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Abstract

This study aimed at exploring the proteomic profile of PBMCs to predict treatment response

in pulmonary tuberculosis (PTB). This was a pilot study conducted among 8 adult patients

from Zanzibar, Tanzania with confirmed PTB. Blood samples were collected at baseline, at

2 months of treatment, and at the end of treatment at 6 months. Proteins were extracted

from PBMCs and analyzed using LC-MS/MS based label free quantitative proteomics.

Overall, 3,530 proteins were quantified across the samples, and 12 differentially expressed

proteins were identified at both 2 months of treatment and at treatment completion, which

were involved in cellular and metabolic processes, as well as binding and catalytic activity.

Seven were downregulated proteins (HSPA1B/HSPA1A, HSPH1, HSP90AA1, lipopolysac-

charide-binding protein, complement component 9, calcyclin-binding protein, and protein

transport protein Sec31A), and 5 proteins were upregulated (SEC14 domain and spectrin

repeat-containing protein 1, leucine-rich repeat-containing 8 VRAC subunit D, homogenti-

sate 1,2-dioxygenase, NEDD8-activating enzyme E1 regulatory subunit, and N-acetylsero-

tonin O-methyltransferase-like protein). The results showed that proteome analysis of

PBMCs can be used as a novel technique to identify protein abundance change with anti-

tuberculosis treatment. The novel proteins elucidated in this work may provide new insights

for understanding PTB pathogenesis, treatment, and prognosis.

1. Introduction

Tuberculosis (TB) continues to be a major cause of morbidity and mortality in many low and

middle-income countries. Global TB incidence is estimated to be 10.1 million, and mortality

1.3 million [1]. Diagnosis of pulmonary TB (PTB) is based on the detection of Mycobacterium
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tuberculosis (MTB) in the sputum by smear microscopy for acid-fast bacilli (AFB) which is a

widely available, simple, and inexpensive tool [2]. The standard treatment for PTB includes 2

months of therapy with isoniazid, rifampicin, pyrazinamide and ethambutol (intensive phase),

followed by 4 months of treatment with isoniazid and rifampicin (maintenance phase) [1].

This treatment regimen is considered curative for drug sensitive PTB. Response to TB treat-

ment is monitored by follow-up sputum smear microscopy at 2 and 5 months [3, 4]. Diminish-

ing numbers of AFB to smear-negative status during treatment is considered an indication of

treatment success, and the sputum smear conversion is considered as a reliable marker for suc-

cessful treatment. However, it has been shown in a recent study that viable cultivable bacilli

were detected in 6% of patients by culture despite successful sputum smear conversion [5].

These findings highlight the need for improvement in monitoring treatment response by

developing a sensitive, specific, and rapid surrogate marker for quantifying TB other than the

gold standard of culture. It is also not feasible to perform culture in routine practice for moni-

toring treatment response in the low-resource high TB-endemic setting due to the need for

extensive laboratory resources and the long turn-around time. Furthermore, a large propor-

tion of patients with PTB are sputum-smear negative, and physicians tend to treat patients

without bacteriological confirmation if the patients come from well-known endemic areas of

TB and have a high suspicion of the disease. Monitoring therapeutic response is thus crucial in

these cases to enable timely response if a change in treatment is required [2]. The regression of

clinical findings does not always correspond to treatment success, and radiological findings

often take longer for complete regression. Although routine biomarkers, such as C-reactive

protein [6] and elevated leukocyte count and erythrocyte sedimentation rate, decrease with

satisfactory TB response [7, 8], they may not be raised in the chronic milder forms of TB, mak-

ing them not applicable for treatment monitoring in all forms of TB. There is hence a need for

more reliable biomarkers to assess the short and long-term treatment response [1, 9].

Peripheral blood mononuclear cells (PBMCs) are generally used as a model system to inves-

tigate immune response in infectious diseases such as TB, where the cell-mediated immune

response is mainly responsible for disease processes [10]. Given that PBMCs are the primary

cells that play a crucial role in the disease process, their profile is expected to change after con-

tainment of MTB by the treatment [11]. The aim of the study was to conduct proteomic profil-

ing of the PBMCs isolated from patients with PTB as a means of exploring the

immunopathological changes consequent to TB treatment and the potential of using this infor-

mation to develop a biomarker for monitoring therapeutic response.

