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Due to large northward heat transport, the Atlantic meridional overturning

circulation (AMOC) strongly a�ects the climate of various regions. Its internal

variability has been shown to be predictable decades aheadwithin climatemodels,

providing the hope that synchronizing ocean circulation with observations can

improve decadal predictions, notably of the North Atlantic subpolar gyre (SPG).

Climate predictions require a starting point which is a reconstruction of the past

climate. This is usually performed with data assimilation methods that blend

available observations and climate model states together. There is no unique

method to derive the initial conditions. Moreover, this can be performed using full-

field observations or their anomalies superimposed on the model’s climatology

to avoid strong drifts in predictions. How critical ocean circulation drifts are for

prediction skill has not been assessed yet. We analyze this possible connection

using the dataset of 12 decadal prediction systems from theWorld Meteorological

Organization Lead Centre for Annual-to-Decadal Climate Prediction. We find

a variety of initial AMOC errors within the predictions related to a dynamically

imbalanced ocean states leading to strongly displaced or multiple maxima in the

overturning structures. This likely results in a blend of what is known as model

drift and initial shock. We identify that the AMOC initialization influences the

quality of the SPG predictions. When predictions show a large initial error in

their AMOC, they usually have low skill for predicting internal variability of the
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SPG for a time horizon of 6-10 years. Full-field initialized predictions with low

AMOC drift show better SPG skill than those with a large AMOC drift. Nevertheless,

while the anomaly-initialized predictions do not experience large drifts, they show

low SPG skill when skill also present in historical runs is removed using a residual

correlation metric. Thus, reducing initial shock and model biases for the ocean

circulation in prediction systems might help to improve their prediction for the

SPG beyond 5 years. Climate predictions could also benefit from quality-check

procedure for assimilation/initialization because currently the research groups

only reveal the problems in initialization once the set of predictions has been

completed, which is an expensive e�ort.

KEYWORDS

Atlanticmeridional overturningcirculation, subpolar gyre, decadal predictions, prediction

skill, initialization shock, initial conditions, data assimilation, internal variability

1 Introduction

The Atlantic meridional overturning circulation (AMOC)

transports a large amount of heat to the North Atlantic, affecting

climate in the Euro-Atlantic sector. Total poleward heat transport

constitutes approximately 0.4–0.6 PW (zonally accumulated heat

transport over the full water column starting from the Greenland

coast toward Scotland; Böning et al., 1996; Zhao et al., 2018).

Previous studies have shown that the AMOC and its slow

oscillation exhibit strong predictability when perturbing its initial

conditions (Collins et al., 2006), and as such, is believed to be

a source of predictability in decadal climate predictions (DCPs).

For instance, the warming of the North Atlantic subpolar gyre

(SPG) in the late 1990s has been attributed to the increased

northward heat transport due to a strong AMOC (Robson et al.,

2012; Williams et al., 2014; Yeager and Danabasoglu, 2014) and

the subsequent cooling in the 2000s associated with the AMOC

slow down (Hermanson et al., 2014). Severe winter conditions in

2010 and 2011 over northwestern Europe were associated with

the interannual variability of the AMOC (Bryden et al., 2014).

Understanding predictability of the AMOC under climate-change

conditions is of great interest for narrowing down the uncertainty

in climate-change projections (Swingedouw et al., 2022). Earlier

studies of potential predictability suggest that the AMOC is

predictable up to two decades ahead or even longer under certain

conditions (Griffies and Bryan, 1997; Collins and Sinha, 2003;

Pohlmann et al., 2004). More recent DCP studies, which compare

predictions with the reconstructions of the recent past climate

from the data assimilation products, show a different range of

predictability for different models from 4 to 10 years (Matei et al.,

2012; Persechino et al., 2013; Swingedouw et al., 2013; Polkova

et al., 2014; Mignot et al., 2016; Yang et al., 2021). Due to the

lack of long enough basin-wide and deep-ocean observational data,

the actual prediction skill for the AMOC is difficult to assess. The

best assessment that we can currently perform is against the data

assimilation products, e.g., ocean reanalyses, but they poorly agree

with each other (Karspeck et al., 2015; Jackson et al., 2019).

