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Abstract

The measurement of perfusion and filtration of blood in biological tissue give rise to impor-

tant clinical parameters used in diagnosis, follow-up, and therapy. In this paper, we address

techniques for perfusion analysis using processed contrast agent concentration data from

dynamic MRI acquisitions. A new methodology for analysis is evaluated and verified using

synthetic data generated on a tissue geometry.

Author summary

Accurate knowledge of tissue perfusion is crucial for proper diagnostics and treatment of

several medical disorders. Traditional methods based on medical imaging are fast but usu-

ally lack precision and robustness. In this paper, we address methodology to develop bet-

ter diagnosis and treatment strategies for malignant tumors and stroke where blood

perfusion may be altered. In our work, mathematical models for estimating perfusion are

calibrated using magnetic resonance imaging (MRI) data, and more accurate representa-

tions of tissue parameters are provided. This methodology is a step towards minimal inva-

sive and individually tailored diagnosis and treatment. We demonstrate the methodology

with a twin experiment using models of different complexity for generating data and esti-

mating the tissue parameters. Both models are based on a mathematical description of

how fluids flow in a porous medium, but the data-generating model uses higher resolution

and a network representation of blood vessels. The calibration of unknown tissue parame-

ters is done using a statistical framework, and the choice of methodology is motivated by

applications from sub-surface reservoir characterization.
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Introduction

Accurate estimates for blood perfusion are of high importance in clinical applications. Perfu-

sion imaging is used in treatment planning for stroke [1], but also for clinical applications

related to the staging of cancer [2].

Medical image acquisition techniques like computerized tomography (CT), magnetic reso-

nance imaging (MRI), or positron emission tomography (PET), can all be applied in a

dynamic setting where the evolving distribution of an injected contrast agent is gathered

together as a temporal sequence of images. Quantitative tissue characterization (e.g., blood

perfusion) from such data is traditionally performed locally by applying tracer-kinetic method-

ology [3] to a single region of interest (ROI) or a voxel at a time. While these approaches have

advantages in terms of computational cost, they are generally considered to have certain sys-

tematic weaknesses and the resulting estimates will typically lack robustness in terms of accu-

racy and reproducibility, see e.g., [4–6].

In the current work, we clearly distinguish between flow and perfusion and understand per-

fusion to be the delivery of blood to the tissue, i.e. the capillary system. This is necessary to

account for both larger-scale transport of blood in an organ and micro-scale utilization of the

blood. The traditional models [3] do not have a spatial component. When applied to spatial-

temporal data one thereby implicitly assume well-defined boundaries and known contrast

inflow distribution given as an arterial input function (AIF) for any ROI. This is a valid

assumption if whole organs or large ROIs are considered but do not necessarily hold when

smaller ROIs, such as voxels are investigated. The observed contrast agent concentration for a

voxel or a small group of voxels will typically reflect an aggregation of flow in transit in the

arterial and/or venous system as well as flow relevant to the local tissue perfusion or extravas-

cular leakage. Local temporal deconvolution also neglects the potentially useful spatial struc-

ture of the images.

Advanced fluid models and numerical simulators developed for subsurface flow can be

used to predict the blood flow in organs [7]. Models for flow in reservoir rocks have a large

number of poorly known parameters. This is also the case when modeling blood flow in

organs, as exact tissue properties are impossible to know, and are also subject to large varia-

tions between different individuals [8]. Ensemble-based data assimilation is a popular

approach to improve models for fluid flow, based on available measurements (see e.g., [9]).

Iterative ensemble smoothers (see e.g., [10, 11]) have become the preferred approach for assis-

ted history matching of petroleum reservoir properties. Smoothers assimilate all data in one

single update step, and complicated and time-consuming restarts of the simulator are avoided.

However, a problem with ensemble-based methods is that with a limited ensemble size, spuri-

ous correlations between observations and model parameters are inevitable. This problem

increases with the size of the parameter space and the number of observations and leads to

unrealistic updates of model parameters, and underestimation of the posterior error covari-

ance, see [12]. As a remedy for this, localization may be introduced in order to limit updates of

parameters that we know are unlikely to influence a given observation. In our study we suggest

applying correlation-based localization, [13], where a threshold for the spurious correlations

between the model parameters and the concentration measurements are estimated using the

ensemble at the current iteration.

In this paper, we investigate the potential of using fluid flow models in combination with

an ensemble smoother for improved estimation of blood perfusion from dynamic MRI.

Unknown parameters in a porous media flow model (based on Darcy’s equation) are updated,

using a time sequence of spatially distributed contrast concentration data. Synthetic data are

generated using a hybrid-scale model where flow in the largest vessels is simulated using the
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Hagen-Poiseuille equation for laminar incompressible flow and the tissue flow is modeled

using Darcy’s equation. This hybrid-scale model is more complex compared to the pure

porous media model, and the goal is to reconstruct the blood flow and perfusion despite the

gap in complexity between the two models. The synthetic data have known, ground truth, per-

fusion maps. The methodology is tested on a domain representing a stretched-out frog tongue,

with known vascular structure. A comparison is made with the classical maximum slope

method and deconvolution based on singular value decomposition.