2. Materials and methods

2.1 Study design and setting

This was a pilot study conducted among adult patients with confirmed PTB who were partici-

pating in another larger progressive cohort study on the validation of a new diagnostic test in

Zanzibar, Tanzania [12]. Zanzibar is a semi-autonomous region of the United Republic of

Tanzania, with a population of around 1.3 million [13]. In recent years, the total number of TB

cases has significantly increased in Tanzania from 62,180 cases in 2015 to 75,845 cases in 2018,

representing a 22% increase. The notification rate of new and relapse TB cases has also

increased from 128 per 100,000 population in 2015 to 138 per 100,000 population in 2018. In

contrast, the number of TB cases co-infected with HIV has decreased by more than one-third

between 2015 and 2018 [14].

Patients were recruited at Mnazi Mmoja Hospital, which is the only tertiary care referral

hospital in Zanzibar, from August 2014 to September 2015 [12]. TB was confirmed bacterio-

logically by a positive MTB culture and/or MTB detected by the Xpert1MTB/RIF assay
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(Cepheid Inc, USA) in at least one patient sputum specimen. Patients were excluded if they

did not give consent or had received anti-TB treatment in the last 12 months.

Blood samples were collected from each patient at three timepoints: at baseline before start-

ing the treatment "0M", at 2 months (during the intensive phase of treatment) "2M", and at the

end of 6 months of treatment "6M".

The study was conducted according to the principles of the Declaration of Helsinki and

approved by the Regional Committee for Medical and Health Research Ethics of Western Nor-

way (REK Vest), and the Zanzibar Medical Research and Ethics Committee (ZAMREC). All

patients provided written informed consent.

2.2 Preparation of proteins from PBMCs and protein digestion

Blood samples (4 mL) were collected using BD Vacutainer1 CPT™ (cell preparation tubes with

sodium heparin). Blood samples were then centrifuged following manufacturer’s instruction,

and PBMCs were collected. The PBMCs were subsequently washed thoroughly to remove the

plasma, dextran, and other components of the gel in the CPT™ tube. The first wash was done

with TBS by diluting 1:5. The whole tubes, which were about 6 mL each, were filled up. Then,

the samples were centrifuged at 400 × g at room temperature for 10 minutes, to make sure the

cells were pelleted. The supernatant was removed. The second wash was done by adding

another 4 mL of TBS in the tube with a cell pellet. The pellet was gently dissolved by pipetting

in and out a few times. Afterward, another centrifugation at 400 × g at room temperature for 5

minutes was performed to make sure that the cells were pelleted. The supernatant was

removed. The third wash was done in a similar manner to the second wash.

Following this, red blood cells were lysed by using a red cell lysis buffer with 150 mM of

ammonium chloride. Approximately 2.5 mL of the lysis buffer was added to the cell pellet;

then, the tubes were shacked to dissolve the pellet. The tubes were subsequently incubated for

10 minutes at room temperature, and centrifugated at 400 × g at room temperature for 5 min-

utes. Finally, the supernatant was decanted.

PBMCs pellets were extracted into a 100-μL lysis buffer consisting of 0.1 M Tris/HCl (pH

7.5), 0.1 M dithiothreitol (reducing agent), and 2% SDS. The samples were subsequently trans-

ported to the University of Bergen. The proteomics analysis was done at the Proteomics Unit

of the University of Bergen (PROBE). Protein concentrations were measured using Direct

Detect1 (Merck KGaA, Darmstadt, Germany), which is an infrared-based biomolecular quan-

titation system that provides accurate and precise results despite the presence of SDS. Proteins

were digested using the FASP method as described by Hernandez-Valladares et al. [15]. In

brief 20 ug of protein were reduced with 0.1 M dithiotreitol (DTT) and heated to 95 ˚C for 5

min. The proteins were alkylated with 50mM iodoacetamide (IAA). Buffer exchange was per-

formed in a Microcon-30 kDa Centrifugal filters (Millipore, #MRCF0R030) using 8 M urea in

0.1 M Tris–HCl pH 8.5, freshly prepared). Trypsin was dissolved in 50mM ammonium bicar-

bonate and added to the samples in a 1:25 ratio, samples were incubated at 37 ˚C for 16 h.

Desalting was done using Oasis HLB 96-well μElution plate (2 mg sorbent per well, Waters

#186001828BA).

