoretically more likely to break. We show, using field 
observations of wave breaking taken with digital video cameras, that waves in deep water are up to five times 
more likely to break in large wave groups than during lulls in the wave field. We also show that the large, 
dominant wave groups regularly initiate wave breaking at a wide range of scales. Our findings can be used 
to produce more accurate predictions of when individual waves will break, an active and relatively poorly 
understood area of current wave research.
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is described by the wave steepness H/λ, where H is the wave height and λ is the wavelength. The classical Stokes 
irrotational water wave profile (Stokes, 1880) can be shown to be unable to maintain its shape, leading to an 
uncontrolled collapse of the surface, when H/λ > 1/7, or equivalently, ak > 0.443, where a = H/2 is the wave 
amplitude and k = 2π/λ is the wavenumber (Michell, 1893). Kinematically, the collapse of the wave profile during 
breaking is due to the particle velocity at the wave crest exceeding the phase speed c of the wave, whereas in a 
dynamic sense breaking occurs when the downward acceleration of the water surface on the forward face of a 
wave surpasses a limiting threshold (Babanin, 2011; Perlin et al., 2013). Recently, Barthelemy et al. (2018) intro-
duced a novel dynamic breaking threshold formalism based on the flux convergence of mechanical wave group 
energy focused on the crest region of the highest wave of a group.

The focusing of wave components, whether as a result of linear superposition or nonlinear interactions, related 
to the group structure of directional wave fields has long been thought to influence the onset of wave breaking in 
deep water. Early observations by Donelan et al. (1972) and Holthuijsen and Herbers (1986) reported recurring 
breaking patterns at periods linked to the periodicity of the dominant wave field, with breaking apparently occur-
ring preferentially near the central apex of the wave group envelope. Similarly, wave group-related periodic recur-
rence in wave breaking was found by Smith et al. (1996) in an analysis of “sea spikes” in grazing-angle S-band 
marine radar records. Terrill and Melville (1997) likewise observed low-frequency modulations in near-surface 
oceanic sound speed, which they attributed to bubble entrainment due to large-scale breaking occurring at wave-
group time scales.

In general, the characteristic steepness of the long, dominant wave components in the open ocean is on the order 
of akp ≈ 0.1, where kp is the wavenumber at the peak of the wave spectrum—significantly lower than the critical 
steepness of ak ≈ 0.443. Therefore, group focusing mechanisms are quite unlikely to cause their bulk steepness 
to exceed the critical breaking steepness (Babanin et al., 2011; Holthuijsen & Herbers, 1986; Schwendeman & 
Thomson, 2017). However, regardless of the underlying focusing mechanism, the group-induced variations in 
amplitude and steepness experienced by the dominant waves affect the stretching and compression of the shorter, 
wind-forced wave components in the spectral equilibrium range that ride on the backs of long waves. These 
modulations affect the breaking probability of the short waves thanks to their higher intrinsic steepness (Guimar-
aes, 2018). Theoretically, the effect of long wave motions on the short wave steepness can be explained by the 
straining of the long-wave orbital motions against the excess momentum flux due the short waves, also known 
as the wave radiation stress (Longuet-Higgins & Stewart, 1960, 1964). Conversely, the long-wave modulations 
of the breaking characteristics of the short waves have also been shown to impact the growth rate of the long 
waves due to changes in the form drag over the wave field induced by air flow separation in the breaking regions 
(Donelan et al., 2010; Kudryavtsev & Chapron, 2016).

Dulov et al. (2002, 2021) investigated the impact of long-wave modulations on the breaking characteristics of 
short waves using a combination of optical video imagery for breaker detection and an array of wave staffs for 
measuring the instantaneous sea-surface elevation within the camera footprint. They found strong modulation of 
the phase and amplitude of the instantaneous whitecap coverage, W, by dominant waves, with short-wave break-
ing most likely to occur at the crests of the long waves. Similarly, Yurovsky et al. (2017) compared the instantane-
ous W to the instantaneous sea-surface elevation estimated from synchronous Ka-band Doppler radar and optical 
video recordings, and found that high values of W, indicative of active, large scale wave breaking, coincided with 
the passage of large wave groups. The group-enhanced breaking was found to be significant in young, growing 
sea states with marked group structure, while the breaking in old, decaying sea states was generally smaller in 
scale and more random in character, with a smaller degree of coincidence with the group structure of the wave 
field. In another recent study, Schwendeman and Thomson (2017) used high-resolution sea surface reconstruc-
tions from stereo video measurements coupled with conventional whitecap identification methods to verify the 
validity of the Stokes limiting wave profile in the crest regions of breaking directional waves.

Inspired by the approaches of Dulov et al. (2002), Yurovsky et al. (2017), and Dulov et al. (2021), the current 
study investigates the modulation of wave breaking by dominant wave groups in terms of the time variability of 
the whitecap coverage W. We employ coherent (i.e., simultaneous and co-located) observations of W and the sea 
surface elevation, acquired with an optical stereo video camera system installed on a platform in the North Sea, to 
study the coincidence of elevated wave breaking activity and wave group passage. We also analyze the temporal 
intermittency and clustering tendencies of the whitecap coverage with the telegraph approximation (TA), a meth-
odology that isolates the time variability of a time series from its amplitude variations. The TA formalism has 
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previously been used to uncover similarity structures in other intermittent stochastic processes such as turbulent 
velocity and temperature fluctuations (Cava et al., 2012; Huang et al., 2021; Sreenivasan & Bershadskii, 2006). 
However, to our knowledge this is the first application of the TA to the study of the intermittency of wave break-
ing. For the investigation of the time scales of breaking, we introduce an additional field data set of W measure-
ments collected during a recent cruise in the North Pacific.

The remainder of this text is structured as follows. The field data sets are introduced in Section 2. The data 
processing methods are described in Section 3 and the analysis methods in Section 4. Our results are presented 
and discussed in Section 5 and concluding remarks are delivered in Section 6.

2.  Data
2.1.  North Sea Stereo Video Measurements

A dual camera stereo video system was installed in 2017 on the Ekofisk K platform, located in the central North 
Sea within the extensive Ekofisk oil and gas field. The stereo video footprint faces open waters toward the north-
west (see Figures 1e and 1f), and the closest platforms to the south are ∼2 km away. The stereo video system 
consists of two PointGrey Blackfly GiGE CCD digital cameras fitted with Edmund Optics 12 mm fixed-focal 
length lenses. The cameras are separated by a 5.11 m baseline distance, and sit approximately 28 m above mean 
sea level. The cameras are oriented with parallel lines of sight and oblique viewing angles approximately 70° 
from nadir. The camera viewing angles were set by aligning the fields of view so that the horizon lies just out 
of frame above the upper edge of the image frames. This maximizes the sea surface area covered by the stereo 
images while avoiding potentially abrupt pixel intensity gradients at the horizon line which may negatively inter-
fere with the cameras’ automatic exposure adjustment.