Methods

We introduce two different modeling approaches. One to be used in parameter estimation and

a more complex and computationally demanding to be used to generate synthetic data with

known ground truth. For the purpose of data assimilation, we consider a slightly modified ver-

sion of the traditional dual-porosity, dual permeability model (see e.g., [14]). This partitioning

of the geometry into multiple compartments allows an explicit characterization of the local tis-

sue perfusion as the local transfer flux between the compartments. Thus enabling a clear dis-

tinction between fluid contributing to local perfusion and fluid in transit through the voxel.

Second, we formulate a hybrid model where a Darcy-type porous media model is combined

with two network models representing arterial and venous flow respectively. This model will

be used in lieu of real observations to provide tracer-concentration data for the assimilation

exercise as well as ground truth perfusion maps. The hybrid model is developed and designed

to run on a fine grid and the equations are solved using an implicit solution strategy. This

allows for larger time steps which again is important to reduce the computational time.

Porous media model used for parameter estimation

We model a region of live tissue as a three-dimensional spatial domain O partitioned into four

compartments. Three of the compartments constitute the vasculature and are all represented

as porous media flow models. The fourth compartment represents the extravascular tissue,

and will for now be considered a passive tissue matrix confining our pore spaces.

Let the subscript i 2 {a, v} indicate the arterial or venous compartments respectively. As

detailed in [7], we consider two porous flow models each governed by the Darcy constitutive

relation ui = −μ−1Ki(x)rpi, the incompressibility conditionr � ui = qi, and conservation of

contrast agent �iðxÞ
@ci
@t þr � ðciuiÞ ¼ qic∗i . Here, u is Darcy velocity, μ is blood viscosity, K is

the permeability tensor, p is pressure, q is the source (if positive) or sink (if negative) term, ϕ is

porosity, and c is concentration. The departing (q< 0) fluid carries the overall concentration

of the compartment, i.e., c∗a ¼ ca, while in general the entering (q> 0) fluid carries a different

concentration, i.e., c∗v 6¼ cv. The concentration carried by the entering fluid c∗v equals c∗a shifted

by a capillary transit time. This procedure is explained in detail below. The arterial and venous

systems interact via a third porous medium, representing “small scale” vasculature. This com-

partment is given a simplified representation in terms of only a throughput conductivity Kc(x)

and a porosity ϕc(x), leading to fluxes

qðxÞ ¼ � qaðxÞ ¼ qvðxÞ ¼ m� 1KcðxÞðpaðxÞ � pvðxÞÞ ð1Þ

and transit times given by Δτc = ϕc(x)/q(x), i.e., pore volume per throughput volume rate.

While subscript c alludes to capillaries, the compartment will typically also capture other parts

of the microvascular network like arterioles and venules. Although the capillary compartment

per construction excludes any lateral transport, by regulating the throughput conductivity it

may induce such transport in the arterial or venous compartments.
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For model identification purposes, we consider eight parameter fields, three scalar porosity

fields ϕa, ϕv and ϕc, two anisotropic diagonal permeability tensor fields Ka and Kv, and one sca-

lar permeability field Kc. (For a 3D case there will be ten parameter fields.) The spatial domain

is divided into a given number of regions of interest, NROI, which gives a total number of 8 �

NROI parameters to estimate (10 � NROI in 3D). Observation of time-series for the contrast

agent concentration on each voxel will guide the identification process. As outlined above, the

local perfusion estimate for each voxel is taken to be the capillary flow rate q.

The spatial domain will be embedded in a regular Cartesian mesh, where selected cells will

be made inactive to map out more complex geometrical structures. Boundary conditions will

be a combination of pressure conditions and no-flow conditions, and the flow pattern will typ-

ically be driven by the difference between an arterial inlet pressure and a venous outlet pres-

sure. Using a five (seven in 3D) point finite volume stencil, we solve for pressures pa and pv,
velocities ua and uv, and transfer flux q.

To solve for the transport of contrast agent, we utilize that the formulation chosen for the

fluid flow obeys a discrete maximum principle. Thus any two voxels connected by a streamline

have a strict upstream-downstream relation and the contrast agent advection can be computed

sequentially voxel by voxel starting from the most upstream cell. We combine mass conserva-

tionr � u = q and time-of-flight τ, defined by u � rτ = ϕ intor � (τ u) = ϕ + τq, and consider

a bounded control region of volume V. We partition the mass rate, F, through the region

boundaries according to the flow entering (up) and leaving (dn):

tdnFdn � tupFup ¼ Vð�þ tqqÞ ð2Þ

Thus one attribute an average arrival time, τup for fluid entering, and an average departure

time, τdn for fluid leaving. Assuming the source term q to be uniform over the volume, the

associated average time τq will either carry an upstream value (q> 0) into a venular compart-

ment, or leave (q< 0) an arterial compartment with a value “somewhere”between τup and τdn.

For the computation in the current paper, we have lumped the transit times into a single quan-

tity for each compartment, and write Dtv ¼ V�v=Fdn
v for q> 0 (venular) and Dta ¼ V�a=Fup

a

for q< 0 (arterial). This essentially means that we consider the flow to enter capillaries at the

downstream end of an arterial compartment, and depart capillaries at the upstream end of the

venular compartment.