2.3 LC/MS method

5 ug of digested peptides were pressure-loaded onto an HPLC column (Acclaim™ PepMap™
100 C18, 3 μm, 75 μm × 2 cm, Thermo Fisher Scientific, Bremen, Germany), with trapping

and desalting carried out at 5 μL/min for 5 minutes using 0.1% of trifluoroacetic acid. Analyti-

cal separation was carried out with Acclaim™ PepMap™ 100 C18 (3 μm, 75 μm × 50 cm,

Thermo Fisher Scientific, Bremen, Germany) at a flow rate of 270 nL/min. The elution
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gradient was run using mobile phase A (0.1% of formic acid in water) and B (100% ACN).

Tryptic peptides underwent a 20-minute isocratic elution with 80% buffer B followed by

another 20-minute isocratic elution with 5% buffer B. Total gradient time was 4h. The reason

for using a 4h gradient was to increase the number of identified proteins.

As peptides were eluted from the HPLC column, they were electrosprayed directly into a

linear quadrupole ion trap-orbitrap mass spectrometer (LTQ-Orbitrap Elite™, Thermo Fisher

Scientific, Bremen, Germany). The mass spectrometer was operated in the data-dependent

acquisition mode to automatically switch between full-scan MS and MS/MS acquisition.

Instrument control was through Tune 2.7.0 and Xcalibur 2.2. The mass spectrometric data was

acquired in positive ion mode, with an 1,800-V ion spray voltage, no sheath and auxiliary gas

flow, and a capillary temperature of 260˚C.

Survey full-scan MS spectra (from m/z 300 to 2,000) were acquired in the Orbitrap with a

resolution of 240,000 at m/z 400 (after accumulation to a target value of 1e6 in the linear ion

trap with the maximum allowed ion accumulation time of 300 ms). The 12 most intense elut-

ing peptides above an ion threshold value of 3,000 counts and charge states of�2 were sequen-

tially isolated to a target value of 1e4 and fragmented in the high-pressure linear ion trap by

low-energy CID with a normalized collision energy of 35% and wideband-activation enabled.

The maximum allowed accumulation time for CID was 150 ms, with an isolation window of 2

Da, an activation q value of 0.25, and an activation time of 10 ms. The resulting fragment ions

were scanned out in the low-pressure ion trap at a normal scan rate and recorded with the sec-

ondary electron multipliers. One MS/MS spectrum of a precursor mass was allowed before

dynamic exclusion for 40 seconds. Lock-mass internal calibration was not enabled.

2.4 Data management and analysis

Four softwares were used for this study: MaxQuant v1.5.5.1, Perseus v1.5.6.0, SPSS v25, and

Excel 2019.

The raw files from the LC-MS/MS were analyzed using MaxQuant version 1.5.5.1 and the

integrated Andromeda search engine. The fasta file version was Sprot_Human_20432en-

tries_20190903.fasta. Moreover, for both proteins and peptides, the maximum FDR was set to

0.01 [16]. MaxQuant maps the sequences of detected peptides and uses these peptide levels to

determine the identified protein level. Since the protein levels likely vary between samples due

to minor differences in handling and analysis, normalization of protein levels is essential. Con-

sequently, label-free quantification (LFQ) algorithms within MaxQuant, MaxLFQ, were used

to create the normalized protein intensities [16]. They were normalized in relation to the levels

of common proteins in a sample.

To construct a relative scale, LFQ uses the signal intensity and the number of observations of

commonly observed peptides. This is used to assign new, normalized intensities of peptides,

along with an absolute scale of summed-up peptide intensities, LFQ intensities. The LFQ algo-

rithm is incorporated into the search engine of MaxQuant and produces two distinctive data

outputs: samples without standardized levels and the same samples with LFQ corrected levels.

While the unnormalized spectra–"Intensity"–have been merely used to detect the presence of

proteins within a sample, the LFQ values–"LFQ intensity"–were used for statistical analysis [17].

The normalized data from MaxQuant were saved in a.txt file [18]. The file was uploaded to

Perseus version 1.5.6.0, and "LFQ intensities" were selected as expression data. Potential contam-

inants, reverse hits, rows only identified by site, and empty rows were removed from the matrix

[19]. The different samples were then grouped into "0M", "2M", and "6M", and a matrix was gen-

erated. The intensities values were transformed to log2 values, and gene annotations were

uploaded for Homo sapiens. S1 Fig in S1 File shows the unsupervised hierarchical clustering of
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all samples. The variability between samples was very low as shown in S2 File. S1 Table in S2 File

provides information about the standard deviation and coefficient of variation of proteins

within samples and missing values. S2 Table in S2 File provides information about the standard

deviation and coefficient of variation of proteins between samples. S3 Table in S2 File shows the

Pearson correlation values between samples. S2 Fig in S1 File illustrates clustering of Pearson

correlation values. S3 Fig in S1 File shows the sample distribution of all samples. A histogram

was made from each sample were the log2 LFQ intensity was plotted against counts.