The northwest-facing orientation of the stereo video system was chosen to ensure exposure to the longest unob-
structed fetch associated with weather systems approaching from the north, as well as to minimize unwanted sun 
glare in the stereo video images. Minimizing sun glare is important from an image processing perspective, as the 
stereo reconstruction of the wave field assumes a near-Lambertian sea surface for which the reflecting properties 

Figure 1.  (a)–(d) Histograms summarizing the wind and wave conditions during the acquisition periods of the EKOK and PAPA data sets. The bin heights represent 
the number of observational records per bin in each data set. (e) The location of the Ekofisk platform (EKOK) at approximately (56.5°N, 003.2°E). (f) Sketch of the 
Ekofisk K and B platforms, showing the approximate locations of the stereo video cameras, laser altimeter array (LASAR) and WAMOS radar. (g) The cruise track of 
the December 2019 North Pacific cruise (PAPA) on R/V Sikuliaq. The location of Ocean Station P (50°N, 145°W) is marked with a red dot.
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are independent of viewing angle (Jähne et al., 1994). The stereo video image acquisition is controlled using an 
Arduino Uno microcontroller, which is programed to synchronize the hardware triggering of the cameras and 
control the frame rate. All of the stereo video sequences analyzed in this study were obtained at a frame rate of 
five frames per second (fps) and at a resolution of five megapixels (2,048 × 2,448 pixels).

In this study, the images acquired by the stereo cameras will be used to both reconstruct the sea surface elevation 
at high temporal and spatial resolution (see Section 3.1) as well as to estimate the fractional whitecap coverage 
W (see Section 3.2). The Ekofisk stereo video data set (hereafter EKOK) consists of 28 20-min stereo video 
sequences spread over five separate days during the 2019–2020 winter and spring season. Wind speeds were 
measured on the Ekofisk L platform 2.3 km south of the stereo camera location with a Vaisala WMT703 sonic 
anemometer located at 102.3 m height above mean sea level. Due to the high elevation of the wind anemometer, 
the wind speeds at Ekofisk L were converted to 10-m wind speed assuming neutral atmospheric stratification 
using the power-law approximation

𝑈𝑈10 = 𝑈𝑈𝑧𝑧(10∕𝐻𝐻)𝛼𝛼,� (1)

where Uz is the wind measurement observed at height H = 102.3 m, and α = 0.06. The wind profile approxima-
tion in Equation 1 applied to oil platform-based anemometer data in the North Sea was found to best correspond 
to measured radiosonde wind profiles by Furevik and Haakenstad (2012), as well as more recently to microwave 
satellite wind speeds by Manaster et al. (2019). Hereafter, all references to U10 implicitly mean the equivalent 
neutral wind. The environmental conditions encountered during the stereo video acquisition periods are summa-
rized in Figure 1, with significant wave height and peak period, Hs and Tp, estimated from the stereo video wave 
field reconstructions. Due to the limited field of view of the stereo video footprint, the directional spread σθ 
is estimated from two-dimensional spectra obtained from an X-band marine radar using the wave monitoring 
system WAMOS (Reichert et al., 1999) situated on the helideck of the EKOK platform (at ∼49 m above mean sea 
level). See also Section 3.1 for a validation of the stereo video wave spectra against the WAMOS product and a 
nearby laser altimeter array located on a footbridge connecting the EKOK platform to the nearby B platform (see 
Figure 1f). Additional details of the degree of groupiness of the wave field (group lengths, spectral bandwidth, 
and directional spread) encountered in the EKOK data set are presented in Section 5.1.

2.2.  North Pacific Cruise Data

We supplement the North Sea stereo video measurements with single-camera whitecap coverage estimates 
acquired during a research cruise onboard the R/V Sikuliaq in the North Pacific Ocean in December 2019. We 
hereafter refer to this data set with the abbreviation PAPA, after Ocean Station P (“Papa”)—an oceanographic 
observation site in the mid-North Pacific visited during the cruise. The PAPA cruise was a 2.5-week field exper-
iment dedicated to measuring environmental parameters driving the physics of air-sea interactions such as wave 
breaking and bubble dynamics.

The digital camera setup on the PAPA experiment was identical to the one described in Schwendeman and Thom-
son (2015a) and analyzed in Schwendeman and Thomson (2015b), and will therefore only be briefly introduced 
here. Two Point Grey Flea2 digital camera equipped with 2.8 mm focal-length wide angle lenses were attached 
to the port and starboard railings on the bridge deck of the ship at approximately 16 m height above the water 
level. Video recordings at frame rates between 5 and 7.5 fps and 1,288 × 964 pixels resolution were acquired at 
times when the vessel was held stationary due to other sampling activity such as buoy deployments and recoveries 
or vertical water profiling casts. Only one of the cameras could be operated at a time, and the choice of which 
camera to operate was generally motivated by the ship’s heading (to minimize sky reflections or direct sunlight) 
and local wind direction (to avoid droplet accumulation on the recording camera lens in the presence of rain or 
sea spray). The length of the video recordings varied between approximately 5 and 60 min, but only continuous 
recordings with a minimum length of 10 min were used here for further analysis. Likewise, continuous records 
longer than 20 min were split into shorter sequences between 10 and 20 min in length.

Wind speeds were measured underway from a sonic anemometer mounted on the ship’s bow mast at ∼16 m 
height. The 16-m wind speeds were converted to neutrally stratified 10-m estimates using the COARE algorithm, 
a standard procedure for low-elevation, buoy and ship-based wind speed conversion in the marine atmospheric 
boundary layer (Fairall et al., 2003). The wave field was continuously observed with freely floating, retrievable 
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SWIFT wave buoys (Thomson, 2012), which provided measurements of wave field parameters, such as wave 
height and period. The buoy locations did not, however, coincide with the footprints covered by the video 
cameras. See Figure 1 for a synopsis of the sea state conditions encountered during the video acquisitions on the 
PAPA cruise. Details of the groupiness of the wave field in the PAPA data set are given in Section 5.1.

3.  Data Processing Methods
3.1.  Stereo Video Reconstruction

The EKOK stereo video image pairs were used to reconstruct the instantaneous sea-surface topography with the 
open-source stereo wave processing software “Waves Acquisition Stereo System” (WASS), see Benetazzo (2006), 
Benetazzo et al. (2012), and Bergamasco et al. (2017). WASS automates the processing steps required to perform 
the extrinsic calibration, feature matching, and triangulation, producing three-dimensional point clouds of the 
instantaneous sea surface elevation, which we later interpolated onto regular 2-D x, y grids with 50 × 50 cm 2 grid 
size. The intrinsic calibration is not automated and was performed manually on the platform on 7 August 2019, 
prior to the acquisition and processing of the images.

In Figure 2, we compare scalar wave energy frequency spectra E(f) estimated from virtual wave staffs within 
20-min sequential stereo video grids against spectra from a nearby 5-Hz laser altimeter array (Magnusson & 
Donelan, 2013) and the WAMOS radar. All spectra are truncated at a low frequency of 0.05 Hz and a high-fre-
quency cutoff of 0.35 Hz in order to cover the fairly limited frequency range of the WAMOS radar. The spec-
tral shapes from the stereo video and the laser altimeters show good agreement, while the WAMOS spectra—
obtained by integrating the frequency-directional spectra over all directions—are generally smoother and display 
less pronounced peaks, especially in the low-frequency swell range. However, the estimates of the significant 

Figure 2.  (a)–(e) Comparison of scalar wave spectra from the WAMOS radar (W), laser altimeter array (L) and stereo video reconstructions (S) during the EKOK 
observational records. (f) Comparison of Hs estimates inferred from the respective spectra.
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wave height 𝐴𝐴 𝐴𝐴𝑠𝑠 = 4
√

𝑚𝑚0 , inferred from the zeroth-order spectral moments m0 and compared in Figure 2f, are 
quite consistent across all instruments.

3.2.  Whitecap Thresholding

In this section, we describe our process for estimating, via pixel brightness thresholding operations, the fractional 
whitecap coverage from the optical imagery in EKOK and PAPA field data sets. Hereafter, we will refer to two 
separate quantities related to the whitecap coverage, namely the total whitecap coverage W, which quantifies 
the full fractional coverage of whitecap-related foam present on the sea surface at any given time, and the active 
whitecap coverage WA, in which only the actively breaking contribution of the whitecap coverage is considered. 
Moreover, we use the variable names W and WA to refer to the instantaneous, frame-wise whitecap coverage, 
whereas �  and � � refer to time-averaged quantities.

