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Abstract
Considering constrained choice, practitioners and theorists frequently invoke a
Lagrangian to generate optimality conditions. Regular use of that vehicle requires,
however, some constraint qualification. Yet many economists go easy on the mathe-
matics of that issue. Conversely, few mathematicians elaborate on the economics of
the context. Thereby both parties leave some lacunas as to didactics or intuition. This
note attempts to shed some light on these matters.

Keywords Lagrangian · Constraint qualifications · Arbitrage · minmax · Efficiency

1 Introduction

Considered here is a parametrized family of primal problems

P(y) : minimize c0(x) subject to ci (x) ≤ yi , i ∈ I . (1)

Each function ci , i ∈ I := {0} ∪ I , maps the same general space X into the set R of
reals. The non-empty index ensemble (or list) I is finite, and 0 /∈ I .

For interpretation, let x ∈ X denote some activity choice and yi ∈ R be the quantity
available of input i ∈ I . Regard the parameter vector y := (yi )i∈I ∈ Y := R

I as
a bundle of allowances, commodities or production factors, added to some already
given endowment y0 = (y0i ) . With no loss of generality, posit y0 = 0.

Also for interpretation, choice x generates monetary revenue r(x) := −c0(x),
and it entails consumption ci (x) of resource i . Suppose the latter be linearly valued
by some unit price λi ≥ 0. Consequently, upon facing problem instance P(0), the
decision-maker seeks to maximize own profit
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π(x, λ) := r(x) −
∑

i∈I
λi ci (x). (2)

Equivalently, he attempts to minimize the standard Lagrangian

L(x, λ) := c0(x) +
∑

i∈I
λi ci (x) = −π(x, λ). (3)

Can Lagrangian (3) facilitate computation of optima? And then, seen as prices, are
multipliers bounded?

Many mathematicians, included optimizers, know that these two questions are
closely connected. Further, most economists consider Lagrange multipliers as prices,
emerging as shadows somehow. Finally, every game theorist regards Lagrangian dual-
ity as a non-cooperative, two-player game.

Thus, three different fields shed light on Lagrangian (3), each offering a particular
perspective. Historically, mathematics and mechanics came first, and these remain at
the forefront. Economics and game theory appeared later.1 Turning the said time order
around, this paper inquires: May economic and game theory inform about eventual
boundedness or existence of multipliers - and about their interpretation or nature?

For background and motivation - and no less important: to fix some notations - we
begin with two examples. None offers any novelty, hence both can be skipped. Either
has X = Y = R and I = {1}.
Example 1.1 (ondifferential and topological instability).When c0(x) = x and c1(x) =
x2, problem P(0) has unique solution x = 0. However, the customary “optimality
condition” ∂x L(0, λ) = 0 implies the absurdity 1 = 0. What went wrong here?
Regarding regularity of data, note that:

• The functions c0 and c1 are both convex and differentiable; one can hardly ask for
more.

• Further, when y > 0, problem P(y) has a feasible set

X(y) := {x ∈ X | c1(x) ≤ y } (4)

which is bounded, closed, convex, with non-empty interior - each property being
both convenient and desirable.

• Yet, modulo the convention inf ∅ = +∞, the perturbed best cost function

y ∈ Y �→ c(y) := inf {c0(x) | c1(x) ≤ y) } ∈ R ∪ {+∞} , (5)

which equals −y1/2 when y ≥ 0, +∞ elsewhere, has empty subdifferential

∂c(y) := {
y∗ ∣∣ c(ŷ) ≥ c(y) + y∗(ŷ − y) for each ŷ ∈ Y

}
(6)

at y ≤ 0. Moreover, there is differential instability at 0 since ∂c(y) =
−y−1/2/2 → −∞ as y ↘ 0, but ∂c(0) = ∅.

1 For historical notes, see Schrijver (1986), pages 209-225.

123



The lagrangian, constraint qualifications and economics 217

• Also, as y → 0+, the set X(y) (4) shrinks monotonically to X(0), but no contin-
uous mapping sends the set X(y), y > 0, in one-to-one manner onto X(0); there
is topological instability at y = 0.

• Even the extended Lagrangian

L0(x, λ) := λ0c0(x) +
∑

i∈I
λi ci (x), with λ = (λi )i∈I ≥ 0, (7)

offers no rescue. Indeed, ∂x L0(0, λ) = 0 entails λ0 = 0 alongside the totally
empty and useless information that λ1c′

1(0) = 0.

In short: neither the standard Lagrangian nor its extension helps here. Yet, some-
times the first serves to clarify whether the problem at hand is well posed or not - as
illustrated next.

Example 1.2 (On eventual purchase of input). Let c0(x) = exp(−x) and c1(x) = −x .
No feasible x and λ ≥ 0 satisfy ∂

∂x L(x, λ) = 0. In fact, instance P(0) cannot be
solved. What lacks is an upper bound for x or a strictly positive lower one for λ.

Suppose the ineffective constraint be replaced with one which bites, namely: x ≤ y
for some y > 0. Further suppose the single input sells - in some exogenous market -
at unit price y∗ > 0. Then, if the directional derivative c′(y; 1) := lims→0+[c(y +
s1) − c(y)]/s satisfies

c′(y; 1) + y∗ < 0, or more generally, if y∗ /∈ −∂c(y),

some more input ought be purchased; see Lemma 4.1 or Sect. 5.

