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Abstract
We study two “above guarantee” versions of the classical Longest Path problem on undirected
and directed graphs and obtain the following results. In the first variant of Longest Path that
we study, called Longest Detour, the task is to decide whether a graph has an (s, t)-path of
length at least distG(s, t) + k (where distG(s, t) denotes the length of a shortest path from s to t).
Bezáková et al. [7] proved that on undirected graphs the problem is fixed-parameter tractable (FPT)
by providing an algorithm of running time 2O(k) · n. Further, they left the parameterized complexity
of the problem on directed graphs open. Our first main result establishes a connection between
Longest Detour on directed graphs and 3-Disjoint Paths on directed graphs. Using these new
insights, we design a 2O(k) · nO(1) time algorithm for the problem on directed planar graphs. Further,
the new approach yields a significantly faster FPT algorithm on undirected graphs.

In the second variant of Longest Path, namely Longest Path above Diameter, the task
is to decide whether the graph has a path of length at least diam(G) + k (diam(G) denotes the
length of a longest shortest path in a graph G). We obtain dichotomy results about Longest
Path above Diameter on undirected and directed graphs. For (un)directed graphs, Longest
Path above Diameter is NP-complete even for k = 1. However, if the input undirected graph is
2-connected, then the problem is FPT. On the other hand, for 2-connected directed graphs, we show
that Longest Path above Diameter is solvable in polynomial time for each k ∈ {1, . . . , 4} and
is NP-complete for every k ≥ 5. The parameterized complexity of Longest Detour on general
directed graphs remains an interesting open problem.
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1 Introduction

In the Longest Path problem, we are given an n-vertex graph G and an integer k. (Graph G

could be undirected or directed.) The task is to decide whether G contains a path of length at
least k. Longest Path is a fundamental algorithmic problem that played one of the central
roles in developing parameterized complexity [46, 9, 2, 36, 40, 13, 12, 41, 51, 26, 26, 25, 42, 8].
To further our algorithmic knowledge about the Longest Path problem, Bezáková et al. [7]
introduced a novel “above guarantee” parameterization for the problem. For a pair of vertices
s, t of an n-vertex graph G, let distG(s, t) be the distance from s to t, that is, the length of a
shortest path from s to t. In this variant of Longest Path, the task is to decide whether a
graph has an (s, t)-path of length at least distG(s, t) + k. The difference with the “classical”
parameterization is that instead of parameterizing by the path length, the parameterization
is by the offset k.

Longest Detour Parameter: k

Input: A graph G, vertices s, t ∈ V (G), and an integer k.
Task: Decide whether there is an (s, t)-path in G of length at least distG(s, t) + k.

Since the length of a shortest path between s and t can be found in linear time, such
a parameterization could provide significantly better solutions than parameterization by
the path length. Bezáková et al. [7] proved that on undirected graphs the problem is fixed-
parameter tractable (FPT) by providing an algorithm of running time 2O(k) ·n. Parameterized
complexity of Longest Detour on directed graphs was left as the main open problem
in [7]. Our paper makes significant step towards finding a solution to this open problem.

Our results. Our first main result establishes a connection between Longest Detour and
another fundamental algorithmic problem p-Disjoint Paths. Recall that the p-Disjoint
Paths problem is to decide whether p pairs of terminal vertices (si, ti), i ∈ {1, . . . , p}, in a
(directed) graph G could be connected by pairwise internally vertex disjoint (si, ti)-paths.
We prove (the formal statement of our result is given in Theorem 4) that if C is a class of
(directed) graphs such that p-Disjoint Paths admits a polynomial time algorithm on C for
p = 3, then Longest Detour is FPT on C. Moreover, the FPT algorithm for Longest
Detour on C is single-exponential in k (running in time 2O(k) · nO(1)).

Unfortunately, our result does not resolve the question about parameterized complexity
of Longest Detour on directed graphs. Indeed, Fortune, Hopcroft, and Wyllie [29] proved
that p-Disjoint Paths is NP-complete on directed graphs for every fixed p ≥ 2. However,
the new insight helps to establish the tractability of Longest Detour on planar directed
graphs, whose complexity was also open. The theorem of Schrijver from [48] states that
p-Disjoint Paths could be solved in time nO(p) when the input is restricted to planar
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directed graphs. (This result was improved by Cygan et al. [17] who proved that p-Disjoint
Paths parameterized by p is FPT on planar directed graphs.) Pipelined with our theorem,
it immediately implies that Longest Detour is FPT on planar directed graphs.