Prior to whitecap thresholding, the digital video frames from the EKOK and PAPA data sets were geo-rectified 
into earth-referenced projections and gridded onto regular x, y grids using Delaunay triangulation and bi-linear 
interpolation. Since the EKOK data set includes double frames for each time step while only one frame is required 
for whitecap thresholding, only frames from the left camera were used. The EKOK frames were geo-rectified 
using the camera pose estimated by the extrinsic calibration of the stereo video analysis, and interpolated onto 
grids of the same shape as the sea-surface reconstructions. The ship-based PAPA video frames were stabilized 
and geo-rectified using the horizon-tracking algorithm of Schwendeman and Thomson (2015a) and interpolated 
onto grids with 80 cm grid cell side length. Due to the rolling motion of the ship, the PAPA grid sizes display 
small variations depending on the instantaneous angle of view. In general, the PAPA image grids cover a some-
what larger footprint than the EKOK grids because of the wider angle lenses used. We also performed the analysis 
presented in this study on reduced (i.e., cropped) grid sizes for the PAPA data set, but found no significant impact 
on the results, supporting similar findings reported by Schwendeman and Thomson (2015b). Table 1 summarizes 
the grid characteristics in the two data sets.

3.2.1.  Total Whitecap Coverage W

We estimated the fractional whitecap coverage W from the image grids in both data sets following the pixel 
threshold-based approach of Kleiss and Melville (2011). By examining the shapes of the cumulative pixel inten-
sity histograms of several sequential grayscale image grids, this methodology identifies a pixel intensity value 
above which the pixels likely represent foam from either actively breaking waves or decaying whitecaps. The 
thresholding operation results in binary image grids, and the instantaneous value of W is calculated as the fraction 
of pixels whose value exceeds the threshold within each grid. Due to the potential presence of other bright features 
in the images apart from whitecap foam, such as sun glints or rain droplets, we performed a manual inspection of 
the thresholded image grids to verify that the thresholding mainly isolates the foam while largely ignoring other 
bright features. In some cases in the PAPA image data set (where the camera exposure was controlled manu-
ally), we manually varied the pixel threshold to optimally isolate the foam. Image grid sequences with extensive 
amounts of sky reflections or droplet accumulation on the camera lenses were discarded.

3.2.2.  Active Whitecap Coverage WA

The thresholding approach outlined above produces estimates of the total whitecap coverage W within the camera 
footprint, including the residual decaying foam of previously broken waves. To estimate the fractional whitecap 
coverage due to actively breaking waves, WA, we followed the approach of Schwendeman and Thomson (2015b), 

Data set Grid type Grid variable Spatial resolution [m] Frame rate [fps] Area [m 2]

EKOK Stereo video η [m] 0.5 5 4,020

EKOK Image Pixel intensity 0.5 5 4,020

PAPA Image Pixel intensity 0.8 5–7.5 6,504 (5,416, 7,964)

Note. The PAPA grid area reported is the median area, and the maximum and minimum areas are in parentheses.

Table 1 
Stereo Video and Image Grid Characteristics in the EKOK and PAPA Data Sets
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in which the binary pixels of a thresholded image grid are assumed to be part of an actively breaking wave crest 
the first time the pixel values change from 0 to 1 within a short time period. The assumption is that the pixels 
remain “flipped” until the remnant foam patch has dissipated. In our WA analysis, we set the time lag for track-
ing the pixel value changes to 10 s, which in most of our field data corresponds approximately to the period of 
the dominant waves (see Figure 1c). As the example in Figure 3 shows, this method of WA classification only 
isolates the leading crests of breaking waves, potentially leading to lower values of time averaged WA compared 
to observations based on different classification criteria, for example, dynamically motivated filtering algorithms 
(Mironov & Dulov, 2008) or manually selected image features (Scanlon & Ward, 2013). However, the WA esti-
mates produced by the method of Schwendeman and Thomson  (2015b) effectively pinpoint the location and 
time of breaking initiation, and are therefore well-suited to the purpose of this study, namely the analysis of the 
group-enhancement of breaking activity (see Section 5.2) and breaking intermittency (see Section 5.3).

4.  Analysis Methods
The analysis conducted in this study can be divided into two main parts. First, we investigate the wave group-en-
hancement of the whitecap coverage from the coherent sea surface height-whitecapping information in the EKOK 
data set only. The methods for identifying wave groups from the stereo video reconstructions are described in 
Section 4.1. The second part of the analysis concerns the intermittency and clustering of the whitecap coverage. 
This part only requires time series of the whitecap coverage, and is therefore performed on both the EKOK and 
PAPA data sets. The intermittency analysis methodology is described in Section 4.2.

Figure 3.  Sample image grid snapshots from the EKOK (upper row) and PAPA (lower row) data sets, displaying the differences between whitecap foam classification 
for total whitecap coverage W and actively breaking whitecap coverage WA. Panels (a) and (d) show geo-rectified image grids in which each pixel (i.e., grid cell) can 
take on integer values between 0 (black) and 255 (white). The prevailing wind speed U10 and peak wave period Tp are annotated under/above the original image grids in 
(a) and (d). Panels (b) and (e) show the resulting binary grids of the thresholding process of Kleiss and Melville (2011) applied on the original image grids, where the 
pixels representing whitecap-related foam (white pixels with value 1) have been isolated from the background sea surface (black pixels with value 0). Panels (c) and (f) 
show the estimated actively breaking foam fraction, determined following the approach of Schwendeman and Thomson (2015b). The instantaneous values of W and WA 
for each example frame, as well as the respective record-mean values �  and � � , are annotated under/above the respective binary image grids.
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4.1.  Wave Group Detection

The tendency of dominant waves to occur in distinct groups of successive high waves is enhanced when the wave 
energy frequency spectrum E(f) is narrow (Goda, 1970; Longuet-Higgins, 1984). In the canonical JONSWAP 
parameterization of developing wave spectra (Hasselmann et al., 1973), the peakedness of the wave spectrum 
is modeled with a peak enhancement factor that has been shown to depend strongly on wave age, with young, 
growing seas typically exhibiting relatively narrow, peaked spectra that correspond to pronounced wave field 
groupiness (Donelan et al., 1985). The spectral width is commonly estimated with the bandwidth parameter of 
Longuet-Higgins (1975),

𝜈𝜈 =

√

𝑚𝑚2𝑚𝑚0

𝑚𝑚2
1

− 1,� (2)

where mn is the n-th spectral moment,

𝑚𝑚𝑛𝑛 = ∫
∞

0

𝑓𝑓
𝑛𝑛
𝐸𝐸(𝑓𝑓 ) d𝑓𝑓𝑓� (3)

However, due to its dependence on the second-order spectral moment m2, the value of the ν parameter is sensitive 
to the high-frequency spectral cutoff. For this reason, a more robust bandwidth measure can be composed from 
the spectral peakedness parameter of Goda (1970),

𝑄𝑄𝑝𝑝 =
2

𝑚𝑚2
0
∫

∞

0

𝑓𝑓𝑓𝑓
2(𝑓𝑓 ) d𝑓𝑓𝑓� (4)

Following Janssen and Bidlot (2009), the spectral bandwidth in the spectral peak region can be estimated with 
the inverse peakedness parameter 𝐴𝐴 𝐴𝐴−1

𝑝𝑝  .