Applicability of Lagrangian (3) requires, of course, existence of at least one mul-
tiplier (vector). Moreover, these had better be bounded. Viewing these matters from
the vantage points of economic and game theory, we proceed as follows:
Section 2 prepares the ground by valuing activity choice x ∈ X via shadow prices y∗
on resource bundles y ∈ Y.
Section 3 links single agent’s best choice to arbitrage - and to multi-agent or multi-
objective efficiency.
Section 4 views Lagrangian relaxation in economic terms.
Section 5 considers options for (resource) trade alongside eventual arbitrage.
Section 6 concludes by connecting bounded multipliers, via generalized convexity, to
game theory and existence of saddle values .

Our motivation stems from frequent needs, in communication or didactics, to inter-
pret Lagrangian duality in economic or game terms - and to offer more on that account
than what is common. While valuation is bread and butter in economics LeRoy and
Werner (2001), game theory Osborne and Rubinstein (1994) rather studies strategic
behavior. But both fields accommodate several decision-makers.

Accordingly, we address diverse readers. Included are economists, game theorists,
mathematicians and operation researchers. Apologies extend to economists, and oth-
ers, for accommodating diverse decision spaces. For convenience, the reader may hold
on to a Euclidean space X throughout. Mathematical novelties and prerequisites are
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few. Likewise,we beg excuse tomathematicians for invokingmany economic concepts
- not all essential, but they facilitate interpretation.2

Our modest aim is to emphasize some easily and frequently overlooked bridges
between distinct fields. In addition, we want to facilitate students’ appreciation of–
and encounters with–Lagrangian (3).

Notations Write c1(x) := [ci (x)]i∈I , and order Y = R
I in customary component-

wise manner, to restate problem (1) as

P(y) : minimize c0(x) subject to c1(x) ≤ y. (8)

By standing assumption: P(0) (8) is feasible with finite best cost c(0) (5).
Until other notice, let X be any real vector space of whatever dimension, and

suppose each function ci : X → R, i ∈ I = {0} ∪ I , is Gâteaux differentiable–in
short, just differentiable. This means that the derivative

c′
i (x; d) := lim

s→0+
ci (x + sd) − ci (x)

s

exists along each direction d ∈ X and is linear in that variable. On this premise,
for notational convenience, we write c′

i (x) for the functional d ∈ X �→ c′
i (x; d) =:

c′
i (x)d ∈ R.

When c′(0; d) is well defined for value function (5), clearly, d ≥ 0 �⇒ c′(0; d) ≤
0. Of particular interest then are c′(0;±ei ) for unit vectors ei = (0, .., 0, 1, 0, ..) ∈
Y, instance + (−) reflecting monetary bid (resp. ask) for buying (selling) marginal
amounts of resource i .

As long as X remains linear, we use x∗ ∈ X
∗ as shorthand to signify a linear

function x ∈ X �→ x∗(x) =: x∗x ∈ R. If moreover, X is topological and locally
convex, take each such x∗ to be continuous as well.

Similarly, the notation y∗ ∈ Y
∗ should be construed as some price regime–free of

arbitrage, hence linear LeRoy and Werner (2001)–which values resource use y ∈ Y.
We write y∗ ≥ 0 to indicate a linear function y∗ : Y → R such that y∗y := y∗ · y ≥ 0
whenever y ≥ 0.

A larger (resource endowment) y expands the feasible set (4), thereby offeringmore
freedom of choice. Accordingly, in view of the decision-maker’s willingness to pay
for greater flexibility, assume y ≤ ŷ �⇒ y∗y ≤ y∗ ŷ. So, quite naturally, y∗ ≥ 0.3

As onemight expect, whenX is linear, x∗ and y∗ will connect to local linearizations
of c0 and c1, respectively, at some point x ∈ X of special notice. This feature is taken
up first.

2 Shadow pricing

Suppose some y∗ ∈ Y
∗ valuates any resource bundle y ∈ Y. Construed as “price

vector”, y∗ might derive endogenously from the data of problem P(0) - like a shadow

2 Included are: arbitrage, scarcity, and shadow prices.
3 Section 3 adds explanation why, quite naturally, y∗ ≥ 0.
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(see Proposition 4.2). In that case, y∗ may attest to local optimality of x (see Propo-
sition 3.2). Alternatively, y∗ could be given exogenously (see Proposition 5.1 and its
corollary). Anyway, for now, just imagine that whatever y ∈ Y can be “bought” at
linear cost y∗y ∈ R.

Until other notice, let X be any real linear space, maybe of infinite dimension. It’s
helpful then to coach some arguments as though they derive from linear programming.
So, construe x ∈ X as some activity plan, recorded in coordinate-free manner. For any
linear functionals ai ∈ X

∗, i ∈ I , the operator A := [ai ] - viewed as “matrix with ai
in row i”4 - maps activity space X linearly into resource space Y, by

χ ∈ X �→ Aχ := [aiχ ]i∈I ∈ Y. (9)

Conversely, the adjoint or transposed operator A∗, maps any resource price y∗ ∈ Y
∗

into a corresponding activity price x∗ = A∗y∗ := y∗A ∈ X
∗ by

χ ∈ X �→ x∗χ = (A∗y∗)χ := y∗(Aχ) ∈ R; (10)

see Example 4.1.
Now, as long as X remains linear, and ci is Gâteaux differentiable, let ai = c′

i (x)
denote its derivative at some fixed x ∈ X, and view A = [c′

i (x)]i∈I =: c′
1(x) as a

linear operator from X to Y (9).
Two prices x∗ = r ′(x) ∈ X

∗ and y∗ = λ = (λi ) ∈ Y
∗+ might then ”rational-

ize”choice x if x∗ = A∗y∗ = y∗A, meaning r ′(x) = λc′
1(x). That is, λ tests x for

local optimality in so far as marginal revenues should equal marginal costs. Put dif-
ferently: all profit margins must be nil in that ∂xπ(x, λ) = 0 (2). Equivalently, by (3),
∂x L(x, λ) = 0.