Besides establishing parameterized complexity of Longest Detour on planar directed
graphs our theorem has several advantages over the previous work even on undirected graphs.
By the seminal result of Robertson and Seymour [47], p-Disjoint Paths is solvable in
f(p) · n3 time on undirected graphs for some function f of p only. Therefore on undirected
graphs p-Disjoint Paths is solvable in polynomial time for every fixed p, and for p = 3 in
particular. Later the result of Robertson and Seymour was improved by Kawarabayashi,
Kobayashi, and Reed [38] who gave an algorithm with quadratic dependence on the input
size. Pipelined with our result, this brings us to a Monte Carlo randomized algorithm
solving Longest Detour on undirected graphs in time 10.8k · nO(1). Our algorithm can
be derandomized, and the deterministic algorithm runs in time 45.5k · nO(1). While the
algorithm of Bezáková et al. [7] for undirected graphs runs in time O(ck · n), that is, is
single-exponential in k, the constant c is huge. The reason is that their algorithm exploits the
Win/Win approach based on excluding graph minors. More precisely, Bezáková et al. proved
that if a 2-connected graph G contains as a minor, a graph obtained from the complete graph
K4 by replacing each edge by a path with k edges, then G has an (s, t)-path of length at
least distG(s, t) + k. Otherwise, in the absence of such a graph as a minor, the treewidth of
G is at most 32k + 46. Combining this fact with an FPT 3-approximation algorithm [11],
running in time 2O(k) · nO(1), to compute the treewidth of a graph, brings us to a graph of
treewidth at most 96k + O(1). Finally, solving Longest Detour on graphs of bounded
treewidth by one of the known single-exponential algorithms, see [18, 10, 27], will result in
running time 396k · nO(1). Thus on undirected graphs, our algorithm reduces the constant c

in the base of the exponent from 396 down to 10.8!

Our second set of results addresses the complexity of the problem strongly related to
Longest Detour. The length of a longest shortest path in a graph G is denoted by
diameter of G, diam(G). Thus every graph G has a path of length at least diam(G). But
does it have a path of length longer than diam(G)? This leads to the following parameterized
problem.

Longest Path above Diameter Parameter: k

Input: A graph G and an integer k.
Task: Decide whether there is a path in G of length at least diam(G) + k.

As in Longest Detour, the parameterization is by the offset k. When (s, t) is a pair
of diametral vertices in G, the length of the shortest (s, t)-path in G is the diameter of G.
However, this does not allow to reduce Longest Path above Diameter to Longest
Detour– if there is a path of length diam(G) + k in G, it is not necessarily an (s, t)-path.
Moreover, such a path might connect two vertices with a much smaller distance between
them than diam(G). In fact, our hardness results for Longest Path above Diameter
are based precisely on instances where the target path has this property: its length is very
close to diam(G), but much larger than the shortest distance between its endpoints. Thus,
the lower bounds we obtain for Longest Path above Diameter are not applicable to
Longest Detour.

We obtain the following dichotomy results about Longest Path above Diameter on
undirected and directed graphs. For undirected graphs, Longest Path above Diameter
is NP-complete even for k = 1. However, if the input undirected graph is 2-connected, that is,
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it remains connected after deleting any of its vertices, then the problem is FPT. For directed
graphs, the problem is also NP-complete even for k = 1. However, the situation is more
complicated and interesting on 2-connected directed graphs. (Let us remind that a strongly
connected digraph G is 2-connected or strongly 2-connected, if for every vertex v ∈ V (G),
graph G − v remains strongly connected.) In this case, we show that Longest Path above
Diameter is solvable in polynomial time for each k ∈ {1, . . . , 4} and is NP-complete for
every k ≥ 5.

Our approach. A natural way to approach Longest Detour on directed graphs would
be to mimic the algorithm for undirected graphs. By the result of Kawarabayashi and
Kreutzer [39], every directed graph of sufficiently large directed treewidth contains a sizable
directed grid as a “butterfly minor”. However, as reported in [6], there are several obstacles
towards applying the grid theorem of Kawarabayashi and Kreutzer for obtaining a Win/Win
algorithm. After several unsuccessful attempts, we switched to another strategy.

We start the proof of Theorem 4 by checking whether G has an (s, t)-path of length
distG(s, t) + ℓ for k ≤ ℓ < 2k. This can be done in time 2O(k) · nO(1) by calling the algorithm
of Bezáková et al. [7] that finds an (s, t)-path in a directed G of length exactly distG(s, t) + ℓ.
If such a path is not found, we conclude that if (G, k) is a yes-instance, then G contains an
(s, t)-path of length at least distG(s, t) + 2k.

Next, we check whether there exist two vertices v and w reachable from s such that
distG(s, w) − distG(s, v) ≥ k and G has pairwise disjoint (s, w)-, (w, v)-, and (v, t)-paths. If
such a pair of vertices exists, we obtain a solution by concatenating disjoint (s, w)-, (w, v)-,
and (v, t)-paths. This is the place in our algorithm, where we require a subroutine solving
3-Disjoint Paths.

When none of the above procedures finds a detour, we prove a combinatorial claim that
allows reducing the search of a solution to a significantly smaller region of the graph. This
combinatorial claim is the essential part of our algorithm. More precisely, we show that
there are two vertices u and x, and a specific induced subgraph H of G (depending on u and
x) such that G has an (s, t)-path of length at least distG(s, t) + k if and only if H has an
(u, x)-path of length at least ℓ for a specific ℓ ≤ 2k (also depending on u and x). Moreover,
given u, in polynomial time, we can find a feasible domain for vertex x, and for each choice of
x, we can also determine ℓ and construct H in polynomial time. Then we apply the algorithm
of Fomin et al. [28] to check whether H has an (u, x)-path in H of length at least ℓ.