Due to the dispersive nature of waves in deep water, individual dominant wave components advance through 
wave groups at the phase speed c = 2cg, where cg is the group speed of wave energy propagation, undergo-
ing modulations of their amplitude and steepness underway. This type of dispersive wave energy focusing is 
primarily a linear effect caused by additive superpositions of wave components with different wavelengths and 
frequencies. Linear superposition of wave components may also occur due to the directional focusing of wave 
trains traveling in crossing directions. Another measure of the spectral width that is of importance to the group 
structure of the wave field is therefore the directional spread σθ of the wave energy distribution. The directional 
spread can be inferred from the distribution of directional components in the frequency-direction wave spec-
trum E(f, θ). However, in practice, the directional spread of measured wave spectra is often calculated from the 
first two-to-four Fourier coefficients of the directional distribution, since these coefficients are readily estimated 
from the cross spectra of the horizontal and vertical displacements of for example, drifting wave buoys (Herbers 
et al., 2012; Kuik et al., 1988).

Under certain conditions, wave groups are also subject to a type of nonlinear evolution known as modulational 
instability, during which the wave spectrum undergoes nonlinear transformations which can lead to pulse-like 
wave groups with potentially extremely high amplitude and steepness (Benjamin & Feir, 1967). Modulational 
instability has been shown to produce large-amplitude rogue and breaking waves in laboratory and numerical 
experiments (Dysthe et al., 2008), but its significance in the real open ocean is a topic of ongoing debate due to 
the strict assumptions of spectral narrowness in both frequency and directional spread required for the instability 
to take effect (Adcock et al., 2011; Fedele et al., 2016). Janssen and Bidlot (2009) introduced the parameter

𝑅𝑅 =
𝜎𝜎2
𝜃𝜃

2(𝑄𝑄−1
𝑝𝑝 )

2� (5)

to quantify the joint contributions of directional spread and frequency bandwidth on the susceptibility of a direc-
tional sea state to modulational instability. Within the range 0 < R < 1, Janssen and Bidlot (2009) considered 
the wave field to be in a focusing regime in which wave field nonlinearity is enhanced, whereas R ≥ 1 implies a 
defocussing regime in which nonlinear interactions are suppressed by directional dispersion.
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In this study we define wave groups as periods of elevated wave energy within a wave record. Focusing here 
solely on the EKOK data set, the wave group structure recovered from the stereo video data is directly compared 
to the coherent whitecap coverage within the same area of the sea surface. In order to isolate groups formed by 
the dominant waves, we perform a spatial filtering of the EKOK stereo video sea surface reconstructions by aver-
aging each instantaneous elevation grid over a centralized square area whose side length equals one-eighth of the 
peak wavelength Lp, estimated with the linear dispersion relation from the peak wave period Tp of the point-wise 
scalar wave energy spectra of the virtual wave staffs (see Section 2.1). This creates the equivalent of a low-pass 
filtered sea surface elevation time series 𝐴𝐴 𝐴𝐴𝐴(𝑡𝑡) , formally defined as

𝜂̄𝜂(𝑡𝑡) =
1

𝑁𝑁𝑥𝑥𝑁𝑁𝑦𝑦

𝑁𝑁𝑥𝑥
∑

𝑖𝑖=1

𝑁𝑁𝑦𝑦
∑

𝑗𝑗=1

𝜂𝜂𝑖𝑖𝑖𝑖 ,� (6)

where Nx = Ny indicate the number of grid cells to average over in the x and y directions, respectively, and are 
determined by the peak wavelength Lp. The side length of the averaging area was chosen as Lp/8 in order to fit 
the square within the stereo video footprint also for the longest wave lengths in the EKOK data set. From 𝐴𝐴 𝐴𝐴𝐴(𝑡𝑡) , 
wave groups can be identified with minimal influence of short, riding wave components which may cause unnec-
essary splitting of the dominant wave groups. An example of a filtered mean sea surface time series is shown in 
Figure 4a.

4.1.1.  The Run Threshold Method

By the simplest definition, a wave group is a train of high dominant waves appearing in a consecutive fashion. In 
a surface elevation time series, for example, such a wave train would show an uninterrupted sequence of waves 
higher than some prescribed threshold. Following Kimura (1980), we use a threshold wave height of Hrms, the 
root-mean-square wave height, where individual wave heights are estimated from the 20-min 𝐴𝐴 𝐴𝐴𝐴(𝑡𝑡) records in the 
EKOK data set using the zero-upcrossing method (Holthuijsen, 2007). Each run of waves exceeding Hrms and 
longer than one peak wave period in duration is defined as a wave group.

4.1.2.  The Hilbert Spectrum

Another common approach to detecting wave groups is by examining the instantaneous energy of the wave 
signal. This can be performed by analyzing the envelope of the wave signal by, for example, the Hilbert transform 
(Bitner-Gregersen & Gran, 1983), the wavelet transform (Donelan et al., 1996), or convolution-based smoothing 
techniques (Funke & Mansard, 1980). In this study, we apply the empirical mode decomposition (EMD) based 
method introduced by Veltcheva and Guedes Soares (2007), in which the instantaneous wave energy IE is esti-
mated from the Hilbert spectrum (defined below) of the mean sea surface elevation time series. Wave groups 
are defined by the crossings of the IE signal above and below its record-mean level, as in Veltcheva and Guedes 
Soares  (2016). Moreover, as for the Hrms threshold method, we require the wave groups identified by the IE 
threshold to be at least one peak wave period in length.

EMD is a method developed by Huang et al. (1998) for extracting the local frequency content of a broadband, 
multi-component (and potentially nonlinear and non-stationary) signal. The principle behind EMD analysis 
consists of decomposing a time series into a finite number of single-component basis functions called intrinsic 
mode functions (IMF) and a residual trend, the superposition of which reconstructs the original signal. The IMFs 
are determined via an iterative sifting process in which each IMF by definition is an oscillating signal containing 
an almost equal number of local extrema and zero-crossings (the respective numbers can differ at most by one), 
and has a zero mean at all points between the envelopes connecting the local IMF minima and maxima. Defined 
in this way, each IMF represents one mode of oscillation of the original signal, and the distances between consecu-
tive IMF extrema represent the signal’s intrinsic time scales. The residual component typically lacks a full oscilla-
tion and thus can be viewed as describing a background trend. In contrast to conventional Fourier decomposition, 
in which the signal is decomposed into simple trigonometric basis functions, the IMFs can be both amplitude and 
frequency modulated. As a result, the EMD method is not limited by the strict requirement of signal stationarity 
that applies to Fourier analysis, and can also be applied successfully to nonlinear signals (Huang et al., 1998).

The EMD method allows us to represent the variation of the wave signal’s energy content in both time and 
frequency. An analytic function Zj(t) can be estimated for each IMF by

𝑍𝑍𝑗𝑗(𝑡𝑡) = 𝑋𝑋𝑗𝑗(𝑡𝑡) + 𝑖𝑖𝑖𝑖𝑗𝑗(𝑡𝑡),� (7)
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where the conjugate pair Xj(t) and Yj(t) are the j-th IMF and its Hilbert transform, respectively, and i is the imag-
inary unit. The analytic function (7) can be used to estimate the envelope amplitude and a well-defined instanta-
neous frequency for each IMF. For the purposes of the current study, the instantaneous amplitude and frequency 
are used to quantify the group modulation—in both amplitude and frequency—of the wave signals 𝐴𝐴 𝐴𝐴𝐴(𝑡𝑡) in terms 
of the Hilbert spectrum 𝐴𝐴 (𝑓𝑓𝑓 𝑓𝑓) . The Hilbert spectrum was defined by Huang et al. (1998) as the distribution 
of the squared amplitude envelopes of all IMFs in both time and frequency. Following Veltcheva and Guedes 
Soares (2016; their Equation 19), integrating the Hilbert spectrum over all frequencies gives the instantaneous 
energy IE(t) of the wave signal,

IE(𝑡𝑡) = ∫
𝑓𝑓2

𝑓𝑓1

(𝑓𝑓𝑓 𝑓𝑓) d𝑓𝑓𝑓� (8)

Sample time series of 𝐴𝐴 (𝑓𝑓𝑓 𝑓𝑓) and the associated instantaneous wave energy IE(t) are shown in Figures 4c and 4d.