Along the same line, declare factor i scarce, and the constraint ci (x) ≤ 0 active or
binding, iff ci (x) = 0 - as is signalled by writing i ∈ I (x). In economic, formal or
intuitive terms, i /∈ I (x) ⇐⇒ ci (x) < 0 ⇐⇒ factor i is disposable and overabundant.
Hence, by endogenous valuation, it commands unit price λi = 0. Together these
considerations motivate the following:

Definition 2.1 (Lagrange multipliers as shadow prices ). With X linear and each ci
differentiable , the vector λ = (λi ) ∈ R

I =: Y
∗ is declared a Lagrange multiplier

or shadow price at a local optimum x to problem P(0) iff

λ ≥ 0, ∂x L(x, λ) = 0, and λi ci (x) = 0 for each i ∈ I . (11)

Thus what emerged here, merely by shadow pricing (of resources), are the usual
Karush-Kuhn-Tucker necessary optimality conditions (11) that apply to Lagrangian
(3) for (Gâteaux) differentiable instances of problem P(0); see also Akgül (1984),
Bertsekas and Ozdaglar (2002), Jie and Yan (2021).

Many routes lead to (11). Included are: differential calculus, theorems of the alterna-
tive, variational analysis and separation of (convex) sets. The new avenue or narrative,

4 Construed as “matrix”, A is of dimension #I × dimX (possibly of infinite dimension). In particular,
when #I =: m and X = R

J , with #J =: n, it obtains the standard I × J format A = [ai j ] of size m × n.
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220 S. D. Flåm, J.-J. Rückmann

chosen here, differs from the said ones by invoking pricing - or a two-person non-
cooperative game Osborne and Rubinstein (1994): Primal problem P(0) is embedded
into a market-like scenario in which some dual (exogenous and) self-interested player
sets prices - be these shadows or not. Moreover, if prudent, the latter party should not
permit arbitrage (see Sect. 5).

Multipliers need not be unique. But they form a closed convex set, endogenous to
problem P(0), and depending on x . Reflecting the decision-maker’s wish to ascertain
or test local optimality at x ∈ X(0), his pricing ought comply with two time-honoured
maxims - each standing on axiomatic, empirical, intuitive or theoretical grounds:

• First, comes the principle of equimargins: For efficiency, marginal revenues must
equal corresponding marginal costs : r ′(x) = λc′

1(x).• Second, if x is feasible, no overabundant input has positive price:

ci (x) < 0 �⇒ λi = 0.

Put differently: unless a resource be scarce, it cannot command any user cost.
Consequently, by shadow pricing:

• Total input cost should be nil:
∑

i∈I λi ci (x) = 0.5

Clearly, if r ′(x) = 0, all this means that problem P(0) isn’t really constrained
at x . Then, trivially λ = 0 fits as shadow price. This particular instance merits
minor interest. So, henceforth suppose c′

0(x) �= 0 whenever x is locally optimal
for P(0). Then, every such solution to problem P(0) is indeed constrained, and
each reasonable λmust be non-zero. Put differently, in purely verbal and economic
terms:

• No reasonable shadow pricing justifies absence of marginal costs. Restated in
mathematical terms:

No nonzero(λi )i∈I (x) ≥ 0 satis f ies
∑

i∈I (x)
λi c

′
i (x) = 0. (12)

(12) is the Mangasarian-Fromowitz constraint qualification–to which we shall
return below.

For the rest of this section and the entire subsequent one, let the space X be Euclidean
or Hilbert–or more generally, reflexive Banach.6 On this premise, what does absence
of shadow prices imply?

For argument, what comes next is a theorem of alternatives 7, in a form which puts
prices next to geometry:

Farkas lemma (1902)(shadow prices versus eventual improvement). For any x ∈
X, either there is a shadow price λ (11) or some input bundle d ∈ X gives

r ′(x)d > 0 and c′
i (x)d ≤ 0 f or every i ∈ I . (13)

5 Already captured by (11), this condition is calledcomplementarity.
6 When the criteria ci are continuously differentiable, see (Bonnans and Shapiro 2000, Section 3.1.1)
which drops the assumption that X be reflexive.
7 Such theorems are stated for Euclidean setting e.g. in Borwein and Lewis (2000). Extension of the Farkas
Lemma to locally convex Hausdorff spaces is found in Fan (1968).
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Inequality r ′(x)d > 0 ensures that a sufficiently small step s > 0 along d gives
greater revenue: r(x + sd) > r(x). At the same time, c′

i (x)d ≤ 0 indicates, but does
not generally guarantee, that ci (x + sd) ≤ ci (x). But at least, some purchase along
d appears worthwhile - and, indeed, so it is granted the following property: call ci
locally affine-like at x iff

c′
i (x)d ≤ 0 �⇒ ci (x + sd) ≤ ci (x) f or su f f iciently small step s > 0. (14)

Given affine-like constraints, inequalities (13) already sheds light on the special nature
of linearly constrained programs. The proof of the following is left to the reader.