Our strategy for Longest Path above Diameter is different. For undirected graphs,
the solution turns out to be reasonably simple. It easy to show that Longest Path above
Diameter is NP-complete for k = 1 by reducing Hamiltonian Path to it. When an
undirected graph G is 2-connected, and the diameter is larger than k + 1, then G always
contains a path of length at least d + k. If the diameter is at most k, it suffices to run
a Longest Path algorithm to show that the problem is FPT. For directed graphs, a
similar reduction shows that the problem is NP-complete for k = 1. However, for 2-strongly-
connected directed graphs, the situation is much more interesting. It is not too difficult to
prove that when the diameter of a 2-strongly-connected digraph is sufficiently large, it always
contains a path of length diam(G) + 1. With much more careful arguments, it is possible
to push this up to k = 4. Thus for each k ≤ 4, the problem is solvable in polynomial time.
For k = 5 we can construct a family of 2-strongly-connected digraphs of arbitrarily large
diameter that do not have a path of length diam(G) + 5. These graphs become extremely
useful as gadgets that we use to prove that the problem is NP-complete for each k ≥ 5.
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Related work. There is a vast literature in the field of parameterized complexity devoted
to Longest Path [46, 9, 2, 36, 40, 13, 12, 41, 51, 26, 26, 8]. The surveys [25, 42] and the
textbook [16, Chapter 10] provide an overview of the advances in the area.

Longest Detour was introduced by Bezáková et al. in [7]. They gave an FPT algorithm
for undirected graphs and posed the question about detours in directed graphs. Even the
existence of a polynomial time algorithm for Longest Detour with k = 1, that is, deciding
whether a directed graph has a path longer than a shortest (s, t)-path, is open. For the related
Exact Detour problem, deciding whether there is a detour of length exactly distG(s, t) + k

is FPT both on directed and undirected graphs [7].
Another problem related to our work is Long (s, t)-Path. Here for vertices s and t of

a graph G, and integer parameter k, we have to decide whether there is an (s, t)-path in
G of length at least k. A simple trick, see [16, Exercise 5.8], allows to use color-coding to
show that Long (s, t)-Path is FPT on undirected graph. For directed graphs the situation
is more involved, and the first FPT algorithm for Long (s, t)-Path on directed graphs was
obtained only recently [28]. The proof of Theorem 4 uses some of the ideas developed in [28].

Both Longest Detour and Longest Path above Diameter fit into the research
subarea of parameterized complexity called “above guarantee” parameterization [44, 1, 15,
31, 32, 33, 34, 35, 43, 45]. Besides the work of Bezáková et al. [6], several papers study
parameterization of longest paths and cycles above different guarantees. Fomin et al. [23]
designed parameterized algorithms for computing paths and cycles longer than the girth
of a graph. The same set of the authors in [22] studied FPT algorithms that finds paths
and cycles above degeneracy. Fomin et al. [24] developed an FPT algorithm computing a
cycle of length 2δ + k, where δ is the minimum vertex degree of the input graph. Jansen,
Kozma, and Nederlof in [37] looked at parameterized complexity of Hamiltonicity below
Dirac’s conditions. Berger, Seymour, and Spirkl in [5], gave a polynomial time algorithm
that, with input a graph G and two vertices s, t of G, that decides whether there is an induced
(s, t)-path that is longer than a shortest (s, t)-path. All these algorithms for computing long
paths and cycles above some guarantee are for undirected graphs.

The remaining part of this paper is organized as follows. In Section 2, we give preliminaries.
In Section 3, we prove our first main result establishing connections between 3-Disjoint
Paths and Longest Detour (Theorem 4). Section 4 is devoted to Longest Path above
Diameter. The concluding Section 5 provides open questions for further research.

2 Preliminaries

Parameterized Complexity. We refer to the recent books [16, 20] for the detailed introduc-
tion to Parameterized Complexity. Here we just remind that the computational complexity
of an algorithm solving a parameterized problem is measured as a function of the input size n

of a problem and an integer parameter k associated with the input. A parameterized problem
is said to be fixed-parameter tractable (or FPT) if it can be solved in time f(k) · nO(1) for
some function f(·).