Advantages of the Hilbert spectral approach—also known as the Hilbert-Huang Transform (HHT)—over more 
traditional Fourier and wavelet-based time-frequency energy distributions applied to nonlinear phenomena, such 

Figure 4.  Sample coherent time series from the EKOK data set. (a) and (b) The stereo video spatially averaged sea-surface 
elevation 𝐴𝐴 𝐴𝐴𝐴 . (c) The Hilbert spectrum of 𝐴𝐴 𝐴𝐴𝐴 . (d) The instantaneous wave energy IE. (e) The instantaneous total whitecap 
coverage W. (f) The instantaneous active whitecap coverage WA. In (a), wave groups defined by the Hrms threshold are shaded 
red, and in (b) wave groups defined by the IE threshold are shaded gray. The record-mean level of IE, that is, the wave group 
threshold, is marked with a horizontal dashed line in (c). Both the IE and Hrms group definitions are plotted in (e) and (f).
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as oceanic surface waves, include higher frequency resolution (due to the local nature of the intrinsic time scales 
represented by the IMFs) and its resilience against the impact of spurious harmonic wave components inherent in 
the Fourier spectral representation of nonlinear signals (Huang et al., 1999).

4.2.  Intermittency Analysis

We investigate the intermittency of wave breaking in both the EKOK and PAPA data sets by analyzing the time 
variability of the whitecap coverage data. For this we employ the telegraphic approximation (TA) formalism 
on the instantaneous time series of W and WA. The TA form of a time series is a binary sequence in which 
only the zero-crossing information is retained, while amplitude variations are disregarded (Sreenivasan & 
Bershadskii, 2006). The TA of a zero-mean time series s(t) is defined as

TA(𝑠𝑠) =
1

2

(

𝑠𝑠(𝑡𝑡)

|𝑠𝑠(𝑡𝑡)|
+ 1

)

.� (9)

The TA time series assumes a value of one when the zero-level threshold is exceeded and zero otherwise. Exam-
ples of the TA of a record of coherent W and WA time series from the PAPA data set are shown in Figure 5. 
Because the fractional whitecap coverage is a positive semi-definite quantity, we subtract the record mean before 
computing the TA time series of W and WA.

It has been shown for various intermittent stochastic processes that the spectral density of the TA of a time series 
is related to the spectral density of the original series in regions where the original spectrum displays power-law 
behavior. Specifically, if the original spectrum decays as f −n, then the spectrum of the TA series is expected to 
decay as f −m, where

𝑚𝑚 =
𝑛𝑛 + 1

2
.� (10)

For n > 1, m < n, which has been interpreted as an indication of the TA spectrum’s higher memory content due 
to the decorrelating effect of amplitude variations on the original spectrum (Sreenivasan & Bershadskii, 2006).

Figure 5.  (a) Sample time series from the PAPA data set of the instantaneous total whitecap coverage W and the active 
whitecap coverage WA, scaled by a factor of 10 to be visible on the same figure as W. See Figures 3d–3f for snapshots from 
the same record. The time mean levels of �  and 10�� are marked with dashed lines. (b) The binary telegraph approximation 
(TA) time series of W, in which only mean-level zero-crossing information is retained while amplitude variations are ignored. 
(c) The TA time series of WA.
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5.  Results and Discussion
5.1.  Wave Field Groupiness in the Field Data Sets

Figures 6 and 7 sum up the degree of groupiness of the wave fields encountered during the EKOK and PAPA 
video acquisition periods analyzed in this study. The comparisons of spectral width parameters against wave age 
cp/U10 in Figures 6a and 6d, support the widely assumed relationship between spectral narrowness (i.e., low 𝐴𝐴 𝐴𝐴−1

𝑝𝑝  ) 
and young sea states, although the relationship appears more robust in the EKOK data set, collected in the North 
Sea, than in the North Pacific PAPA data set. This may reflect the bias of the JONSWAP parameterization toward 
fetch-limited sea states typical for the North Sea; however, the number of data points in the EKOK data set is 
too limited to draw confident conclusions on this matter. The directional spread σθ exhibits a similar, growing 
trend with aging seas in both data sets, but the multi-directionality parameter R displays inconsistent behavior 
between the data sets, owing mainly to the large range of directional spreads estimated from the SWIFT wave 
buoy motions in the PAPA data set.

Figure 7 compares the distributions of mean group duration Tg, normalized by the peak wave periods Tp, calcu-
lated with the IE and Hrms threshold methods in the two data sets (see Sections 4.1.1 and 4.1.2). The EKOK group 
durations are calculated from the stereo video mean sea surface elevation time series 𝐴𝐴 𝐴𝐴𝐴 , and the PAPA group 
durations are computed from SWIFT buoy heave time series. Heave records from SWIFTs were not available 
at all video acquisition periods, however, and the lengths of individual heave time series ranged between 6 and 
8 min. The EKOK wave groups display behavior consistent with the JONSWAP model, with prominent, long 
wave groups being somewhat more prevalent during sea states with narrow wave spectra in both frequency and 
directional spread. The PAPA group durations, on the other hand, display less consistency with the behavior 
expected and observed in the North Sea.

Figure 6.  Various spectral width parameters from the two data sets as a function of the wave age cp/U10: (a) the spectral bandwidth in frequency estimated by 𝐴𝐴 𝐴𝐴−1
𝑝𝑝  . (b) 

The directional spread σθ. (c) The multidirectionality coefficient 𝐴𝐴 𝐴𝐴 = 𝜎𝜎2
𝜃𝜃
𝑄𝑄2

𝑝𝑝∕2 . The upper row relates to the EKOK data set, and the lower row relates to the PAPA data 
set. The dashed lines are the linear least-squares fits to the scatter plots. The scatter points are colored based on the sea-swell energy ratio of the wave energy spectra.
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5.2.  Wave Group-Enhanced Breaking

5.2.1.  Instantaneous W and WA Distributions

Figure 8 shows the probability distributions of the instantaneous values of W and WA spanning the full EKOK data 
set that coincide with wave groups detected in the time series of 𝐴𝐴 𝐴𝐴𝐴 , versus W and WA coinciding with the segments 
of 𝐴𝐴 𝐴𝐴𝐴 that fall between the wave groups, as illustrated in the example in Figure 4. The time series of instantaneous 

Figure 7.  Left column: comparison of group durations in the EKOK data set defined by the Hilbert spectrum-based IE 
criterion of Veltcheva and Guedes Soares (2016) and the run-based Hrms criterion of Kimura (1980). (a) Histograms of the 
distributions of group durations Tg normalized by the peak periods Tp of the stereo video scalar spectra. (c) Normalized 
group durations as a function of the spectral bandwidth parameter 𝐴𝐴 𝐴𝐴−1

𝑝𝑝  . (e) Normalized group durations as a function of the 
multidirectionality coefficient 𝐴𝐴 𝐴𝐴 = 𝜎𝜎2