Proposition 2.1 (on locally affine-like binding constraints). Let all ci , i ∈ I , be
continuous here. If (13) holds, with ci locally affine-like (14) at x ∈ X(0) for
each i ∈ I (x), then adjusting resource use along direction d is feasible and strictly
improving in that

x + sd ∈ X(0) and c0(x + sd) < c0(x)

for sufficiently small step-size s > 0. In particular, if each constraint function ci is
affine, then each locally optimal solution x to problem P(0) comes with a shadow
price. ��

3 Local optimality, efficiency and arbitrage

Apart from locally affine-like constraints, as in Proposition 2.1, when is direction
d (13) feasible? For that purpose, recall a chief theorem on alternatives, phrased in
economic jargon here:

Gordan’s theorem (1873)8:Given a non-empty, finite set of price vectors ai ∈ X
∗,

i ∈ I, exactly one of the following two systems has a solution:

Either some bundle d ∈ X has negative costs: aid < 0 f or each i ∈ I, (15)

or :
∑

i∈I
λi ai = 0wi th

∑

i∈I
λi = 1 and each λi ≥ 0. (16)

In particular, when ai = c′
i (x), and s > 0 is sufficiently small, (15) implies that

ci (x + sd) < ci (x) for each i ∈ I. If moreover, x ∈ X(0), I = {0} ∪ I (x), and each
ci , i /∈ I is continuous at x, that point cannot be locally optimal for problem P(0).
Indeed, a sufficiently small step s > 0 along d gives strict feasibility and strictly
reduced cost.

So, by Gordan’s theorem, for any locally optimal solution x to P(0), alternative
(16) must hold with I = I = {0} ∪ I . Equivalently, at each such point, regarding the
extended Lagrangian L0 (7), the Fritz John condition is in vigor:

8 Its proof in Borwein and Lewis (2000) is based on Proposition 2.1.7 there, essentially an application
of Ekeland’s variational principle for Euclidean setting, due to (Hiriart-Urruty 1996, Corollary 2.3.2). For
extension, see (Penot 2013, Corollary 1.92).
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There exists λ � 0 such that ∂L0(x, λ) = 0 and λi ci (x) = 0 ∀ i ∈ I . (17)

Clearly, (11) obtains from (17)whenλ0 > 0.Otherwise, consider the reduced index set
I = I (x).Then, for economic intuition, (16) implies that some proper pricing λ � 0 of
inputs annuls all marginal costs: λc′

1(x) = 0. In this case, x ∈ X(0) and ∂xπ(x, λ) = 0
would imply r ′(x) = 0, and thereby tell that P(0) appears non-constrained. So, as
argued earlier, for economic realism, suppose that whenever x is locally optimal for
P(0), no proper input pricing makes all marginal costs nil. In this way, with a view
towards (16), an equivalent restatement of (12 ) comes up:

no(λi ) ≥ 0 solves
∑

i∈I (x)
λi c

′
i (x) = 0 and

∑

i∈I (x)
λi = 1. (18)

From (17) and (18) follows forthwith:

Theorem 3.1 (the necessary KKT condition) Suppose problem P(0) admits a local
optimum x at which (18) holds, then (11) is solvable for at least one shadow price λ.

��
By Gordan’s theorem, (18) amounts to the Mangasarian-Fromovitz constraint

qualification at x Mangasarian and Fromovitz (1967):

Some direction d ∈ X gives c′
i (x)d < 0 f or each i ∈ I (x). (19)

Then, provided each ci , i /∈ I (x), be continuous, a minor move along d ensures strict
feasibility.

Remark 3.1 (on constraint qualifications). Granted (18), each “binding gradient”
c′
i (x), i ∈ I (x), must be non-zero - unlike Ex.1.1. Moreover, those vectors cannot
be positively dependent. A fortiori, it would suffice that they were linearly indepen-
dent.

Conversely, for a Slater condition, if each binding ci , i ∈ I (x), is locally starshaped
at some strictly feasible point x0 in that each ci (x0) < 0, and

ci (ρx
0 + (1 − ρ)x) ≤ ρci (x

0) + (1 − ρ)ci (x) = ρci (x
0) < 0 = ci (x)

for sufficiently small ρ ∈ (0, 1), then

ci (x + ρ(x0 − x)) − ci (x)

ρ
≤ ci (x

0) < 0.

Hence, if each ci is continuous, letting ρ → 0+, (19) holds with d = x0 − x . ♦

Negation of (18), alongside (11), precludes that c′
0(x) = 0. Put differently: if Fermat’s

classical optimality condition c′
0(x) = 0 fails for each locally optimal x ∈ X(0), add

some compromise λc1 = ∑
i∈I λi ci to criterion c0. Granted shadow pricing (11), the

said compromise restores Fermat’s optimality condition, but this time for L(·, λ).
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As upshot so far: it imports, quite naturally, that the objective of problem P(0) not
be fully detached from its constraints. Then, the decision-maker, while worshipping
own profit (2), might price resources to test for local versions of arbitrage or Pareto
efficiency:

Proposition 3.1 (on shadow pricing versus arbitrage). Let all ci , i ∈ I , be continuous.
Suppose that x admits no shadow price (11) and that qualification (19) holds. Then x
cannot be locally optimal for problem P(0). In fact, there exists a direction d along
which any price y∗ ≥ 0 on resources, with active part y∗(x) := [y∗

i ]i∈I (x) �= 0, offers
local pure arbitrage. That is, strictly more revenue can be had at negative cost:

r(x + sd) > r(x) and y∗c1(x + sd) < 0 f or su f f iciently small s > 0. (20)

Proof Let dM be a direction which suits (19), and dF one which suits (13). Then,
provided δ > 0 is sufficiently small, d := δdM + dF becomes a feasible direction for
which r ′(x)d > 0. In addition, all ci (x + sd) < ci (x) for small enough s > 0. So,
(20) follows. But then clearly, x cannot be the locally optimal for P(0). ��

When valid at some locally minimal solution x to P(0), qualification ( 19) entails
two important facts: first, the set of shadow prices is non-empty; second, that set must
be bounded:

Proposition 3.2 (on bounded shadow prices). Let x be a locally optimal solution to
problem P(0). Then the shadow prices λ (11) form a non-empty compact set iff (19)
holds.