The contrast agent concentration is sampled at discrete times of uniform increment Δt, and

the advection of the discrete contrast vector is carried out in three steps related to the arterial,

capillary, and venous compartment respectively. Starting from the most upstream arterial

voxel, the upstream concentration cupa ðtÞ is shifted by transit time Δτa to obtain the down-

stream concentration cdna ðtÞ ¼ cupa ðt � DtaÞ. We also compute volume-averaged concentration

cvola ðtÞ, serving the dual purpose of arterial voxel concentration and input concentration for the

capillary compartment. For multidimensional domains, the upstream concentration cupa ðtÞ will

generally be a flux-weighted combination over several upstream neighbor connections, confer

the lumping process leading to Eq 2. Similarly, by shifting and averaging using the capillary

transit time Δτc, we obtain the capillary downstream concentration cdnc ðtÞ ¼ cvola ðt � DtcÞ and

the capillary volume average cvolc ðtÞ. For the venular compartment, we again start from the

most upstream voxel and for each voxel, we compute a lumped upstream concentration vector

cupv ðtÞ as a flux weighted sum over upstream neighbor connections and the out-flux cdnc ðtÞ from

the capillary compartment. Shifting by transit time Δτv yields the downstream concentration

vector cdnv ðtÞ ¼ cupv ðt � DtvÞ. Finally the venous volume average concentration cvolv ðtÞ is com-

puted, and combined into a total (including extravascular tissue) volume concentration for

each voxel cvoltotalðtÞ ¼ �acvola ðtÞ þ �ccvolc ðtÞ þ �vcvolv ðtÞ.
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A hybrid-scale flow model used to generate synthetic data

Here we consider a hybrid-scale model formulation, integrating one-dimensional network

flow with a two- or three-dimensional continuum model. Known ground truth parameter val-

ues are assumed for this model when generating synthetic data. We presented the full details of

this model in Hodneland et.al., [15], and here we will briefly recap some main points. Com-

pared with the pure Darcy formulation presented in the preceding section, the arterial and

venous compartments are now both augmented with flow networks representing visible arte-

rial and venous vessel structure respectively.

The nodes of each network are classified as interior, terminal, and root nodes. A single node

can have multiple roles. We associate a pressure value to each node location, and neighboring

nodes are connected by edges representing vessel segments. For each edge, we then have a

one-dimensional flux that is related to node pressures via the Poiseuille law. We impose a mass

balance condition at each node, requiring associated fluxes to satisfy net zero accumulation.

Each root node represents a cut-off for our region of interest, and we assign pressure bound-

ary conditions. Each terminal node represents a coupling to the associated continuum model,

and we considered the flux to be proportional to the pressure difference between the node and

the continuum at each node location. In order to provide for a smooth transition, a distribu-

tion function with finite support is centered at each location. We chose a distribution function

with finite support under the assumption that individual terminals cannot substantially pro-

vide large tissue slabs with blood but are rather local in nature. However, this assumption sug-

gests that the behavior of the tracer may become abrupt and discontinuous at certain points

where the support ends, which might not accurately represent the real-world scenario and

must be considered an approximation. In particular, for small support radii, i.e. small values of

� in [15, Eq 15], the use of a finite support function may lead to sharp fronts of the tracer. The

same approach is pursued in [16]. An alternative solution is to use a smooth function like a

Gaussian with infinite support and gradual decay, which means it can provide a more realistic

representation of transitions and gradients, but still be unphysiological in terms of maximum

range.

We combine the above with standard Darcy formulations for the arterial and venous con-

tinuums respectively, and introduce a coupling term between the two in terms of a flux pro-

portional to local pressure difference. We identify this flux as the perfusion supplying the local

tissue. We solve the total coupled formulation to obtain pressure and flux distribution across

the combined model. Based on the fluxes obtained, we model the advection of the contrast

agent. At each root node of the arterial network, we specify contrast concentration in the

entering bloodstream in terms of an arterial inflow function. At each terminal node, we again

apply the Gaussian kernel to obtain a smooth distribution of the entering contrast agent. Com-

pared with the previous section where we used an explicit approach for agent transport, we

here perform a fully implicit procedure based on a backward Euler discretization of the advec-

tion equation.

Bayesian inversion

The Bayesian method we use to assimilate tracer concentration data is introduced in [11]. This

methodology has proven to be robust and efficient when assimilating big amounts of data to

large-scale sub-surface reservoir models, see e.g., [17, 18]. The technique is based on a regular-

ized Levenberg-Marquardt method and iteratively searches for the minimum of an average

cost problem. The approach utilizes an ensemble of model parameters, where each member of

the ensemble is denoted mj, j = 1, . . ., N, and N is the ensemble size. The unknown parameters

are tissue properties such as transmissibility and porosity. Further, we denote the blood
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circulation model M; RNm ! RNd and the simulated concentration data are denoted

cj ¼MðmjÞ; j ¼ 1; . . . ;N. The vector cj contains concentration data at all points in time

where measurements are available and for all voxels in the discretized domain. In each voxel

the concentration is given by cvoltotal (see the ‘Methods’ section). The cost function of interest is

given by:

1

N

XN

j¼1

½ðco � cjÞ
TC� 1

c ðc
o � cjÞ þ gðmj � mb

j Þ
T ~C � 1

m ðmj � mb
j Þ�; ð3Þ

where co is the tracer concentration data and mb
j are given background (or best guess) parame-

ters (defined below). The second term in the cost function is the regularization part, and γ is a

(user-defined) weight parameter. The data errors are assumed to be Gaussian-distributed with

zero mean and covariance Cc. The matrix ~Cm is the sample covariance of the background

parameters. The cost function can be derived from the theory for Bayesian inference, which

states that the posterior distribution for a random variable, given knowledge of data, is propor-

tional to the prior probability distribution times the likelihood distribution, i.e., p(m|d)/ p(m)

p(d|m). Given assumptions about Gaussianity for the distributions, the first term in the cost

function comes from the likelihood part and the second (regularization) term is a consequence

of the prior part of Bayes’ formula, and prevents overfitting of (noisy) data. For more details,

we refer to [19, 20].