𝜃𝜃
𝑄𝑄2

𝑝𝑝∕2 , where the directional spread σθ is obtained from the WAMOS product, while Qp 
is the peakedness of the stereo spectra. The dotted and dashed lines in (b) and (c) are the least-squares linear fits to the Tg/Tp 
scatter points. The right column shows the same parameters, estimated from the SWIFT buoy data in the PAPA data set.
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W and WA have been low-pass filtered with a 0.5-Hz cutoff in order to minimize the effects of high-frequency 
noise due to, for example, short-lived sun glints. To verify that the group-background distributions are insensitive 
to the choice of wave group definition, we show the results for both the run threshold-based group definition of 
Kimura (1980) and the IE-based group definition of Veltcheva and Guedes Soares (2007). Irrespective of the 
group definition employed, Figures 8a and 8c show that wave groups are associated with an approximately two 
to threefold enhancement of the probability of encountering elevated values of total whitecap coverage W relative 
to its record-wise mean value, �  . As shown in Figures 8b and 8d, this group-related enhancement in probability 
grows to approximately fivefold for high values of the relative active whitecap coverage ��∕�� .

The disparity between the W and WA group-background distributions is likely to be influenced by our choice of 
method for WA classification. We follow the approach of Schwendeman and Thomson (2015b), which isolates 
only the leading edges of propagating whitecaps. We argue that our estimates of WA therefore provide a better 
indication of the initiation of breaking and maximum breaking extent (in terms of breaking crest length) than our 
estimates of W. The latter includes the influence of decaying foam patches that likely do not contribute to active 
breaking, but which, especially in instances of large-scale breaking events, may linger for several wave periods. 
As has been pointed out before (Mironov & Dulov, 2008), the total area of large whitecaps, the main contributor 
to the instantaneous value of W, may continue to grow for a period of time beyond the instant of maximum active 
breaking due to the dispersion and advection of the foam patch due to the orbital motion of the waves. For these 
reasons, elevated values of W may persist for several wave periods after the group that initiated the breaking has 
passed, whereas spikes in WA effectively pinpoint the dominant wave-group phase at which the breaking is in its 
most active stage.

The consistently elevated probability of encountering high-amplitude values of W (indicative of large scale 
breaking events) during wave groups compared to between groups suggests that the prevalence of dominant 
wave breaking is related to the groupiness of the wave field, as reported in the early investigations of Donelan 
et al. (1972) and Holthuijsen and Herbers (1986). However, due to the variable decay rate of whitecaps, dependent 
on, for example, breaking strength (Callaghan et al., 2012), enhanced values of W may persist within the camera 
footprint for a longer period than the passage of wave groups, making it difficult to verify the true group-phase 

Figure 8.  (a) and (c) Probability distributions of the relative instantaneous whitecap coverage � ∕�  within the EKOK 
stereo camera footprint during wave group passage (blue curves) and between wave groups (orange curves). In (a) the wave 
groups are defined with the instantaneous wave energy (IE) threshold method, and in (c) the groups are defined as runs of 
high waves exceeding Hrms in height. (b) and (d) As in (a) and (c), but for the relative active whitecap coverage ��∕�� . The 
probability distributions are composed from all twenty-eight 20-min records in the EKOK data set, and truncated at relative 
whitecap coverage values of 15 to exclude the poorly sampled and noisy distribution tails.
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origin of all high W values in Figures 8a and 8c. However, the stronger group-related enhancement visible in the 
group versus background distributions of WA (Figures 8b and 8d) suggest that the group modulation of breaking 
is a significant mechanism in determining breaking location in time and space. However, as seen in Figure 5, the 
amplitude of WA may be a weaker indication of the full scale of breaking than the amplitude of W. This result 
likely follows from the WA thresholding procedure which primarily isolates thin slices of the rapidly propagating, 
actively breaking crests (see Figure 3).

5.2.2.  Time-Averaged W and WA

Time-averaged values of W and WA, denoted �  and �� , are plotted in Figure 9 against the neutral 10-m wind 
speed U10. The averaging periods for EKOK estimates of W and WA are 20 min, while the variable-length PAPA 
estimates were averaged over periods ranging from 10 to 20 min. The PAPA wind speeds shown are 10-min 
averages. The mean total whitecap coverage �  data points from both the EKOK and PAPA data sets, plotted 
in Figure 9a, are compared to empirical fits from two fairly recent studies, namely Schwendeman and Thom-
son (2015b; ST15) and Scanlon and Ward (2016; SW16). The ST15 fit was published with 90% confidence inter-
vals, which are included in shading in Figure 9a. The ST15 data set was collected in the same geographic location 
as the PAPA data set using the same equipment and compiled with essentially the same processing methods. The 
ST15 fit was achieved with a generalized power-law function

Figure 9.  (a) Time-averaged total whitecap coverage �  as a function of wind speed U10, estimated from the PAPA image 
sequences (circles) and EKOK image sequences (squares). The dashed and dotted curves show the functional fits of ST15 
(Schwendeman & Thomson, 2015b) and SW16 (Scanlon & Ward, 2016), respectively. The shading covers the reported 
90% confidence interval around the ST15 fit. (b) The mean EKOK W values averaged during wave group passage (upward-
pointing triangles) and between wave groups (downward-pointing triangles). The ST15 confidence interval is also included in 
shading. (c) The time-averaged active whitecap coverage �� as a function of wind speed, with the Scanlon and Ward (2016) 
fit shown with the dotted curve. (d) As (b), but for the EKOK active whitecap coverage. The dashed lines in (b) and (d) are 
cubic fits of the form Equation 12 to the group/background data points. The wave group definition applied in (b) and (d) is 
the IE threshold method.
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� = �(�10 − �)�,� (11)

where a = 2.81 × 10 −5, b = 3.87 m s −1, and n = 2.76. Figure 9a shows a tendency of the PAPA data points to be 
biased somewhat below the ST15 fit. This may be related to our approach to the choice of pixel intensity thresh-
old, which was intentionally conservative (meaning we generally applied high threshold values) in order to avoid 
false whitecap detection due to sun glints. The SW16 data set was collected in the North Atlantic and the South-
ern Ocean, and the fit of the data points of �  against U10 was approximated with a cubic function of the form

� = �(�10 − �)3,� (12)

with a = 7.84 × 10 −6 s 3 m −3 and b = 2.56 m s −1. Because the SW16 fit generally lies below the ST15 fit, �  
data points in the PAPA data set generally correspond more closely to the SW16 fit (see Figure 9a). This is most 
apparent at high wind speeds (U10 > 17 m s −1). The EKOK �  data points, on the other hand, are in general biased 
higher than PAPA, especially for low wind speeds. While pixel-intensity threshold selection may influence the 
differences in magnitude of �  between the data sets to some degree, it is reasonable to expect that the wind 
speed conversion from 102.3 to 10 m at EKOK is associated with markedly larger uncertainty than the 16-to-10 m 
conversion in the PAPA data set. Therefore, it is plausible that the U10 estimates are biased low rather than the �  
estimates being biased high at EKOK.

We remind the reader that the wind speeds U10 reported in this study are equivalent wind speeds for a neutrally 
stratified atmospheric boundary layer. While neutral winds are commonly used in whitecap coverage parameteri-
zations (Brumer et al., 2017; Scanlon & Ward, 2016), it is known that stability effects may account for apprecia-
ble deviations of the true wind from the neutral estimate, especially at short timescales (Kara et al., 2008). Whilst 
a number of studies have investigated the effect of explicitly accounting for stability in W(U10) parameterizations, 
the results have largely proved inconclusive on the significance of its impact (Monahan & Woolf, 1989; Paget 
et al., 2015). The whitecap data analyzed in this study were mainly collected in wind-forced conditions in the 
open ocean, with air-sea temperature differences associated with unstable or neutral atmospheric stratification 
(not shown). We therefore anticipate stability-related effects on our U10 estimates to be rather small, at least in 
comparison to the spread in the W estimates.