Proof was first given by Gauvin Gauvin (1977). Diethard Klatte Klatte (2022) gener-
ously gave us the following simpler argument9: Consider the closed convex set

�(x) :=
⎧
⎨

⎩λ = (λi ) ∈ R
I (x)
+

∣∣∣∣∣∣
c′
0(x) +

∑

i∈I (x)
λi c

′
i (x) = 0

⎫
⎬

⎭

of reduced KKT multipliers. It’s non-empty by Theorem 3.1. (18) implies that the
recession cone 0+�(x) = lims→0+ s�(x) reduces to {0} . Hence �(x) must be
bounded; see (Rockafellar 1970, Theorem 8.4), or (Schrijver 1986, Section 8.2). ��
Hitherto P(0) was presented as the planning problem of an isolated, single decision-
maker - maybe somewhat single-minded. It appears fitting therefore, to play down
eventual egocentricity, methodological individualism or narrow-mindedness on his
part. Accordingly, concluding this section is a complementary view on problem P(0).
Accommodated right here is an extended ensemble I of different agents or objectives,
each represented by a corresponding utility criterion ui : X → R. Let label 0 indicate
any selected member of I ( = {0} ∪ I ).

9 Proofs are also found in (Klatte and Kummer 2002, Lemma A.7) as well as in (Bonnans and Shapiro
2000, Proposition 5.47) via Proposition 5.45 there.
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Given a benevolent planner, concerned with overall welfare of citizen ensemble
I–or a decision-maker who pursues improvement of multiple criteria ui , i ∈ I–he
would declare the profile of utility levels (ui ) ∈ R

I locally Pareto efficient at x iff the
program:

maximize u0(x) subject to ui (x) ≥ ui for each i ∈ I , (21)

has x as locally optimal solution with u0(x) = u0.

Proposition 3.3 (on multi-agent or multi-objective efficiency). Let x be any locally
optimal solution to problem (21) with u0(x) = u0. Then, under (19), with ci :=
−ui + ui , there exists a profile of welfare weights λ = (λi )i∈I ≥ 0 with λ0 �= 0 such
that

∑

i∈I
λi [ui (x) − ui ] = 0 and

∑

i∈I
λi u

′
i (x) = 0,

with λi = 0 whenever i ∈ I is strictly satisfied, meaning ui (x) > ui . ��

4 Lagrangian relaxation

So far, optimality condition (11) came up just by shadow pricing. Stepping back, this
section recalls that the Lagrangian itself also emerges via linear pricing of “right hand
side resource” vectors y ∈ Y.

For greater generality, andwith a view towards discrete optimization where L plays
a central role Schrijver (1986), henceforth: X needs no longer be a vector space. Con-
sequently, from here onwards, we cannot require that any ci , i ∈ I, be differentiable.

Further, allowing an extended-valued cost criterion c0 : X → R ∪ {+∞}, its non-
empty effective domain {x ∈ X | c0(x) ∈ R } =: domc0 may well be a strict subset
of X. So, hereafter, instead of (4) as feasible set, use

X(y) := {x ∈ domc0 | c1(x) ≤ y } .

In addition, suppose that any locally optimal solution x to problem P(0) is a global
optimum - maybe after shrinking domc0. Accordingly, being concerned now with
saddle-points, what is sought is a set � of shadow prices or multipliers, independent
of x .

Since y∗0 = 0, the option to purchase some suitable “perturbation” y ∈ Y, at
expense y∗y, brings no harm or hurdle. In fact, such an opportunity opens a genuinely
relaxed problem:

R(y∗) : minimize c0(x) + y∗y subject to c1(x) ≤ y.

R(y∗) comprises two decisions: primal choice x ∈ X alongside “perturbation” y ∈ Y.
Note that infR(y∗) = −∞ unless y∗ ≥ 0.Also note a simple economic feature, easily
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overlooked: Problem R(y∗) denominates objective c0(x) and perturbation cost y∗y
in one and the same “currency”. Moreover, the two terms, being measured by the
same rod, enter in additive separable manner. Either is accounted for by some “money
commodity” or by letting the value of one term denominate the other.

For any x ∈ X and non-negative y∗ ∈ Y
∗ , using the minimal resource bundle

y = c1(x) inR(y∗), gives the cheapest resource cost

inf
{
y∗y | c1(x) ≤ y

} = y∗c1(x) (22)

across Y, and it ensures feasibility of x . Thus, Lagrangian L (3) emerges once again:

Proposition 4.1 (Lagrangian and relaxation). For any λ = y∗ ≥ 0, the relaxed prob-
lemR(y∗) reduces and simplifies by (22) to

minimize L(x, λ) = c0(x) + λc1(x) with respect to x ∈ X. (23)

If, for fixed x, L(x, λ) is “maximized” with respect to λ, it follows from

sup
λ≥0

λc1(x) =
{
0 whenx is f easible f or P(0), and
+∞ otherwise,

that complementarity condition λc1(x) = 0 holds for each pair (x, λ) of interest.
Thus, total resource cost is nil, and

sup
λ≥0

inf
x∈X L(x, λ) ≤ inf P(0) := c(0) = inf

x∈X supλ≥0
L(x, λ). (24)

The inequality in (24) reflects that the optimal value of R(y∗) is, of course, less than
or equal to c(0) for each y∗ ≥ 0.