The above problem is solved iteratively and, without going into details (see [11] for a full

method description), we state the update formula for ensemble member j at iteration i + 1:

miþ1
j ¼ mi

j þ SimðS
i
cÞ

T
½SicðS

i
cÞ

T
þ ðN � 1ÞgiCc�

� 1
� ½co � cij þ ϵj�; j ¼ 1; . . . ;N; ð4Þ

where mi
j � mb

j is adaptively updated. Initially, these parameters are randomly drawn from a

user-defined distribution (later referred to as the initial ensemble). The columns in the matri-

ces Sim and Sic are given by mi
j � m i and cij � Mðm iÞ, respectively, where mi is the sample

mean of the parameter vectors at iteration i. The perturbation terms ϵj are samples from the

data error distribution. Similar to the background parameters, the weighting term γi is updated

for each iteration. This parameter is increased if the average data mismatch increases, other-

wise the parameter is reduced. Generally, large values for γi result in smaller steps that are suit-

able for highly nonlinear problems, and small values for γi implies larger steps that are suitable

to problems that are closer to linear. In our application the values are selected based on experi-

ence with this specific problem, but also based on experience with the estimation of parameters

in Darcy models in general. In addition, a stopping criteria is selected such that the data mis-

match of the final solution is of the same magnitude as the noise level.

Localization. As mentioned in the introduction, inaccurate correlations between parame-

ters and measurements make it necessary to restrict the updates of parameters. The inaccurate

correlations are due to sampling errors that comes from the limited ensemble size we use to

estimate correlation matrices. For example, concentration data in a particular voxel is likely to

have a low correlation with tissue properties in voxels that are far from that data position.

Since sampling errors in the correlation matrices that are estimated as part of Eq 4 are inevita-

ble, localization will limit unrealistic updates far from the data positions. We pursue a correla-

tion-based localization technique [13], which is best described by formulating the update step

(Eq 4) as

miþ1
j ¼ mi

j þ AiDcij; j ¼ 1; . . . ;N; ð5Þ
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where

Ai ¼ Simð~S
i
cÞ

T
½~S i

cð
~S i
cÞ

T
þ ðN � 1ÞgiINd

�
� 1C� 1=2

c ; ð6Þ

Dcij ¼ ½c
o � cij þ ϵj�; ð7Þ

~S i
c ¼ C� 1=2

c Sic and INd
is the Nd-dimensional identity matrix.

Correlation-based localization involves the computation of a correlation matrix between

observations and model parameters. In order to avoid huge memory requirements, we use a

truncated singular value decomposition (TSVD) to project the data onto a subspace consisting

of the dominant singular vectors. Applying TSVD to ~S i
c gives

~S i
c � Ui

pW
i
pðV

i
pÞ

T
; ð8Þ

where p< N is the number of singular values after truncation. The matrix Up 2 R
Nd�p contains

the left-singular vectors, Wp is a diagonal matrix composed of the singular values, and Vp 2

RN�p
contains the right-singular vectors. We keep 99.9% of the sum of descending singular val-

ues. Substituting Eq 8 in Eq 5 gives

miþ1
j ¼ mi

j þ
~AiD~c ij; j ¼ 1; . . . ;N; ð9Þ

where D~cij ¼ ðU
i
pÞ

T
Dcij is the projection of the difference between simulated and real measure-

ments, onto a subspace consisting of the dominant directions contained in Up. The matrix ~Ai

is the Kalman gain matrix after data projection. Introducing a tapering matrix Λi, we define

the update step

miþ1
j ¼ mi

j þ Λi
� ~AiD~cij; j ¼ 1; . . . ;N; ð10Þ

where � denotes the matrix Schur product. The tapering matrix is either 1 or 0, and is (at a

given iteration i) computed based on information about correlations between the projected

data innovations (D~cij) and the model parameters (mi
j). The details for computing the tapering

matrix are not included here, and we refer to [13] for a full description. Examples of localiza-

tion areas are given below.

Workflow

We summarize the methodological description with a schematic workflow, Fig 1. First, an ini-

tial ensemble must be specified, based on prior knowledge about the tissue or organ that is

Fig 1. Schematic workflow for the simulation and update steps.

https://doi.org/10.1371/journal.pcbi.1011127.g001
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investigated. The ensemble is usually randomly sampled from statistical probability distribu-

tions. Next, the iterative ensemble smoother is run, where execution of the forward circulation

model and parameter updates are done alternately. The update part requires measurements as

input, which is generated synthetically in our application. Finally, after the iterative smoother

has converged and posterior parameters are obtained, the perfusion is returned from a final

execution of the circulation model.