A physical factor worthy of consideration for the observed bias between the data sets is the difference in effective 
water depth between the geographical locations. Whereas the PAPA data set was collected in very deep water, 
the 70-m mean water depth at Ekofisk means that the dominant wave field is regularly in an intermediate water 
regime (Christensen et al., 2017). The topic of whether the depth-induced steepening of the dominant waves 
leads to more frequent wave breaking in the North Sea compared to the North Pacific is, however, outside the 
scope of the current study, and will be addressed in future work. Furthermore, despite the apparent bias between 
the 𝐴𝐴 𝑊̄𝑊  estimates in the two data sets, individual data points from both mostly remain confined within the 90% 
confidence intervals reported for the ST15 data set.

The time-averaged �� estimates (Figure 9c) are compared to the SW16 fit, in which actively breaking whitecaps 
were separated manually from decaying remnant foam patches. The SW16 fit for WA follows Equation 12 with 
a = 1.39 × 10 −6 s 3 m −3 and b = 1.80 m s −1. While our �� estimates reasonably follow the ST16 fit for low-to-in-
termediate wind speeds, the higher-windspeed 𝐴𝐴 (> 15m s−1) �� data points appear to flatten out and remain 
markedly below the ST16 curve. This behavior likely reflects our selected method for WA detection (Schwende-
man & Thomson, 2015b), which isolates fairly narrow regions of propagating whitecapping crests for very short 
durations (i.e., single frames). ST16, on the other hand, used the manual active breaker detection methodology 
described by Scanlon and Ward (2013), in which individual whitecaps are classified as either actively breaking or 
remnant foam based on the wave crest locations, the visual intensity and image texture. It was later found (Scan-
lon et al., 2016) that the active whitecap estimates thus calculated were a better match to the dissipation from 
breaking waves estimated by a wave model than the total whitecap coverage. Moreover, while the pixel “flipping” 
method for WA detection was described by ST15, they did not report estimates of �� made using the technique. 
The authors used the technique in a later study (Schwendeman & Thomson, 2017) to isolate breaking crests, but 
again no �� estimates were reported. To our knowledge, Figure 9c is the first reported result in which the ST15 
technique has been applied for producing estimates of �� .
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The right column of Figure 9 shows EKOK estimates of �  and �� , in which the time averaging has been 
performed in versus between wave groups using the coherent time series of 𝐴𝐴 𝐴𝐴𝐴 from the stereo video reconstruc-
tions. As would be expected from the analysis of the instantaneous W and WA estimates presented in Figure 8, 
the time-averaged values display clear wave group-induced enhancement. The apparent separation in magnitude 
of �  and �� when averaged during wave-group passage versus during quiescent periods suggests that the 
degree of wave field groupiness may be a source of the large scatter exhibited by previously reported whitecap 
coverage estimates (Anguelova & Webster, 2006; Brumer et al., 2017; Salisbury et al., 2013). Previous attempts 
at introducing wave field-dependent variables to W parameterizations have found only weak dependence of the 
variability of W and WA with general wave field parameters (Albert et al., 2016; Brumer et al., 2017; Scanlon & 
Ward, 2016; Schwendeman & Thomson, 2015b). Our results presented in Figures 9b and 9d, however, demon-
strate that wave field groupiness characteristics directly impact estimates of the whitecap coverage. Future studies 
may test the wave group effects on larger data sets by revisiting satellite measurements of W and controlling for 
wave field groupiness in terms of, for example, spectral bandwidth, peakedness, and directional spread using a 
spectral wave model.

5.3.  Time Scales and Intermittency of the Whitecap Coverage

5.3.1.  Inter-Breaking Periods

The time variability of wave breaking is investigated by analyzing the mean-level crossings of the low-pass 
filtered instantaneous time series of W and WA. Since coherent sea-surface elevation records are not required for 
this analysis, this section includes results from both the EKOK and PAPA data sets. In Figure 10, we estimate 
the distributions of the time periods between consecutive mean-level up-crossings τ of the whitecap coverage 
records, normalized with the prevailing peak wave periods Tp, with logarithmically spaced histogram bins. The 

Figure 10.  Histograms of the time periods τ between successive mean-level up-crossings of the time series of W and WA, 
normalized by the prevailing peak wave periods Tp. The histograms are estimated with 30 logarithmically spaced bins 
between 0.1 and 10. Histograms relating to W are colored red and those relating to WA are colored black. The mean τ/Tp 
values for W and WA are marked with dashed red and black vertical lines, respectively. Results from the EKOK data set are 
shown in the left column, and PAPA results in the right column. The upper row (panels (a) and (b)) shows the number of 
values within each bin, and in the lower row (panels (c) and (d)), the counts per bin have been normalized by the product of 
the total number of counts and the variable bin width.
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distributions displayed by counts per bin (Figures 10a and 10b) exhibit skewed unimodal or weakly bi-modal 
shapes, with mode values approximately at τ/Tp = 1 or somewhat lower. In comparison, the mean τ/Tp values 
of all total whitecap coverage time series W are τ/Tp = 1.93 and τ/Tp = 1.54 for the EKOK and PAPA data sets, 
respectively. The equivalent mean values of all WA time series are τ/Tp = 1.01 and τ/Tp = 0.88 for EKOK and 
PAPA, respectively. When the bin-wise counts are normalized by the products of the total number of counts 
and the variable bin widths (Figures 10c and 10d), the distributions assume more bi-modal shapes, with modes 
skewed at even lower values of τ/Tp.

The tendency of the instantaneous WA records to exhibit mean-upcrossings at a frequency very near the peak 
wave frequency supports results from previous studies showing preferential breaking of shorter wave components 
at the crests of dominant waves (Dulov et al., 2002; Yurovsky et al., 2017). The nearly twofold difference in the 
mean values of τ/Tp between W and WA in both data sets suggests that the mean-upcrossings of WA capture a 
larger portion of small-scale breaking occurring during or between large-scale or high-impact breaking events 
than the mean-upcrossings of W, in which clusters of elevated values may persist for several wave periods as a 
result of slowly dissipating foam patches which may mask smaller-scale intermediate breaking events (see the 
example time series in Figure 5). Moreover, the mean-upcrossings of W display similar periodicity to the obser-
vations of Donelan et al. (1972), who observed dominant waves breaking at a frequency related to approximately 
twice the peak wave period.