Instead of linear charge for resource use, the decision-maker might be debited by
some non-linear penalty function y ∈ Y �→ λ(y) Bertsekas and Ozdaglar (2002),
Jie and Yan (2021). Anyway, what stand out are those “multipliers” λ(·) ≥ 0, if any,
which bring cost down to c(0):

Definition 4.1 (Lagrange multipliers). For general decision space X , any λ ≥ 0 such
that

c(0) = inf P(0) = inf
x∈X L(x, λ) (25)

is called a Lagrange multiplier. Together these constitute a set � ⊆ R
I+.

Proposition 4.2 (Lagrange multipliers as turned-around subgradients). With general
decision space X, λ = y∗ is a Lagrange multiplier (25) iff it’s a negative subgradient
of best cost (5), meaning: −λ ∈ ∂c(0) (6).
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Proof For any fixed pair (y∗, y) ∈ Y
∗+ × Y, (5) implies that

c(y) + y∗y = inf
x∈X

{
c0(x) + y∗y | c1(x) ≤ y

}
.

In particular, choosing y∗ = λ as Lagrange multiplier (25), and keeping whatever
y ∈ Y on the left hand side, it follows from (24) that

c(y) + y∗y ≥ inf
x∈X[ inf

ŷ∈Y
{
c0(x) + y∗ ŷ

∣∣c1(x) ≤ ŷ
}] = inf

x∈X L(x, λ) = c(0).

Consequently, −λ ∈ ∂c(0) (6). The converse inclusion ∂c(0) ⊆ −� is straightfor-
ward.10 ��
Example 4.1 (Linear programming and multipliers as dual solutions). Returning
briefly to a vector space X, let ai ∈ X

∗ and ci (x) := ai x − y0i for i ∈ I . Given
linear objective c∗

0 ∈ X
∗ and Ax := [ai x], consider the primal program P(y):

c(y) := inf
{
c∗
0x

∣∣∣ Ax ≤ y0 + y
}

.

The corresponding dual program:

sup
y∗

inf
x

L(x, y∗) = sup
y∗

inf
x

{
c∗
0x + y∗(Ax − y0 − y)

}

= sup
y∗

inf
x

{
(c∗

0 + A∗y∗)x − y∗(y0 + y)
}

= sup
y∗

{−y∗(y0 + y) if c∗
0 + A∗y∗ = 0,

−∞ otherwise,

has y∗ as optimal solution iff c(y) is finite and −y∗ ∈ ∂c(y). Indeed, this follows
by subtracting c(y) = −y∗(y0 + y) from c(ŷ) ≥ −y∗(y0 + ŷ). In particular, for
y = 0, it obtains that −y∗ = −λ ∈ ∂c(0); see also Akgül (1984), Gauvin (2000) and
Proposition 4.2.

So, when is c(0) < +∞? Put differently: when does the linear inequality system
ai x ≤ y0i , i ∈ I , admit a solution x ∈ X(0) (4)? Ky Fan Fan (1968) studied this
question for arbitrary index set I , finite (as here) or infinite. Following the proof of his
Theorem 1, let X be locally convex, Hausdorff and reflexive. Then feasibility obtains
iff (0,−1) does not belong to that closed convex cone spanned by (ai , y0i ) ∈ X

∗ × R,

i ∈ I .For elaborations on finite I , or for sup {x∗x : x ∈ X(0)}with any fixed x∗ ∈ X
∗,

see Fan (1968). ♦

As seen above, and below inSect. 5, it’s desirable that ∂c(0) be bounded.But already
indicated byExample 1.2, andmore generally here, suppose some (exogenous resource
price) y∗ resides outside −∂c(0)–whence doesn’t derive directly from problem P(0).
Then, some resource trade might be worthwhile:

10 Granted a shadow price, problem P(0) is calm Bonnans and Shapiro (2000), meaning ∂c(0) �= ∅.
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Lemma 4.1 (on exogenous pricing). Let a cost function c : Y → R ∪ {+∞} be
locally convex11 near a reference point y with non-empty compact subdifferential
∂c(y) (6). Then, for any price y∗ ∈ Y

∗, direction d ∈ Y, and sufficiently small s > 0
,

c′(y; d) + y∗d < 0 �⇒ c(y + sd) + y∗(sd) < c(y).

When y∗ /∈ −∂c(y) , such a direction d exists, and a sufficiently small step s > 0
along d, bought for expense y∗(sd) = sy∗d, reduces cost below c(y) (5).

Proof From c(y+ sd) = c(y)+ sc′(y; d)+ o(s) and c′(y; d)+ y∗d < 0 follows that
for sufficiently small step s > 0,

c(y + sd) + y∗(sd) ≈ c(y) + s
[
c′(y; d) + y∗d

]
< c(y).

Note that c′(y; d) = max ∂c(y)d := max {y∗d | y∗ ∈ ∂c(y) } =: γ. So, for suitable
direction, take any d which separates y∗ strictly from −∂c(y) in that y∗d < −γ . ��

Returning now to the inequality in (24), it begs two questions: First, when is
supλ≥0 inf x∈X L(x, λ) = inf P(0)? This topic is addressed in Sect. 6 with a view
towards generalized convexity conditions - and two-person games of Stackelberg sort
Osborne and Rubinstein (1994).

Second, shouldn’t (endogenous) shadow prices be compared somehow to (exoge-
nous) market quotations, if any? This question is taken up next.