To compare the differing expression of proteins detected between the groups, ANOVA was

carried out using permutation-based FDR, with the number of randomizations set at 250

which is the default setting in Perseus and the FDR at 0.05. The data were normalized on the

protein level with Z-scoring prior to hierarchical clustering. In addition, we performed a

mixed linear model analysis with correction for multiple testing for comparison (S4, S5 Figs in

S1 File). R-scripts and data output can be found in the S4 Table in S2 File and S1 Data. To visu-

alize the results, a heat map was created to evaluate the significantly differently proteins’ levels

between the groups. The data were not imputed.

The significantly expressed proteins of interest were further analyzed with IBM SPSS Statis-

tics 25. Besides one-way ANOVA, the Tukey’s range test was also carried out. After running

one-way ANOVA and Tukey’s range test in SPSS, box plots were constructed for each of the

significantly expressed proteins to illustrate the mean and the median Log2 intensity differ-

ences of these proteins detected in the PBMCs of PTB patients at different treatment time

points (0M, 2M and 6M). A Principal component analysis were performed on all samples in

Perseus using Benjamini-Hochberg FDR 0.05. The mass spectrometry proteomics data have

been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with

the dataset identifier PXD029634 [20].

2.5 Protein interaction and pathway analysis

The STRING database (STRING v.11.0; www.string-db.org) was used to identify known and

predicted functional networks and to predict protein-protein interactions. Gene ontology

(GO) annotation (www.geneontology.org) was conducted to classify proteins based on biolog-

ical process (BP), molecular function (MF) and cellular component (CC) using the Protein

Analysis Through Evolutionary Relationships database (www.pantherdb.org). Pathway analy-

sis and biological reactions were performed using Reactome version 72 (www.reactome.org).

3. Results

3.1 Patient characteristics

Table 1 presents the characteristics of the study participants. Overall, 8 patients with bacterio-

logically confirmed PTB were enrolled into this pilot study. All patients had a positive sputum

smear at 0M. After 2 months of receiving standard TB treatment (isoniazid, rifampicin, pyrazi-

namide, and ethambutol), 6 patients had negative sputum, while 2 patients continued to have

a positive sputum smear, which turned negative at 5 months. At 6M, 6 patients had a negative

sputum smear, 2 patients were lost to follow up at the end of the study, and one blood sample

at 2M was not analyzed.

3.2 Proteins changing significantly under and after treatment

In total, 3,697 proteins were quantified across the samples using the LFQ shotgun proteomics

analysis in Perseus. After removing potential contaminants, reverse hits, rows only identified

by site, and empty rows from the matrix, 3,530 proteins were detected.

PLOS ONE Proteomic analysis of peripheral blood mononuclear cells isolated from patients with pulmonary tuberculosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0281757 February 14, 2023 5 / 15

http://www.string-db.org
http://www.geneontology.org
http://www.pantherdb.org
http://www.reactome.org
https://doi.org/10.1371/journal.pone.0281757


ANOVA of the log2-transformed LFQ spectra performed on the PTB samples at 0M

(n = 8), 2M (n = 7), and 6M (n = 6) detected 12 differentially expressed proteins (Table 2), of

which 7 were downregulated, and 5 were upregulated at 2M and 6M. As illustrated in Fig 1,

which showcases the hierarchical clustering of the 12 differentially expressed proteins, three

main clusters of proteins were identified, and each cluster matched precisely to the treatment

progress grouping. Fig 2 shows the principal component analysis of all samples showing the

clustering of proteins according to the treatment groups.

The 7 downregulated proteins identified in the PTB samples at 2M and 6M were heat shock

70 kDa protein 1A/1B (HSPA1B/HSPA1A), heat shock protein 105 kDa (HSPH1), heat shock

Table 1. Characteristics of the study participants (n = 8).