Graphs. Recall that an undirected graph is a pair G = (V, E), where V is a set of vertices
and E is a set of unordered pairs {u, v} of distinct vertices called edges. A directed graph
G = (V, A) is a pair, where V is a set of vertices and A is a set of ordered pairs (u, v) of
distinct vertices called arcs. Note that we do not allow loops and multiple edges or arcs. We
use V (G) and E(G) (A(G), respectively) to denote the set of vertices and the set of edges
(set of arcs, respectively) of G. We write n and m to denote the number of vertices and
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edges (arcs, respectively) if this does not create confusion. For a (directed) graph G and a
subset X ⊆ V (G) of vertices, we write G[X] to denote the subgraph of G induced by X. For
a set of vertices S, G − S denotes the (directed) graph obtained by deleting the vertices of
S, that is, G − S = G[V (G) \ S]. We write P = v1 · · · vk to denote a path with the vertices
v1, . . . , vk and the edges {v1, v2}, . . . , {vk−1, vk} (arcs (v1, v2), . . . , (vk−1, vk), respectively);
v1 and vk are the end-vertices of P and the vertices v2, . . . , vk−1 are internal. We say that
P is an (v1, vk)-path. The length of P , denoted by length(P ), is the number of edges (arcs,
respectively) in P . Two paths are disjoint if they have no common vertex and they are
internally disjoint if no internal vertex of one path is a vertex of the other. For a (u, v)-path
P1 and a (v, w)-path P2 that are internally disjoint, we denote by P1 ◦ P2 the concatenation
of P1 and P2. A vertex v is reachable from a vertex u in a (directed) graph G if G has a
(u, v)-path. For u, v ∈ V (G), distG(u, v) denotes the distance between u and v in G, that is,
the minimum number of edges (arcs, respectively) in an (u, v)-path. An undirected graph
G is connected if for every two vertices u and v, G has a (u, v)-path. A directed graph G

is strongly-connected if for every two vertices u and v both u is reachable form v and v is
reachable from u. For a positive integer k, an undirected (directed, respectively) graph G

is k-connected (k-strongly-connected, respectively) if |V (G)| ≥ k and G − S is connected
(strongly-connected, respectively) for every S ⊆ V (G) of size at most k − 1. For a directed
graph G, by GT we denote the transpose of G, i.e. GT is a directed graph defined on the
same set of vertices and the same set of arcs, but the direction of each arc in GT is reversed.

We use several known parameterized algorithms for finding long paths. First of all, let us
recall the currently fastest deterministic algortihm for Longest Path on directed graphs
due to Tsur [50].

▶ Proposition 1 ([50]). There is a deterministic algorithm for Longest Path with running
time 2.554k · nO(1).

We also need the result of Fomin et al. [28] for the Long Directed (s, t)-Path problem.
This problem asks, given a directed graph G, two vertices s, t ∈ V (G), and an integer k ≥ 0,
whether G has an (s, t)-path of length at least k.

▶ Proposition 2 ([28]). Long Directed (s, t)-Path can be deterministically solved in time
4.884k · nO(1).

Clearly, both results holds for the variant of the problem on undirected graphs.
Finally, we use the result of Bezáková et al. [7] for the variant of Longest Detour

whose task is, given a (directed) graph G, two vertices s, t ∈ V (G), and an integer k ≥ 0,
decide whether G has an (s, t)-path of length exactly distG(s, t) + k.

▶ Proposition 3 ([7]). There is a bounded-error randomized algorithm that solves Exact
Detour on undirected graphs in time 2.746k · nO(1) and on directed graphs in time 4k · nO(1).
For both undirected and directed graphs, there is a deterministic algorithm that runs in time
6.745k · nO(1).

3 An FPT algorithm for finding detours

In this section we show the first main result of our paper.

▶ Theorem 4. Let C be a class of directed graphs such that 3-Disjoint Paths can be solved
in f(n) time time on C. Then Longest Detour can be solved in 45.5k · nO(1) + O(f(n)n2)
time by a deterministic algorithm and in 23.86k · nO(1) + O(f(n)n2) time by a bounded-error
randomized algorithm when the input is restricted to graphs from C.
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Proof. Let (G, s, t, k) be an instance of Longest Detour with G ∈ C. For k = 0, the
problem is trivial and we assume that k ≥ 1. We also have that (G, s, t, k) is a trivial
no-instance if t is not reachable from s. We assume from now that every vertex of G is
reachable from s. Otherwise, we set G := G[R], where R is the set of vertices of G reachable
from s using the straightforward property that every (s, t)-path in G is a path in G[R].
Clearly, R can be constructed in O(n + m) time by the breadth-first search.

Using Proposition 3, we check in 6.7452k · nO(1) time by a deterministic algorithm (in
42k · nO(1) time by a randomized algorithm, respectively) whether G has an (s, t)-path of
length distG(s, t) + ℓ for some k ≤ ℓ ≤ 2k − 1 by trying all values of ℓ in this interval. We
return a solution and stop if we discover such a path. Assume from now that this is not the
case, that is, if (G, s, t) is a yes-instance, then the length of every (s, t)-path of length at
least distG(s, t) + k is at least distG(s, t) + 2k.

We perform the breadth-first search from s in G. For an integer i ≥ 0, denote by Li the
set of vertices at distance i from s. Let ℓ be the maximum index such that Lℓ ̸= ∅. Because
every vertex of G is reachable from s, V (G) =

⋃ℓ
i=0 Li. We call L0, . . . , Lℓ BFS-levels.

P1

L0 Lp Lq

s

t

u

v

w

Lℓ

P2

P3
Q

Figure 1 The choice of the BFS-levels Lp and Lq, vertices u, v, and w, and the paths P1, P2,
and P3.