5 Arbitrage

Part of problem P(y), y = 0, is to valuate nearby (right hand side) resource vectors
y ≈ 0. In fact, that’s a major aim behind standard Lagrangian duality.12 But valuation
is also the sine qua non formanifold othermechanisms (and institutions)–say, auctions,
exchanges or markets - these residing beside or beyond problem P(0).

Indeed, few optimization problems come fully detached from exogenous transac-
tions and related pricing. To indicate here how and why, consider direct deals between
two interlocutors. One is the decision-maker behind problem P(0)–construed say, as
Robinson Crusoe (RC) on his island. The other is a merchant who sails by and cries
out:

“I sell resource i ∈ I at unit price ȳ∗
i but buy at unit price y∗

i
≥ 0, both in gold.”

Reasonably, to avoid self-inflicted loss, the said merchant precludes arbitrage
LeRoy and Werner (2001) with ȳ∗

i ≥ y∗
i
. Together these prices define a box Y ∗ :=


i∈I [y∗
i
, ȳ∗

i ].
11 Let δ : Y → {0, +∞} be zero on a convex neighborhood around y, and +∞ elsewhere. Then c is
locally convex near y iff c + δ is globally convex for some such neighborhood. Then, by ∂c(y) is meant
∂[c + δ](y).
12 Another is to assist discrete or non-convex programming Schrijver (1986), Wolsey and Nemhauser
(1999).
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For the rest of this section, suppose RC invokes a non-empty compact set � of
personal price vectors, rationalized by the requirement that

∂c(0) ⊆ −�. (26)

Then, ifRC contemplates some purchase of resource i, he prudently bids no unit price
above

λi := inf {λi | λ ∈ � } . (27)

By contrast, if considering some sale of that resource, he ought ask no smaller unit
price than

λ̄i := sup {λi | λ ∈ � } . (28)

Being prudent and consistent, by (27) and (28), he operates with bid-ask spread
λ̄i − λi ≥ 0 for input i . Now, if he can trade "resources" at exogenous prices not
in � (26), that option embeds his self-sufficient (autarky) problem P(0) into a more
attractive, market-like setting:13

Proposition 5.1 (on market pricing and outside options). If resource i be supplied at
unit price ȳ∗

i < λi (27), it’s worthwhile for the decision-maker to buy some amount.
Likewise, if y∗

i
> λ̄i (28), gain obtains by selling a bit of that resource.

Proof It suffices to consider the case ȳ∗
i < λi . Let direction d ∈ Y equal the i-th unit

vector (. . . , 0, 1, 0, . . .) to have by Proposition 4.2:

max
y∗∈Y ∗ y

∗d + c′(0; d) = ȳ∗
i + sup

{
y∗d

∣∣ y∗ ∈ ∂c(0)
}

≤ ȳ∗
i + sup {−λd | λ ∈ � }

≤ ȳ∗
i − inf {λd | λ ∈ � } = ȳ∗

i − λi < 0.

Now invoke Lemma 4.1 to conclude. ��
Beyond bilateral direct deals, consider next a multi-agent, multi-commodity market.
Denote by y∗b

i the unit price some participant bids upon demanding some amount of
resource i . Similarly, let y∗a

i be the unit price the same agent asks upon supplying
some amount of resource i . His quotations, if any, are construed as commitments.

A pure demander has y∗b
i finite but y∗a

i = +∞; a pure supplier has y∗b
i = −∞

and y∗a
i ∈ R. Unlike these, any participant who quotes both y∗b

i and y∗a
i as finite

numbers, can be construed as a broker or intermediary. Anyway, for own rationality,
everybody complies with y∗b

i ≤ y∗a
i .

Let ȳ∗
i bemaximal among individually posted bid prices y∗b

i . Likewise, let y∗
i
equal

the minimal ask price y∗a
i posted in the market. A bid-ask spread ȳ∗

i − y∗
i

> 0 cannot

13 For historical illustration, let the isle in question be England, the commodity be wheat, and use the Corn
Laws alongside the potato blight of 1845 as backdrop; see Cameron and Neal (2003).
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persist long; it invites and offers arbitrage, hence disappears quickly. Conversely,when
ȳ∗
i − y∗

i
< 0, market i remains inactive. Hence equilibrium prevails if quotations ȳ∗

i =
y∗
i

= y∗
i , i ∈ I , form a price vector y∗ = (y∗

i )which balances and clears themarket(s).
It reigns then the law of one price LeRoy and Werner (2001).

It merits mention that the economy at hand operates best when monetized. This
simply means that trade proceeds in goods for money (say, fiat bills or gold).14 The
next result derives directly from Proposition 5.1:

Corollary 5.1 (on problem P(0) andmarket equilibrium). Suppose the decision-maker
behind problem P(0) enters amarket for bundles y ∈ Y in which equilibrium prevails
at some price y∗ /∈ �. Suppose his traded volume be so small that y∗ isn’t affected.

If y∗
i < λi (27), he can profitably buy some amount of resource i . Likewise, when

y∗
i > λi (28), he may gain by selling a bit of that resource. ��
To synthesize these arguments, reintroduce the reference endowment y0 ∈ Y,

maybe not nil. Problem P(y0) has the same objective c0, but now constraint function
c1 − y0 in place of c1. Suppose the value function (5) has non-empty subdifferential
∂c(y0) (6). Clearly, resource trade changes y0 and thereby problem P(y0).Astep-wise
or continuous process t �−→ y(t) = y could emanate from y(0) = y0. By Lemma 4.1
it holds:

Proposition 5.2 (on continued trade). Resource trade ought continue as long as ∂c(y)
remains non-empty compact, and the price y∗ /∈ −∂c(y).