Patient characteristic

Age in years, median (range) 34 (20–52)

Gender, n

Male 6

Female 2

HIV status, n

Positive 2

Negative 6

Routine diagnostics, n (positive/total)

Culture (baseline) 7/7

Sputum smear auramine (baseline) 8/8

Xpert (baseline) 5/5

AFB smear baseline 8/8

AFB smear 2 months 2/8

AFB smear 5 months 0/7�

AFB, acid fast bacilli;

�Sputum smear result at 5 months was missing for one patient. This patient was registered with a negative sputum

smear at 2 months.

https://doi.org/10.1371/journal.pone.0281757.t001

Table 2. The 12 differentially expressed proteins identified in PBMCs from patients with pulmonary tuberculosis at 2 and 6 months after treatment as compared to

the proteins expressed before treatment.

Gene name(s) Protein name(s) Log2 fold change

0M − 2M 0M − 6M

LBP Lipopolysaccharide binding protein -5.08 -6.36

C9 Complement component C9; Complement component C9a; Complement component C9b -1.76 -1.58

HSPA1B; HSPA1A Heat shock 70 kDa protein 1B; Heat shock 70 kDa protein 1A -0.70 -0.67

HSPH1 Heat shock protein 105 kDa -0.68 -0.71

CACYBP Calcyclin-binding protein -0.55 -0.52

HSP90AA1 Heat shock protein HSP 90-alpha -0.44 -0.54

SEC31A Protein transport protein Sec31A -0.25 -0.34

SESTD1 SEC14 domain and spectrin repeat-containing protein 1 0.03 1

HGD Homogentisate 1,2-dioxygenase 0.21 1.76

LRRC8D Leucine-rich repeat-containing 8 VRAC subunit D 0.30 1.17

NAE1 NEDD8-activating enzyme E1 regulatory subunit 0.44 0.48

ASMTL N-acetylserotonin O-methyltransferase-like protein 0.71 1.73

Abbreviations: 0M, baseline; 2M, at 2 months of treatment; 6M, at the end of 6 months of treatment. Anova permutation-based FDR 0.05.

https://doi.org/10.1371/journal.pone.0281757.t002
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protein 90 alpha family class A member 1 (HSP90AA1), lipopolysaccharide binding protein

(LBP), complement component 9 (C9), calcyclin-binding protein (CACYBP), and protein

transport protein Sec31A (SEC31A) (Fig 3A). LBP was reduced to 5- and 6-folds at 2M and

6M respectively, while the fold reduction in the rest of proteins was between 1.76 to 0.25. All

these proteins decreased significantly at 2M, and further treatment lead to a relatively lesser

decrease. The 5 upregulated proteins were SEC14 domain and spectrin repeat-containing pro-

tein 1 (SESTD1), leucine-rich repeat-containing 8 VRAC subunit D (LRRC8D), homogenti-

sate 1,2-dioxygenase (HGD), NEDD8-activating enzyme E1 regulatory subunit (NAE1), and

N-acetylserotonin O-methyltransferase-like protein (ASMTL) (Fig 3B).

3.3 Functional enrichment and pathway analysis of the proteins changing

significantly with treatment

Fig 4 illustrates the protein-protein interaction network analysis consisting of the 12 differen-

tially expressed proteins identified in the PTB samples.

Further analysis using GO annotation revealed that the 12 differentially expressed proteins

were preferentially associated with MF (Fig 5A), binding (carbohydrate derivative binding,

Fig 1. Heat map illustrating hierarchical clusters of the 12 differentially expressed proteins among the pulmonary

tuberculosis patients’ PMNCs samples at baseline "0M" (n = 8), 2 months "2M" (n = 7), and 6 months "6M"

(n = 6). Each row represents a single protein. The columns depict the expression levels of individual samples. The color

intensity of each panel is proportional to the relative intensities of the proteins; higher intensities are associated with

red and lower intensities with green.

https://doi.org/10.1371/journal.pone.0281757.g001
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organic cyclic compound binding, drug binding, heterocyclic compound binding, small mole-

cule binding, ion binding, protein binding, lipid binding). As well as activity (hydrolase activ-

ity, ligase activity, oxidoreductase activity) were the main affected MFs.

CC proteins (Fig 5B) were mainly associated with the cytosol, the endocytic vesicle lumen,

the ficolin-1-rich granule lumen, the aggresome, the perinuclear region of cytoplasm, and the

cytoplasmic vesicle part.

In terms of BP (Fig 5C) the proteins were involved process (cellular process, metabolic pro-

cess, multicellular organismal process, multi-organism process, developmental process,

immune system process), biological regulation, response to stimulus, cellular component orga-

nization or biogenesis, and localization.