Our algorithm is based on structural properties of potential solutions. Suppose that
(G, s, t, k) is a yes-instance and let a path P be a solution of minimum length, that is, P is an
(s, t)-path of length at least distG(s, t) + k and among such paths the length of P is minimum.
Denote by p ∈ {1, . . . , ℓ} the minimum index such that Lp contains at least two vertices of G.
Such an index exists, because if |V (P ) ∩ Li| ≤ 1 for all i ∈ {1, . . . , ℓ}, then P is a shortest
(s, t)-path by the definition of L0, . . . , Lℓ and the length of P is distG(s, t) < distG(s, t) + k

as k ≥ 1. Let u be the first (in the path order) vertex of P in Lp and let v ̸= u be the second
vertex of P that occurs in Lp. Denote by P1, P2, and P3 the (s, u), (u, v), and (v, t)-subpath
of P , respectively. Clearly, P = P1 ◦ P2 ◦ P3. Let q ∈ {p, . . . , ℓ} be the maximum index such
that P2 contains a vertex of Lq. Then denote by w the first vertex of P2 in Lq. See Figure 1
for the illustration of the described configuration. We use this notation for a (hypothetical)
solution throughout the proof of the theorem. The following claim is crucial for us.

▷ Claim 5. The length of P2 is at least k.

Proof of Claim 5. For the sake of contradiction, assume that the length of P2 is less than k.
Let Q be a shortest (s, v)-path in G. By the definition of BFS-levels, V (Q) ⊆ L0 ∪ · · · ∪ Lp

and v is a unique vertex of Q in Lp. This implies that Q is internally vertex disjoint with P3.
Note that the length of Q is the same as the length of P1, because P1 contains exactly one
vertex from each of the BFS levels L1, . . . , Lp. Then P ′ = Q ◦ P3 is an (s, t)-path and

length(P ′) =length(Q) + length(P3) = length(P1) + length(P3)
=length(P ) − length(P2) ≤ length(P ) − k.
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Recall that the length of every (s, t)-path of length at least distG(s, t) + k is at least
distG(s, t) + 2k. This means that length(P ) ≥ distG(s, t) + 2k and, therefore, the length of
P ′ is at least distG(s, t) + k, that is, P ′ is a solution to the considered instance. However,
length(P ′) < length(P ), because P2 contains at least one arc. This contradicts the choice of
P as a solution of minimum length. This completes the proof of the claim. ◁

By Claim 5, solving Longest Detour on (G, s, t, k) boils down to identifying internally
disjoint P1, P2, and P3, where the length of P2 is at least k.

First, we check whether we can find paths for q − p ≥ k − 1. Notice that if q − p ≥ k − 1,
then for every internally disjoint (s, w)-, (w, v)-, and (v, t)-paths R1, R2, and R3 respectively,
their concatenation R1 ◦ R2 ◦ R3 is an (s, t)-path of length at least distG(s, t) + k. Recall
that G ∈ C and p-Disjoint Paths can be solved in polynomial time on this graph class
for p = 3. For every choice of two vertices w, v ∈ V (G), we solve p-Disjoint Paths on the
instance (G, (s, w), (w, v), (v, s)). Then if there are paths R1, R2, and R3 forming a solution
to this instance, we check whether length(R1) + length(R2) + length(R3) ≥ distG(s, t) + k.
If this holds, we conclude that the path R1 ◦ R2 ◦ R3 is a solution to the instance (G, s, t, k)
of Longest Detour and return it. Assume from now that this is not the case, that is, we
failed to find a solution of this type. Then we can complement Claim 5 by the following
observation about our hypothetical solution P .

▷ Claim 6. q − p ≤ k − 2.

This means that we can assume that k ≥ 2 and have to check whether we can identify P1,
P2, and P3, where V (P2) ⊆

⋃p+k−2
i=p Li. For this, we go over all possible choices of u. Note

that the choice of u determines p, i.e., the index of the BFS-level containing u. We consider
the following two cases for each considered choice of u.

t

L0 Lp Lq

s

u

v

w
P2

P3

P1

LℓLp+k−2

Figure 2 The structure of paths P1, P2, and P3 in Case 1.

Case 1. t ∈ Lr for some p ≤ r ≤ p + k − 2 (see Figure 2). Then distG(s, t) = r and
(G, s, t, k) is a yes-instance if and only if G[Lp ∪ · · · ∪ Lℓ] has a (u, t)-path S of length at least
(r − p) + k, because the (s, u)-subpath of a potential solution should be a shortest (s, u)-path.
Since r − p ≤ k − 2, we have that (r − p) + k ≤ 2k − 2 and we can find S in 4.8842k · nO(1)

time by Proposition 2 if it exists. If we obtain S, then we consider an arbitrary shortest
(s, u)-path S′ in G and conclude that S′ ◦ S is a solution. This completes Case 1.