6 Two-stage, two-player games and the duality gap

It remains the question: when is

sup
λ≥0

inf
x∈X L(x, λ) = inf P(0)?

For that important issue, extended Lagrangian L0 (7) needs some qualification so as to
hold the leading multiplier λ0 strictly away from 0. By contrast, standard Lagrangian
L (3) may accommodate an unbounded multiplier set, but it fixes λ0 > 0.

The best of both worlds would obtain if the set � of Lagrange multipliers (Def-
inition 4.1) already were bounded. Granted linear space X and differentiable data,
qualification (19) ensures precisely this property; see Proposition 3.2.

However, discrete optimization - amajor field for use of Lagrangians -must often do
without linear structure (and differentiability). On that premise, to conclude, presume
that� indeed be non-empty compact and convex. This hypothesis facilitates discussion
of game equilibrium - and of the inequality in (24).

For that discussion, view Lagrangian (3) here as formalizing a two-person, non-
cooperative game. To wit, a primal player P chooses "activity" or "strategy" x - in

14 Of course, direct exchangequid pro quo is allowedbut seen as exceptional; typically, prices are pecuniary.
It falls outside the scope of this paper to discuss the nature and constructive role of money; see Flåm (2021)
and references therein.
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some space X, not necessarily linear - to minimize operating cost c0(x) plus expense∑
i∈I λi ci (x) for resource use. Opposed and unfriendly to him is a dual player D who

sets price vector λ ≥ 0 to maximize own revenue
∑

i∈I λi ci (x) for resource supply.
(So, players’ "payoffs" don’t sum to zero.)

An extensive form of the game might allow play to unfold over two stages.15 It
imports then: who moves last and what does he know at that stage?

For one protocol, playerD chooses λ last, already knowing x . Hemay then hold his
interlocutor P to feasible choice and away from purchase of "resources", yet permit
best cost c(0) = inf P(0) = inf x∈X

[
supλ≥0 L(x, λ)

]
. This was already brought out

by the equality in ( 24).
In the turned-around protocol of play,D commits λ first, not knowing x .Maintaining

rational expectations, he fears or predicts a worst possible response x . So, up front, he
faces the dual problem

D : maximize inf
x∈X L(x, λ) with respect to λ ≥ 0.

Denote the optimal value by sup D. The last arrangement may leave player D disad-
vantaged: there could be a duality gap inf P(0) − sup D > 0. That entity measures
the last mover’s benefit by waiting out to play a two-person conflict.

How much benefit might P realize by waiting? When is that benefit nil? The first
question - in principle, fairly simple - bears on compactness of effective domains
and continuity of objectives. The second question is more demanding; it also invokes
convexity. Addressing only the second, it’s convenient, and it serves generality, to
allow that X isn’t necessarily some vector space. Also, let λ be a multiplier or price
regime of any sort. At this juncture, convexity enters, albeit generalized:

Definition 6.1 (convex-like functions). Given any non-empty set X , a function f :
X → R∪{+∞} is called convex-like iff for any x, x̂ ∈ X and real numbers ρ, ρ̂ ≥ 0,
satisfying ρ + ρ̂ = 1, there exists some x̄ ∈ X such that

f (x̄) ≤ ρ f (x) + ρ̂ f (x̂).

Any f : X → R ∪ {+∞} which has a minimum is convex-like. And clearly, when X
is a subset of a linear spaceX on which f is quasi-convex, that function is convex-like.

Now, instead of Lagrangian L (3), more generally invoke a bivariate function L :
X ×� → R for which it follows from Fan (1953), Kneser (1952) and Sions (1958)16:

Theorem 6.1 (on saddle value). Let X be any non-empty set and� a proper compact
convex subset of a topological vector space. Suppose a bivariate functionL : X×� →
R is convex-like in x and concave upper semicontinuous in λ. Then, there is a (lop-

15 This perspective was first opened by von Stackelberg (1934) on two-stage, leader-follower games
Osborne and Rubinstein (1994).
16 It appears that the concept convex-like was introduced by Sion Sions (1958); Fan Fan (1953) held on
to " convexity" also for the generalization.
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sided) saddle value17:

max
λ∈�

inf
x∈X L(x, λ) = inf

x∈X max
λ∈�

L(x, λ). (29)

If moreover, X is compact in some topology with L(x, λ) lower semicontinuous in x,
then some saddle point (x, λ) ∈ X × � realizes the mini-max value:

minL(X , λ) = L(x, λ) = maxL(x,�).

As usual, to pass from extremum to attainment, one needs appropriate compactness
and semicontinuity.

Finally, to close the circle, returning to Lagrangian L (3), a main concern through-
out was compactness (and concavity) in multipliers:

Corollary 6.1 (on saddle value of the standard Lagrangian). Here L= L (3) . Let X
be any non-empty set,Y a linear topological space, c1 a mapping from X intoY , and
� a proper compact convex subset of the dual space Y

∗ . Suppose L(·, λ) : X → R

attains a minimum for each fixed λ ∈ �. Then, (29) holds.
In particular, if X is compact in some topology with L(x, λ) lower semicontinuous

in x, then there exists some saddle point (x, λ) ∈ X × �.

7 Conclusion

Lagrangian (3) comes up in optimization, continuous and discrete, as well as in two-
player, non-cooperative games. Either setting begs interpretation of multipliers as
endogenous prices, fully synthesized within the problem at hand. In this optic, they
had better exist and be bounded.Moreover, they ought competewell against exogenous
prices, quoted in outside markets.
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