Regarding protein classes (Fig 5D), the main classes of identified proteins were metabolite

interconversion enzymes (HGD and ASMTL), protein modifying enzymes (NAE1 and

CACYBP), membrane traffic proteins (SEC31A), scaffold/adaptor proteins (LRRC8D), and

chaperone proteins (HSP90AA1).

A reactome pathway analysis found that the following pathways were highly represented:

scavenging by class F receptors, cellular response to heat stress, attenuation phase, HSP90

chaperone cycle for steroid hormone receptors, regulation of heat shock factor 1-mediated

heat shock response, interleukin-4 and interleukin-13 signaling, and innate immune response.

4. Discussion

In this study, we have shown for the first time the exploration of the proteome of PBMCs for

biomarker discovery to predict response to treatment in TB. In total, 3,530 proteins were

quantified across the samples, and 12 differentially expressed proteins were identified in

patients with PTB. Based on our results, we speculate that the testing of these 12 proteins by

using routine laboratory assays early during treatment will ensure the timely management of

Fig 2. Principal component analysis of all samples. A PCA analysis were performed on all samples in Perseus using Benjamini-Hochberg FDR 0.05.

https://doi.org/10.1371/journal.pone.0281757.g002
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patients not responding to anti-TB treatment. This is of great value where anti-TB treatment is

started without bacteriological confirmation [12].

LBP is a 60-kDa serum glycoprotein, which plays a role in the innate immune response and

antibacterial defense through the activation of neutrophil-producing reactive oxygen species

that can kill bacteria [21]. In a small 2013 study conducted among 36 children with TB, LBP

was found to be a marker of innate immune system activation [22]. In line with our findings, a

study from Uganda using serum proteomics in 39 patients with PTB identified LBP as an

important serum biomarker associated with PTB treatment response, as its concentration sig-

nificantly decreased between baseline and 2 months of therapy [23]. The 5-fold decrease in the

Fig 3. Box plots displaying the median, interquartile range, and the minimum and maximum values of Log2 intensity of the differentially expressed

proteins identified among patients with pulmonary tuberculosis. (A) represents the downregulated proteins after 6 months of treatment. (B) represents

the upregulated proteins. A p-value of less than 0.05 indicates statistical significance using ANOVA and Tukey’s range test. �p<0.05; ��p<0.01; ���p<0.001.

The X-axis represents the time of treatment in months (0M, baseline; 2M, 2 months; 6M, 6 months of treatment). The Y-axis depicts the Log2 Intensity of

each of the proteins.

https://doi.org/10.1371/journal.pone.0281757.g003
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levels of LBP after treatment that was found in the present study makes it a suitable candidate

for further investigation as a potential biomarker for therapeutic monitoring as early as 2

months after treatment.

C9 is a part of a complementary membrane attack complex/perforin domain, and is also a

marker of innate immune system activation [24]. In a recently published quantitative proteo-

mics study aiming to identify specific protein signatures in sera of active TB patients and their

household contacts, C9 was found to be highly accumulated in the serum of active TB patients

[25]. However, a significant change in the levels of this protein with treatment has not been

shown in earlier studies. The 1.76-fold decrease in its levels after 2 months of treatment implies

its role in monitoring therapeutic response.

Fig 4. STRING visualization of the protein-protein interaction network for the 12 differentially expressed

proteins identified in PBMCs from patients with pulmonary tuberculosis. Proteins are represented squares, where

the colors represent fold change. Lines represent known interactions between proteins.

https://doi.org/10.1371/journal.pone.0281757.g004
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HSPs are numerous cell proteins involved in the homeostasis of proteins [26]. In TB infec-

tion, HSPs exhibit different functions, including the activation of toll-like receptors which in

turn activates pro-inflammatory signals, eliciting immune responses [26]. These proteins have

been evaluated as a tool for TB diagnosis, and a potent vaccine candidates [27, 28]. However,

to the best of our knowledge, no study has evaluated HSPs as markers of treatment response in

patients with TB.

Besides LBP, C9, HSP70, and HSP90, the other differentially expressed proteins have not

been previously reported to be associated with either TB diagnosis or treatment response.

Thus, our novel data contribute to a further understanding of the complexity of changes

accompanying TB treatment. The proteins increasing in response to treatment imply their role

in the protective immune response against TB.