Results

In the current work, we illustrate the methodology on a two-dimensional problem. The exam-

ple is based on an image of a frog tongue found in the book by Cohnheim [21], see Fig 2. The

frog tongue is stretched and pinned to the surface at six points so that the thickness is suffi-

ciently small for visual identification of major arteries and veins. The dimension of the domain

we have set to be 33 mm in the x-direction, and 40 mm in the y-direction. This data has the

advantage of being truly 2D but still biologically relevant. Selecting a 2D slice from a 3D geom-

etry will not be sufficient to account for out-of-plane fluxes. The measurements are syntheti-

cally generated using the hybrid-scale model, and the unknown parameters are estimated

using the porous media model. The code and data are available at [22].

With frequent sampling of data in time and space, the amount of data would be excessive.

Therefore, only a fraction of the data is used. Since time-correlations for data errors are hard

to accurately specify (although for a different scientific research area, a useful discussion

regarding time-correlated data errors can be found in [23]), an algorithm for finding a reason-

ably reduced set of data is designed. The algorithm is designed to use a fraction of the points in

Fig 2. Vascular network for a stretched frog tongue. Arteries are red, and veins are blue. The gray color represents

the tongue tissue. The inlets and outlets are at the lower edge.

https://doi.org/10.1371/journal.pcbi.1011127.g002

PLOS COMPUTATIONAL BIOLOGY Estimation of perfusion using MRI-data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011127 October 2, 2023 8 / 21

https://doi.org/10.1371/journal.pcbi.1011127.g002
https://doi.org/10.1371/journal.pcbi.1011127


time (i.e., it uses whole images for the selected time points). In the case study described below,

we decided to use one-tenth of the available time points. In our case, the hybrid-scale model is

sampling data every second for a time interval of 150 seconds. To select the time points we

form one vector xi for each time point which we consider as a stochastic variable. Then we

form the covariance matrix C = Cov(xi, xj) where 1� i, j� nt and nt = 150 denote the number

of time points where data are sampled. Let I be a set of indexes from the set {1, . . ., nt} and let

CI,I denote the principal submatrix of C containing the rows and columns from the set I. Moti-

vated by D-optimal design [24] we would like to select np = bnt/10c points such that det CI,I is

maximized over all sets I having np distinct entries from the set {1, . . ., nt}. (For clarification:

b�c denotes the floor operation, 10 is our choice, and might obviously be changed.)

When nt is increasing, the maximization problem described above would be very time-con-

suming to solve by a brute-force search. Since solving this optimization is only done to

improve the speed and efficiency of the Bayesian inversion, we have designed a greedy

approach to find a reasonable solution to the problem of finding the set I which maximizes det

CI,I over all sets I of size np. The greedy algorithm is designed by first selecting k1 such that

Ck1 ;k1
is maximized. This will be the solution to the maximization problem if the size of the set

I is 1. From this, we start to form sets I0 of increasing size until we reach the size np by adding

one index in each step. In the second step, we find k2 with k1 fixed from the first step such that

det CI0 ,I0 where I0 has size 2. For an arbitrary step we are given indexes k1, . . ., kj−1 and find kj
maximizing det CI0,I0 where I0 = {k1, . . ., kj−1} [ k where k is any of the indexes 1� k� nt differ-

ent from the previous selected indexes k1, . . ., kj−1. The algorithm terminates when the size of

I0 is np.
The experimental setup (“truth”) for the hybrid-scale model is given in Table 1. The model

is run on a grid with dimension 515 × 634, and data are contrast agent concentration values in

every grid cell. As a base case, the simulated measurements are upscaled using a stencil of 4 × 4

grid cells. In order to limit the amount of data we down-sample the measurements as described

above. This gives a total of 191220 values. The resulting spatial-temporal resolution is within

what can be achieved with both MRI and CT scans [25]. The bloodstream entering the domain

(AIF) is represented by a Gamma-variate function, see Fig 3.

In this example study we select to estimate log-transformed transmissibilities (transmissi-

bilities are defined by T = K/μ) and porosities in the arterial, venous, and capillary compart-

ments. Although scalar transmissibilities are used for the “true” model we do not want to

assume that this information is known in general, and in the arterial and venous compart-

ments we estimate transmissibility in both the x- and y-direction. This gives a total of eight

unknown parameter fields. Initial values are generated as Gaussian random fields with given

mean and Gaussian variograms. We assume constant mean values in the frog tissue, and have

selected values with moderate differences from the “true” properties listed in Table 1, except

for the capillary conductivity (Kc) which is substantially larger. The rationale for this choice

Table 1. Experimental setup for the hybrid-scale model. See [15, 26] for more information about the model.

Parameter Symbol Unit Value

Arterial porosity ϕa - 0.05

Venous porosity ϕv - 0.1

Arterial permeability Ka m2 1 � 10−13

Venous permeability Kv m2 5 � 10−13

Inlet pressure p0
a kPa 10.6

Outlet pressure p0
v kPa 1.60

https://doi.org/10.1371/journal.pcbi.1011127.t001
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stems from the fact that this quantity is directly related to the perfusion, and we want to dem-

onstrate the robustness of the methodology in a case with limited prior knowledge of the capil-

lary (or throughput) conductivity. One might argue that there exist accurate prior knowledge

if the methodology is applied to a human organ, but the ability to adapt to a large variation of

values for capillary conductivity is still of high importance in order to capture the properties of

damaged tissue caused by e.g., stroke or cancer. In addition, there are variations between indi-

viduals caused by cardiovascular health, age, lifestyle factors, underlying medical conditions,

medications, etc., that makes it difficult to provide accurate prior properties.