Case 2. t ∈ Lr for some r ≥ p + k − 1 (see Figure 3). We again consider our hypothetical
solution P = P1 ◦ P2 ◦ P3. Let H = G[Lp+k−1 ∪ · · · ∪ Lℓ]. Denote by X the set of vertices
x ∈ V (H) such that t is reachable from x in H. Denote by x the first vertex of P3 in X.
Clearly, such a vertex exists because t ∈ X. Moreover, x ∈ Lp+k−1 and its predecessor y in
P3 is in Lp+k−2. Otherwise, t would be reachable from y ∈ V (H) in H contradicting the
choice of x. Let Q1 and Q2 be the (v, y)- and (x, t)-subpaths of P3. Then P3 = Q1 ◦ yx ◦ Q2.
We show one more claim about the hypothetical solution P .
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Q2

L0 Lp Lq

s

u

v

w
P2

P3

P1

LℓLp+k−2 Lp+k−1

t

H

X
xyQ1

Figure 3 The structure of paths P1, P2, and P3 in Case 2.

▷ Claim 7. V (Q1) ∩ X = ∅.

Proof of Claim 7. The proof is by contradiction. Assume that z ∈ V (Q1) ∩ X. Then t is
reachable from z in H. However, x is the first vertex of P3 with this property by the definition;
a contradiction. ◁

Notice that because x ∈ X, there is an (x, t)-path Q′
2 with V (Q′

2) ⊆ X. By Claim 7, Q1
and Q′

2 are disjoint. Since X ⊆ Lp+k−1 ∪ · · · ∪ Lℓ, we have that (V (P1) ∪ V (P2)) ∩ X = ∅.
In particular, Q′

2 is disjoint with P1 and P2 as well. Let P ′
3 = Q1 ◦ yx ◦ Q′

2. By Claim 5,
P ′ = P1 ◦ P2 ◦ P ′

3 is a solution, because length(P2) ≥ k. This allows us to conclude that
(G, s, t, k) has a solution (for the considered choice of u) if and only if there is y ∈ Lp+k−2
such that

(i) there is x ∈ X such that (y, x) ∈ A(G), and
(ii) the graph G[Lp ∪ · · · ∪ Lℓ] − X has a (u, y)-path of length at least 2k − 2.

Our algorithm proceeds as follows. We construct the set X using the breadth-first search
in O(n + m) time. Then for every y ∈ Lp+k−2 we check (i) whether there is x ∈ X such
that (y, x) ∈ A(G), and (ii) whether G[Lp ∪ · · · ∪ Lℓ] − X has a (u, y)-path S of length at
least 2k − 2. To verify (ii), we apply Proposition 2 that allows to perform the check in
4.8842k · nO(1) time. If we find such a vertex y and path S, then to obtain a solution, we
consider an arbitrary shortest (s, u)-path S′ and an arbitrary (x, t) path S′′ in G[X]. Then
P ′ = S′ ◦ S ◦ yx ◦ S′′ is a required solution to (G, s, t, k). This concludes the analysis in
Case 2 and the construction of the algorithm.

The correctness of our algorithm has been proved simultaneously with its construction.
The remaining task is to evaluate the total running time. Recall that we verify in 6.7452k ·nO(1)

time whether G has an (s, t)-path of length distG(s, t) + ℓ for some k ≤ ℓ ≤ 2k − 1 by a
deterministic algorithm, and we need 42k · nO(1) time if we use a randomized algorithm.
Then we construct the BFS-levels in linear time. Next, we consider O(n2) choices of v and
w and apply the algorithm for 3-Disjoint Paths (G, (s, w), (w, v), (v, s)) in f(n) time. If
we failed to find a solution so far, we proceed with O(n) possible choices of u and consider
either Case 1 or 2 for each choice. In Case 1, we solve the problem in 4.8842k · nO(1) time. In
Case 2, we construct X in O(n + m) time. Then for O(n) choices of y, we verify conditions
(i) and (ii) in 4.8842k · nO(1) time. Summarizing, we obtain that the total running time is
6.7452k · nO(1) + O(f(n)n2). Because 6.7452 < 45.5, we have that the deterministic algorithm
runs in 45.5k · nO(1) + O(f(n)n2) time. Since 42 < 4.8842 < 23.86, we conclude that the
problem can be solved in 23.86k · nO(1) + O(f(n)n2) time by a bounded-error randomized
algorithm. ◀
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In particular, combining Theorem 4 with the results of Cygan et al. [17], we obtain the
following corollary.

▶ Corollary 8. Longest Detour can be solved in 45.5k · nO(1) time by a deterministic
algorithm and in 23.86k · nO(1) time by a bounded-error randomized algorithm on planar
directed graphs.

Using the fact that p-Disjoint Paths can be solved in O(n2) time by the results of
Kawarabayashi, Kobayashi, and Reed [38], we immediately obtain the result for Longest
Detour on undirected graphs. However, we can improve the running time of a randomized
algorithm by tuning our algorithm for the undirected case.

▶ Corollary 9. Longest Detour can be solved in 45.5k · nO(1) time by a deterministic
algorithm and in 10.8k · nO(1) time by a bounded-error randomized algorithm on undirected
graphs.