Other protein biomarkers, including soluble intercellular adhesion molecule 1, soluble uro-

kinase plasminogen activator receptor, and procalcitonin have demonstrated significant

decrease in levels following treatment of PTB [29, 30]. Several studies using whole blood tran-

scriptome analysis have shown significant changes in response to receiving TB treatment; In

2012, 320-transcript signature were significantly diminished in response to treatment [31].

Another study in 2017 had noticed 5-gene signature correlated to TB treatment [32]. The pres-

ent study did not identify any of these biomarkers. This could be due to the difference in the

study of RNAs in the transcriptome studies and proteins in our study, and all RNAs may not

be translated into the proteins. Furthermore, only PBMCs were used in our study, as many rel-

evant proteins would be present only in the plasma. Thus, the best approach would be to com-

bine the PBMCs and the plasma proteomics for a comprehensive biomarker discovery for TB

treatment monitoring with an increased specificity and high predictive value [33].

Interestingly, our data highlighted an enrichment of GO terms related to cellular and meta-

bolic processes, as well as binding and catalytic activity. This is consistent with the results of

Fig 5. Gene ontology annotations in terms of molecular function (MF) (A), cellular components (CC) (B), biological processes (BP) (C), and protein

classes (D) for the 12 differentially expressed proteins identified in PBMCs from patients with pulmonary tuberculosis.

https://doi.org/10.1371/journal.pone.0281757.g005
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several recent quantitative proteomics studies from China conducted among TB patients with

or without HIV [34, 35]. This demonstrates that differentially expressed proteins identified in

PBMCs from patients with TB have multiple biological functions that require further

investigation.

Our study is strengthened by the use of an HPLC column, which is associated with mini-

mal disruption of the native condition of the samples, simple procedure, reproducible results,

and high capacity [36]. A second methodological strength in the present study was the use of

MS with Orbitrap Elite™, characterized by a high resolution as well as high scan speeds [17].

More importantly, the major strength of this study is the detailed mapping of the PBMC pro-

teome. Most proteomic TB studies have focused mainly on serum or plasma as the primary

source of sampling. However, using PBMC samples instead of plasma samples for proteomic

profiling has several advantages. First, PBMCs can be obtained relatively easily from routinely

collected blood samples and thus provide direct access to physiologically important immune

proteins without the well-known analytical complexities of the presence of highly abundant

proteins in native human plasma [19]. Second, in contrast to proteomic analyses of plasma

samples, proteomic profiling of PBMCs can detect low-abundant proteins from blood which

can represent valuable biomarker candidates [37]. Third, PBMCs have been found to be sig-

nificantly richer as a source of biomarkers compared to plasma [37]. In an experimental

study comparing the PBMC proteome to the plasma proteome obtained from blood as the

same source sample, the number of proteins identified in PBMCs as a cellular compartment

of blood (4,129 proteins) was more than double the amount of proteins reported in plasma

(1,929 proteins) [37]. Hence, PBMCs as a blood-derived cellular sample represents a valuable

sample for TB biomarker studies, and both PBMC samples and plasma samples should be

used for a comprehensive proteomic analysis, as these two sample types have been found to

encode different proteins [37].

Despite the novelty of our findings, there are several limitations to our study, including a

small sample size, and the omnipresence of pre-analytical variability. The lack of suitable con-

trols such as non-responders to treatment make it difficult to distinguish if the differentially

expressed proteins represent the host response to the anti-tuberculosis drugs and the toxicity

of this treatment rather than the specific response to treatment. Nevertheless, our findings pro-

vide a platform for future investigation into the use of biomarkers from PBMCs to assess treat-

ment efficacy in TB. Due to the high number of biomarker candidates identified in the

discovery phase by unbiased proteomics, and the costs of assay development and validation, a

prioritized selection of the differentially expressed proteins should be performed in future

studies using ELISA or western blot based on the fold-change between baseline and post-treat-

ment (as the proteins with the highest fold-change might be the most attractive biomarkers)

and relation with TB pathogenesis.

In conclusion, proteome analysis of PBMCs can be used as a novel technique to identify

potential biomarkers to assess treatment efficacy in patients with PTB. Overall, 3,530 proteins

were identified based on LC-MS/MS-based label-free quantitative analysis, and a total of 12

proteins were found to be significantly affected by PTB treatment. The novel proteins eluci-

dated in this work may provide new insights for understanding TB pathogenesis, treatment,

and prognosis. Further studies are however needed with a larger sample size and controls to

validate our results.
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