The standard deviations for the distributions reflect the uncertainty of the prior informa-

tion. In our study, we select 0.1 for porosity values and 1 for log-transformed transmissibilities.

The capillary porosity (ϕc) determines the transit time through the capillaries. This quantity is

not present in the hybrid model, and for simplicity, we have selected a low prior value and low

standard deviation. For real data, the prior distributions should be tailored to each specific

application, and based on the knowledge of the organ or tissue that is studied. The selection of

prior distributions is not crucial for finding better estimates for the parameters, but some dis-

crepancies for the updated models are reported [20] The variogram ranges are drawn from

Gaussian distributions with mean values equal to 74 and 60 grid blocks in the x- and y-direc-

tion, respectively. The variance (in both directions) is equal to one grid block. The relatively

long variogram ranges are based on the assumption that the tissue has an approximately

homogenous structure.

In the arteries and veins, we use transmissibility (in both x- and y-direction) given by T =

D2/32μ, where D is the vessel diameter. This relation is found by comparing the Darcy equa-

tion (with porosity equal to 1) with the Hagen-Poiseuille equation for laminar incompressible

flow.

To ensure that all parameters are physically reasonable we also impose upper and lower

bounds for the values. The bounds are specified rather loosely in order to capture spatial

Fig 3. Arterial input function.

https://doi.org/10.1371/journal.pcbi.1011127.g003
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variations of tissue properties. We have approximated the tissue with a porous media model,

which means that vessels of different diameters are represented using different values for per-

meability and porosity in the model.

The statistical parameters are listed in Table 2. For completeness, we have included the per-

meabilities (in parenthesis) in addition to the log-transformed transmissibilities in the table.

The porous media flow model is discretized using 128 cells in the x-direction, and 158 cells in

the y-direction (base case). There are 7507 inactive cells that fall outside the boundary of the

frog tongue. Each parameter field then consists of 12717 values, and the total number of

parameters is Nm = 101736. We have also listed the true parameters (see also Table 1) used to

generate the measurements with the hybrid-scale model. The viscosity, boundary pressures

and AIF are identical for the hybrid-scale model and the porous media model.

On Fig 4 we show three realizations from the the prior distribution for y-transmissibility in

the arterial compartment, and the porosity in the venous compartment. Note that the blood

vessels are not visible on the porosity fields, because the mean porosity values are equal (0.1)

both inside and outside the vessels. This value is adopted because it is used in the hybrid-scale

model when generating the measurements, and the motivation is to avoid porosity values

larger than 1 in the parts of the tissue where arteries and veins are crossing (on top of each

other). Examples of the computed localization domains based on the initial ensemble, l
0

kl, for

selected observations, are shown on Fig 5. The areas change for each projected observation (l),
and at every iteration (i). The initial ensemble is used as starting values for the algorithm given

by Eq 4, and we use 200 ensemble members (model realizations). The maximum number of

iterations is set to 10, and in addition, the algorithm will stop if the relative change in average

data mismatch is less than 10%. We assume that the measurement error standard deviation for

the data is 10% of the maximum observed concentration and we assume that the noise is

uncorrelated in time and space. This means that Cc is a diagonal matrix. The initial value for

the weight parameter γ0 is 1, and the reduction and increment factors are 0.9 and 2, respec-

tively. These factors are used to reduce or increase γi at each iteration. In this example, five iter-

ations were always performed before the method terminated.

Estimated perfusion

The estimated perfusion follows from Eq 1. The true perfusion (see [15], Equation 7) is shown

on the left picture on Fig 6. The perfusion range is between 5 mL/min/100mL and 21 mL/min/

100mL. The spatial relative error in estimated perfusion is shown in the middle and right pic-

tures. The relative error is computed as (PT − PE)/PT, where PT is the true perfusion and PE is

the estimated perfusion. The prior and posterior errors are calculated by simulating the perfu-

sion using the mean of the prior and posterior ensembles. Note that the perfusion is zero in

Table 2. Statistical parameters used to generate the initial ensemble. Lower and upper bounds are denoted lb and ub, respectively. Note that the mean transmissibility

values are only valid in the frog tissue (outside the identified main vessels). Inside the vessels, the transmissibilities are given by the Hagen-Poiseuille equation. The values

in parentheses are permeabilities corresponding to the log-transformed transmissibilities.