Proof. The deterministic algorithm is the same as in the directed case. To obtain a better
randomized algorithm, we follow the algorithm from Theorem 4 and use the notation
introduced in its proof. Let (G, s, t, k) be an instance of Longest Detour with G ∈ C.
We assume without loss of generality that k ≥ 1 and G is connected. Using Proposition 3,
we check in 2.7462k · nO(1) time by a randomized algorithm whether G has an (s, t)-path
of length distG(s, t) + ℓ for some k ≤ ℓ ≤ 2k − 1. If we fail to find a solution this way, we
construct the BFS-levels L0, . . . , Lℓ.

Suppose that (G, s, t, k) is a yes-instance with a hypothetical solution P composed by
the concatenation of P1, P2, and P3 as in the proof of Theorem 4. Let also Lp and Lq be
the corresponding BFS-levels. Observe that if q − p ≥ k/2, then length(P2) ≥ k, because
for every edge {x, y} of G, x and y are either in the same BFS-level or in consecutive levels
contrary to the directed case where we may have an arc (x, y) where x ∈ Li and y ∈ Lj

for arbitrary j ∈ {0, . . . , i}. Recall that for every choice of two vertices w, v ∈ V (G), we
solve p-Disjoint Paths on the instance (G, (s, w), (w, v), (v, s)) and try to find a solution
to (G, s, t, k) by concatenating the solutions for these instances of p-Disjoint Paths. If we
fail to find a solution this way, we can conclude now that q − p ≤ k/2 − 1 improving Claim 6.
Further, we pick u and consider two cases.

In Case 1, where t ∈ Lr for some p ≤ r ≤ p + k/2 − 1, we now find a (u, t)-path S in
G[Lp ∪ · · · ∪ Lℓ] of length at least (r − p) + k ≤ 3k/2 in 4.8843k/2 · nO(1) time. If such a path
exists, we obtain a solution.

In Case 2, where t ∈ Lr for some r ≥ p + k/2, we consider H = G[Lh+1 ∪ · · · ∪ Lℓ] for
h = p+⌈k/2⌉ and denote by X the set of vertices of the connected component of H containing
X. Then for every y ∈ Lh we check (i) whether there is x ∈ X such that {y, x} ∈ E(G),
and (ii) whether G[Lp ∪ · · · ∪ Lℓ] − X has a (u, y)-path S of length at least k + ⌈k/2⌉ in
4.8843k/2 · nO(1) time. If such a path exists, we construct a solution containing it in the same
way as on the directed case.

The running time analysis is essentially the same as in the proof of Theorem 4. The
difference is that now we have that 2.7462 ≤ 4.8843/2 < 10.80. This implies that the algorithm
runs in 10.8k · nO(1) time. ◀

4 Longest Path Above Diameter

In this section, we investigate the complexity of Longest Path above Diameter. It can
be noted that this problem is NP-complete in general even for k = 1.
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▶ Proposition 10. Longest Path above Diameter is NP-complete for k = 1 on undirected
graphs.

Proof. Let G be an undirected graph with n ≥ 2 vertices. We construct the graph G′ as
follows (see Figure 4).

Construct a copy of G.
Construct a vertex u and make it adjacent to every vertex of the copy of G.
Construct two vertices s and t, and then (s, u) and (u, t) paths Ps and Pt, respectively,
of length n − 1.

t

G

Pss u Pt

Figure 4 Construction of G′.

Notice that diam(G) = length(Ps) + length(Pt) = 2n − 2. It is easy to verify that
G′ has a path of length 2n − 1 if and only if G has a path of length n − 1, that is, G

is Hamiltonian. Because Hamiltonian Path is well-known to be NP-complete [30], we
conclude that Longest Path above Diameter is NP-complete for k = 1 ◀

Proposition 10 immediately implies that Longest Path above Diameter is NP-
complete for k = 1 on strongly connected directed graphs as we can reduce the problem on
undirected graphs to the directed variant by replacing each edge by the pair of arcs with
opposite orientations. Still, it can be observed that the reduction in Proposition 10 strongly
relies on the fact that the constructed graph G′ has an articulation point u. Hence, it is
natural to investigate the problem further imposing connectivity constraints on the input
graphs. And indeed, it can be easily seen that Longest Path above Diameter is FPT on
2-connected undirected graphs.

▶ Observation 11. Longest Path above Diameter can be solved in time 6.523k · nO(1)

on undirected 2-connected graphs.

Proof. Let (G, k) be an instance of Longest Path above Diameter where G is 2-
connected. If d = diam(G) ≤ k, we can solve the problem in time 2.554d+k · nO(1) by using
the algorithm of Proposition 1 to check whether G has a path of length d + k. Note that
2.554d+k ≤ 2.5542k ≤ 6.523k. Otherwise, if d > k, consider a pair of vertices s and t with
distG(s, t) = d. Because G is 2-connected, by Menger’s theorem (see, e.g., [19]), G has a
cycle C containing s and t. Since distG(s, t) = d and d ≥ k + 1, the length of C is at least
d + k + 1. This implies that C contains a path of length d + k. ◀

However, the arguments from the proof of Observation 11 cannot be translated to directed
graphs. In particular, if a directed graph G is 2-strongly-connected, it does not mean that
for every two vertices u and v, G has a cycle containing u and v. We show the following
theorem providing a full dichotomy for the complexity of Longest Path above Diameter
on 2-strongly-connected graphs.