5.3.2.  Spectral Density of W and WA

A spectral representation of the whitecap coverage is shown in Figure 11, where frequency spectra are estimated 
from each individual time series of instantaneous W and WA in both the EKOK and PAPA data sets, and colored 

Figure 11.  (a) and (b) Spectral densities of the instantaneous total whitecap coverage W. (c) and (d) Spectral densities of the 
instantaneous active whitecap coverage WA. The spectra from the EKOK data set are in the left column, and the PAPA spectra 
are in the right column. The x axes are the spectral frequencies normalized by the peak wave frequencies fp during each W 
and WA acquisition period. The locations of f/fp = 1 and f/fp = 2 are marked with dotted vertical lines. The color scaling of the 
individual spectra (thin curves) indicates the prevailing wave age cp/U10. The thick solid curves (black) are the means of all 
individual spectra. The dashed yellow curves are the mean spectra for wave ages above 2, the dotted blue curves are the mean 
spectra for wave ages between 1 and 2, and the dash-dotted purple curves are the mean spectra for wave ages below 1. The 
steep decay of the young-sea spectra at high relative frequencies may be partly due to the low-pass filtering of the W and WA 
time series at 0.5 Hz. The power-law fits to the full mean spectra above f/fp = 1 are plotted with solid lines, with the power-
law exponents n indicated next to the fit lines.
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according to the wave age of the underlying sea state. As shown in Figure 11a and 11b, the individual W spectra 
in both data sets exhibit considerable scatter. A few distinguishing features can, however, be identified from the 
mean spectra classified by wave age intervals. The high energy content at the lowest frequencies visible in all 
mean W spectra is most likely due to the slow decay of large foam patches from large scale breaking events. At 
all wave ages a secondary peak, or at least a flattening of the spectral slope, is visible close to the peak wave 
frequency. The secondary peak is followed by decaying spectral density with a tendency toward power-law behav-
ior, although the spectral tail slopes display some variation across wave ages and data sets. At the highest relative 
frequencies, the slopes of the young sea spectra may be somewhat affected by the low-pass filtering of the W and 
WA time series at 0.5 Hz. The high wave age (cp/U10 ≥ 2) mean W spectrum in the PAPA data set also appears to 
have a third peak at approximately f/fp = 2; however, the significance of this third peak is questionable, as the high 
wave age mean spectrum of the PAPA data set is averaged over only four separate spectra. The estimated power-
law fits to the f/fp > 1 regions of the total mean spectra are also included in Figures 11a and 11b, with power-law 
exponents n = 2.19 and 2.03 for the EKOK and PAPA mean W spectra, respectively.

The WA spectra (Figures 11c and 11d) display a more pronounced peak at f/fp = 1, reflecting the more localized 
nature of the WA estimate, in which breaking events are characterized by short-lived spikes focused at the points 
in time when the breaking crests attain their maximum extent. Compared to the W spectra, the WA spectra also 
display somewhat less scatter at high frequencies. The power-law exponents of the mean WA spectra are estimated 
as n = 2.41 and n = 1.96 for EKOK and PAPA, respectively.

5.3.3.  Intermittency Spectra

A complementary representation to the whitecap coverage spectra in Figure 11 is shown in Figure 12 with the 
spectral densities of the TA of the W and WA time series. Since the TA representation only retains information 
of the time separation between successive crossings of the mean W and WA levels, such that the de-correlating 
effects of amplitude variations are minimized, previously published results on general stochastic processes (Cava 
et al., 2012; Sreenivasan & Bershadskii, 2006) give reason to expect that the TA spectra exhibit more consistency 

Figure 12.  As Figure 11, but for spectra of the TA of the total whitecap coverage W (upper row), and spectra of the TA of 
the active whitecap coverage WA (lower row). Color scaling as in Figure 11. The solid lines are the power-law fits to the mean 
TA spectra (solid black curves) in the tail region between f/fp = 1 and 2 (same interval as in Figure 11), with slopes indicated 
by mf. The dashed lines are the theoretical power-law slopes based on the spectral slopes n in Figure 11 as predicted by 
Equation 10, with theoretical slope coefficients indicated by mt.
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than the W and WA spectra shown in Figure 11. Indeed, this behavior is evident, especially in the tail regions of 
all TA spectra, where the spectral slopes display less variation with wave age, and the power-law behavior extends 
to higher relative frequencies than in the W and WA spectra. The spectral peak at the peak wave frequency is also 
pronounced, especially in the TA spectra of WA, shown in Figures 12c and 12d. The fitted power-law exponents 
mf of all mean TA spectra show reasonable agreement with the theoretical slopes mt, predicted by the relationship 
in Equation 10, suggesting that the intermittency characteristics of W and WA are of a similar nature to other 
stochastic processes occurring in both natural and controlled environments.

5.3.4.  Comparison to Prior Observations

The analyses of the time scales of breaking presented in this section point toward a universal breaking at a period 
that is closely linked to the period of the dominant waves. This supports the amplitude analysis presented in 
Section 5.2, which showed enhanced breaking activity linked to the passage of energetic wave groups. Dominant 
wave crests have also been shown to be the preferential breaking regions for waves of various scales in previous 
field studies (Donelan et al., 1972; Dulov et al., 2002, 2021; Holthuijsen & Herbers, 1986; Yurovsky et al., 2017). 
A marked contrast exists, however, between the magnitude of long wave modulation of wave breaking in our 
results, which show a 2–5 fold enhancement of breaking probability attributed to wave groups, compared to 
those of Dulov et al. (2002, 2021) who found modulation factors as high as 20–24. It is, however, important to 
keep in mind that our analysis sorts long waves into two categories, namely wave groups and the “background” 
wave field. Both of these categories consist of dominant waves, a portion of which are related to wave breaking 
of varying scales as shown in Figure 4. The analyses of Dulov et al. (2002, 2021), on the other hand, examine the 
modulation of breaking by long waves irrespective of their amplitude and group structure. With this in mind, our 
results should be viewed as complementary, not contradictory, to those of Dulov et al. (2002, 2021).

It is important to note that our analysis presented herein is relatively ambiguous regarding the scale (e.g., spatial 
extent or breaking strength) of the breaking that occurs at dominant wave-related periodicity. Previous studies 
on the distributions of crest-lengths per unit area and crest propagation speed have found that dominant-wave 
breaking accounts for only a fraction of the total breaking rate in typical wind-forced sea states, with the majority 
of breaking occurring at much shorter wave scales with mean breaking crests speeds typically of the order of 
half the phase speeds of peak waves or less (Kleiss & Melville, 2010; Romero, 2019; Schwendeman et al., 2014; 
Thomson et al., 2009). Our results should not be considered contradictory to these previous findings, but should 
be viewed as further evidence that dominant-wave modulation is an important mechanism in driving wave break-
ing at a wide range of scales.

6.  Conclusions
We have analyzed the variability of high-temporal resolution oceanic whitecap coverage with the underlying 
dominant wave group structure using stereo video observations from a platform in the central North Sea. The 
observations show enhanced probability of occurrence of high instantaneous whitecap coverage coincident with 
wave group passage, which implies that wave groupiness is associated with larger scale wave breaking activity 
and extent (Figure 8). The group enhancement of the whitecap coverage is apparent both in the instantaneous total 
whitecap coverage W and the whitecap coverage related to actively breaking wave crests WA, although the differ-
ence between intra-group and inter-group whitecap coverage is more pronounced for WA (approximately threefold 
for W vs. a fivefold enhancement for WA). This result was shown to be insensitive to the specific definition used to 
distinguish wave groups from the background sea state. Wave groups were also shown to lead to enhanced values 
of time-averaged W and WA compared to quiescent periods. This result suggests that wave field groupiness may 
be a source of scatter among previously published whitecap coverage data sets.

Analyses of the time variability of the instantaneous W and WA data showed a tendency toward periodicity at 
time scales near the peak wave period, supporting previous observations of preferential breaking of short wave 
components near the crests of long waves. The consistency of this result was substantiated by the inclusion of a 
second whitecap coverage field data set collected with ship-based video cameras in a wide range of environmen-
tal conditions in the North Pacific.
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Data Availability Statement
Data will be posted at https://digital.lib.washington.edu/researchworks/handle/1773/48143. Whitecap thresh-
olding and ship motion correction codes used in the analysis can be found at https://github.com/mikapm/
ship-whitecaps.
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