μ σ lb ub true

ϕa 0.1 0.1 0.001 0.999 0.05

ϕv 0.1 0.1 0.001 0.999 0.1

ϕc 10−4 10−5 10−6 0.1 NA

lnTx;y
a (Kx;y

a ) -24.1 (10−13) 1 -26 (1.53 � 10−14) -10 (1.36 � 10−7) -24.1 (10−13)

lnTx;y
v (Kx;y

v ) -24.1 (10−13) 1 -26 (1.53 � 10−14) -10 (1.36 � 10−7) -22.5 (5 � 10−13)

ln Tc (Kc) -10.3 (10−7) 1 -26 (1.53 � 10−14) -8 (10−6) -13.8 (3 � 10−9)

https://doi.org/10.1371/journal.pcbi.1011127.t002
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the vessels, and the vessels are colored for enhanced visibility. There is a clear improvement

for the posterior estimate, and the relative error is especially reduced in the lower part of the

domain, where the prior values are as low as −14%. In particular, large errors occur when the

true perfusion is low. The relative error using the posterior estimate is minimum −2.6%. From

the results, we see that both the prior and posterior overestimate the perfusion in most of the

Fig 4. Three initial ensemble members for y-transmissibility (m2) in the arterial compartment (top) and porosity

(m3/m3) in the venous compartment (bottom).

https://doi.org/10.1371/journal.pcbi.1011127.g004

Fig 5. Correlation-based localization area for three observations (l = 1, 3, 8), using the initial ensemble (i = 0). The

yellow area represents positions where parameters are updated (Λ0 = 1).

https://doi.org/10.1371/journal.pcbi.1011127.g005
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domain. In order to further quantify the accuracy of the estimated perfusion we compare the

results with two widely used techniques within radiology: the maximum slope method and

deconvolution based on singular value decomposition. We will not present these methods

here, but refer to [27] for readers interested in details. In Fig 7 (left) we show the average perfu-

sion (P) computed for the entire frog tongue domain. The true value is shown in blue and is

9.5 mL/min/100mL. The maximum slope method and deconvolution method slightly overesti-

mate the perfusion value (the error is 1.1 mL/min/100mL), whereas the prior model returns a

value as high as 71 mL/min/100mL. The posterior model obtained after the assimilation of

concentration data is 8.9 mL/min/100mL, slightly below the true value. On the right plot, we

show corresponding results for four regions, obtained by dividing the domain into equally

Fig 6. Estimated perfusion. Left: True perfusion (mL/min/100mL). Middle: Relative error (%) in simulated perfusion using the mean prior

ensemble. Right: Relative error (%) in simulated perfusion using the mean posterior ensemble. Note the different ranges on the relative error maps.

https://doi.org/10.1371/journal.pcbi.1011127.g006

Fig 7. Comparison of estimated perfusion using different techniques. On the bar plots, ‘MS’ are the maximum slope

results, ‘DC’ are the deconvolution results, ‘PR’ are the results using the prior model, and ‘PO’ are the results using the

posterior model after data assimilation. Left: entire domain. Right: four sub regions. On the x-axis, i, j denotes the

region and i is the index in the x-direction (from left to right) and j is the index in the y-direction (from top to bottom).

https://doi.org/10.1371/journal.pcbi.1011127.g007
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sized parts. The posterior model performs best in all regions. The estimated perfusion results

are generalized on Fig 8, where the number of regions is successively increased. More accu-

rately, we compute perfusion on the following grids: 1 × 1, 2 × 2, 4 × 5, 8 × 10, 16 × 20, 32 × 39,

64 × 79, 128 × 158. The most refined grid is the base case. For each sub-division of the domain,

we compute the perfusion for all regions and calculate the mean values for the errors. I.e., for a

specific division of the domain into s regions of interest, we compute the mean absolute error

(MAE) as

MAEs ¼
1

s

Xs

q¼1

jPq
T � Pq

Ej; ð11Þ

where Pq
T is the true perfusion in region q and Pq

E is the estimated perfusion in the region q,

using one of the estimation (E) techniques: maximum slope, deconvolution, prior model, or

posterior model. In the above calculations, we utilize the information about the position of

arteries and veins by setting the perfusion value in a region to zero if the region contains more

than 50% of vessels. The maximum number of regions are all voxels in the base case domain

(128 × 158), excluding the voxels that contain arteries or veins. The conclusion from this figure

is that the posterior model is better than all the other techniques we have considered, for all

partition levels.

The computational time (measured as wall clock seconds) for the different grids used in the

above computations are shown in Table 3. The forward circulation model simulations of the

ensemble realizations are not parallelized in this study and it is therefore a potential to speed

up the simulations significantly. For this study, the calculations take less than 25 minutes to

Fig 8. Mean absolute error for estimated perfusion for increasing number of regions. On the plot, ‘MS’ are the

maximum slope results, ‘DC’ are the deconvolution results, ‘PR’ are the results using the prior model, and ‘PO’ are

results using the posterior model after the data assimilation. The x-axis is logarithmic, and the range is from 1 to 10483.

https://doi.org/10.1371/journal.pcbi.1011127.g008
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Table 3. Computational time and number of iterations (Niter) for different discretizations (NROI). The computations were performed on a Lenovo Thinkpad desktop

with 64 GB memory and 10 (physical) Intel Core i9–10900K CPUs running at 3.70GHz.