▶ Theorem 12. On 2-strongly-connected directed graphs, Longest Path above Diameter
with k ≤ 4 can be solved in polynomial time, while for k ≥ 5 it is NP-complete.
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In what remains of this section, we give some intuition behind the proof of Theorem 12;
the details can be found in the full version of the paper [21]. To show the positive part
of the theorem, it is sufficient to consider graphs with diameter greater than some fixed
constant, because in graphs with smaller diameter the problem can be solved in linear time.
For graphs with a sufficiently large diameter, we show that a path of length diameter plus
four always exists. To construct such a path, we take the diameter pair (s, t) and employ
2-strong-connectivity of the graph to find two disjoint (s, t)-paths and two disjoint (t, s)-paths
in the graph. We then show that out of the several possible ways to comprise a path out
of the parts of these four paths, at least one always obtains a path of desired length. The
most non-trivial case of this construction involves constructing two paths of length five, one
ending in a vertex u that is at distance three from s and the other starting in a vertex v

from which we can reach t using three arcs. We then concatencate these two paths using a
specific (u, v)-path inbetween. Since (s, t) is a diameter pair, the length of any (u, v)-path is
at least diameter minus six, so the length of the concatenation is at least diameter plus four.
The other cases are analyzed in a similar fashion.

For the lower bound part of Theorem 12, the general idea of the proof is similar to
that of Proposition 10. We aim to take a path-like gadget graph, then take a sufficiently
large Hamiltonian Path instance and connect it to the middle of the gadget. However,
while in the general case it suffices to simply take a path graph (Proposition 10), the 2-
strongly-connected case is much more technically involved. First, we need a family of gadget
graphs that are 2-strongly-connected, have arbitrarily large diameter, but each graph in
the family does not have a path longer than diameter plus four. This, in fact, is exactly a
counterexample to the positive part of Theorem 12, as the existence of such family of graphs
proves that there cannot always be a path of length diameter plus four in a sufficiently large
2-connected directed graph. Additionally, for the reduction we need that graphs in this family
behave like paths, specifically that the length of the longest path that ends in the “middle”
of the gadget is roughly half of the diameter. Constructing this graph family is a main
technical challenge of the theorem. After constructing the gadget graph family the proof
is reasonably simple, as we take a 2-connected Hamiltonian Path instance, and connect
it to the “middle” of a sufficiently large gadget graph. The connection is done by a simple
4-vertex connector gadget that ensures that the resulting graph is 2-strongly-connected, but
only allows for paths that alternate at most once between the gadget graph and the starting
instance.

5 Conclusion

We proved that if C is a class of directed graph such that p-Disjoint Paths is in P on C for
p = 3, then Longest Detour is FPT on C. However p-Disjoint Paths is NP-complete on
directed graphs for every fixed p ≥ 2 [29]. This leaves open the question of Bezáková et al. [7]
about parameterized complexity of Longest Detour on general directed graphs. Even
the complexity (P versus NP) of deciding whether a directed graph contains an (s, t)-path
longer than distG(s, t) (the case of k = 1) remains open. Notice that Longest Detour is
not equivalent to p-Disjoint Paths for p = 3 and, therefore, the hardness of p-Disjoint
Paths does not imply hardness of Longest Detour.

Our result implies, in particular, that Longest Detour is FPT on planar directed
graphs. There are various classes of directed graphs on which p-Disjoint Paths is tractable
for fixed p (see, e.g., the book of Bang-Jensen and Gutin [3]). For example, by Chudnovsky,
Scott, and Seymour [14], p-Disjoint Paths can be solved in polynomial time for every fixed
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p on semi-complete directed graphs. Together with Theorem 4, it implies that Longest
Detour is FPT on semi-complete directed graphs and tournaments. However, from what
we know, these results could be too weak in the following sense. Using the structural results
of Thomassen [49], Bang-Jensen, Manoussakis, and Thomassen in [4] gave a polynomial-time
algorithm to decide whether a semi-complete directed graph has a Hamiltonian (s, t)-path
for two given vertices s and t. Thus the real question is whether Longest Detour is in P
on semi-complete directed graphs or tournaments.

The second part of our results is devoted to Longest Path above Diameter. We
proved that this problem is NP-complete for general graphs for k = 1 and showed that it is
in FPT when the input graph is undirected and 2-connected. We established the complexity
dichotomy for Longest Path above Diameter for the case of 2-strongly-connected
directed graphs by showing that the problem can be solved in polynomial time for k ≤ 4
and is NP-complete for k ≥ 5. This naturally leaves an open question for larger values of
strong connectivity. The computational complexity of Longest Path above Diameter
on t-strongly connected graphs for t ≥ 3 is open. For a very concrete question, is there a
polynomial algorithm for Longest Path above Diameter with k = 5 on graphs of strong
connectivity 3?
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