NROI 1 4 20 80 320 1248 5056 20224

Wall time (s) 81 85 99 110 112 219 630 1380

Niter 9 10 8 8 6 5 5 5

https://doi.org/10.1371/journal.pcbi.1011127.t003

Fig 9. Spatial distribution of contrast concentration (mmol/L) at four points in time. Blue color indicates low concentration and

yellow indicates high concentration. The same scale (colormap) is used for all plots. The columns show from left to right the data, the

prior mean, the posterior mean, and the posterior standard deviation.

https://doi.org/10.1371/journal.pcbi.1011127.g009
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finish for the most refined grid. Preliminary studies on a 3D domain with grid 45 × 32 × 35

(number of regions equal to 50400) shows that one iteration (with an ensemble size equal to

200) takes approximately 20 minutes. However, the forward simulations dominate the time to

finish one iteration and the benefit of parallelizing the simulations increase rapidly when the

gird discretization is refined and the number of regions increase.

Estimated concentration

Fig 9 shows the spatial distribution of contrast concentration at four points in time, simulated

using the full resolution with 128 × 158 grid cells. At time equal to 33 seconds a clear concen-

tration pattern is seen in the data. The prior estimate illustrates the fact that the blood vessels

in the porous media model are not sealed, and there is diffusion through the vessel walls. This

phenomenon is reduced in the posterior model, but the circular concentration areas seen in

the data are not recovered. The rightmost figure shows the standard deviation for the posterior

ensemble. As explained in the introduction, it is preferable to avoid underestimation of the

uncertainty after iterating. The standard deviations are higher than zero, especially early in the

time period, thereby indicating that collapse of the ensemble is avoided. Visually, we obtain

improvements for the posterior concentration at all points in time, compared to the prior con-

centration values. See also S1 Video. The estimated concentration is further visualized at nine

positions in the frog tongue, see Fig 10. These positions are evenly distributed in the domain,

and among the points, the middle right is in a high permeability zone (blood vessels). Fig 11

shows concentration curves at the nine positions. A clear reduction in the uncertainty is seen

for the posterior curves (shown in green), compared to the prior curves (shown in blue). The

Fig 10. Positions (shown as black dots) used to visualize concentration curves. The grid indices are shown on the

axes.

https://doi.org/10.1371/journal.pcbi.1011127.g010
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posterior curves are of varying quality with clear improvements e.g., at the lower-right voxel,

but less accuracy at e.g., the middle voxel. Despite inaccuracies at some points in time, the

overall data mismatch is reduced from approximately 2.8 � 105 (mmol/L)2/(mmol/L)2 to

approximately 9.0 � 104 (mmol/L)2/(mmol/L)2, as seen on Fig 12. The values are shown on a

logarithmic y-axis for better visibility. The formula used to compute the data mismatch for

ensemble member j, at iteration i, is

HMi
j ¼ ðc

o � cijÞ
TC� 1

c ðc
o � cijÞ; ð12Þ

where the measurements (co) and simulated observations (cij) are concentration data.

Fig 11. Temporal distribution of contrast concentrations at nine positions, given by the (coarse) grid indices in the titles. Red

color indicates the measurements, blue color represents the initial ensemble, and green color represent the updated posterior ensemble.

The x-axis is the time in seconds, and the y-axis is the concentration values in mmol/L.

https://doi.org/10.1371/journal.pcbi.1011127.g011
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Discussion

We have demonstrated the use of ensemble-based estimation techniques for assimilating pro-

cessed contrast agent concentration data from dynamic MRI acquisitions into models for

blood perfusion in organs. The methodology is applied to a domain with known vascular

structure, and the realism of the methodology is enhanced by selecting different models for

synthetic data generation and data assimilation. The data-generating hybrid-scale model

includes a detailed representation of both the arterial and venous vessel structure, and a distri-

bution function is used for the flux from the vessel network to the continuum. The porous

media model used for data assimilation is simpler and needs to represent vessel structures as

high-permeable channels. We show that improved perfusion estimates are obtained, compared

to traditional methods (maximum slope and deconvolution methods). The major contribution

of our work is the ability to provide better estimates of the perfusion in any region of interest

embedded in the organ of investigation. The importance of accurate estimates of perfusion is,

as mentioned in the introduction, wide-ranging.

The work presented here represents a first step towards a full-scale tool for clinical usage.

The next step is to evaluate the methodology on synthetic three-dimensional contrast data,

and eventually real MRI-based measurements. When using real measurements there are chal-

lenges related to how the concentration data are scaled and pre-processed, that must be

addressed. In a real setting, there is also uncertainty in the boundary conditions, i.e., the

boundary pressures and AIF. A natural extension of the methodology is to augment the set of

unknown parameters with these quantities and update the boundary conditions as part of the

assimilation workflow. It has recently been suggested that adding in-silico trials would be

Fig 12. Data mismatch for concentration data (units (mmol/L)2/(mmol/L)2). The y-axis is logarithmic. The red

horizontal lines indicate the medians and the blue horizontal lines indicate the 25th and 75th percentiles. The whiskers

cover the extreme values.

https://doi.org/10.1371/journal.pcbi.1011127.g012
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helpful for the development of better treatment of acute ischemic stroke [28–30] and new

modeling approaches to handling different issues are being developed [31]. Obviously,

patient-specific models that align with observations would increase the value of in-silico mod-

els even further.

Supporting information

S1 Video. Spatial distribution of contrast concentration. Blue color indicates low concentra-

tion and yellow indicates high concentration. The same scale (colormap) is used for all plots.

The columns show from left to right the data, prior mean, and the posterior mean.
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