DCPs aim to provide the most accurate predictions of the

near-term climate. In addition to the external forcing, they utilize

the knowledge of the observed climate state. The components of

the Earth System Models that are usually synchronized with the

recently observed climate state are the ocean and the atmosphere

(Meehl et al., 2014; Boer et al., 2016). Mostly, the studies are

interested in predicting user-relevant climate indices for their

further application in climate services (Marotzke et al., 2016; Smith

et al., 2019; Solaraju-Murali et al., 2022). Several studies that have

assessed the prediction skill for the AMOC from the DCPs reported

some issues in the initialization of the AMOC (Smith et al., 2013;

Kröger et al., 2017; Bilbao et al., 2021). For instance, Kröger et al.

(2017) showed that errors generated during the full-field nudging

procedure applied to the MPI-ESM led to artificial ocean heat

transport (OHT) in the interior of the ocean. This, in turn, had an

impact on the AMOC and led to large errors in surface temperature

predictions in theNorth Atlantic region. Bilbao et al. (2021) showed

that in the full-field initialized EC-Earth3 predictions, the SPG

has poor skill due to an initialization shock which led to the

collapse of the Labrador Sea convection and a rapid decline in the

AMOC. So far, it has not been studied if AMOC initialization errors

occur in other prediction systems and if they have an effect on

the predictability of other climate variables as shown by Kröger

et al. (2017). Moreover, there is not any study that has leveraged

the multi-model ensemble to make general conclusions about the

impact of initialization shock like our study aims to do. In terms

of the terminology, it is worth mentioning that, theoretically, there

is a distinction between initialization shock that results from an

imperfect initialization method and model drift that occurs due

to the existence of biases and is independent of initialization.

Practically, these two types of errors are difficult to separate from

each other (Mulholland et al., 2015), and sometimes the terms are

used interchangeably. As we analyze the DCPs, we are interested

to learn about both types of errors but in particular about those

related to initialization that we hopefully can fix with more skillful

initialization procedures.

Here, we examine DCPs contributing to the annually-issued

World Meteorological Organization’s (WMO’s) Global Annual to

Decadal Climate Update (Hermanson et al., 2022; www.wmolc-

adcp.org). To study the effects of initialization shocks, both

predictions and their initial conditions (produced with data-

constrained assimilation runs) are needed. The assimilation runs

are often considered as an intermediate step to produce initial

conditions and usually do not receive attention in publications as

much as the ocean or atmosphere reanalyses do. The quality of
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the assimilation runs is thus usually indirectly confirmed by the

prediction skill of the DCPs. However, carrying out a full set of

retrospective and future DCPs is an expensive effort (one set of

hindcasts accounts for about 6,000 model years), and thus, it would

be useful to identify possible initialization issues at earlier stages,

which might lead to reduction of predictions’ quality. Specifically,

we analyze AMOC initial shocks resulting from the initialization

and data assimilation procedures. The North Atlantic is the region

where initialization is reported to bring most of the improvement

in DCPs (Boer et al., 2013; Meehl et al., 2014). In particular, the

subpolar gyre exhibits longer skill than other regions of the ocean

in terms of surface temperature and ocean heat content (Polkova

et al., 2019). The SPG is an important region for the deep water

formation (Rhein et al., 2011). Thus, we aim to identify possible

links between the AMOC initialization aspects and the prediction

skill at the ocean interface in the region of the North Atlantic

subpolar gyre.

2 Materials and methods

The multi-model ensemble forecasts are a part of the

operational decadal predictions hosted by the WMO and

coordinated by the Met Office (Hermanson et al., 2022). The

decadal predictions are produced by the WMO-designated Global

Producing Centres and other contributing centers. The decadal

predictions include DCPP-A experiments (Decadal Climate

Prediction Project Component A; Boer et al., 2016) of the

CMIP6 (Climate Model Intercomparison Project Phase 6). From

this data set, we analyze near-surface air temperature and the

AMOC stream function. In addition to the decadal predictions,

the CMIP6 historical (uninitialized) simulations for near-surface

air temperature from the same prediction systems are used to

distinguish the impact of external forcing from that of initialization.

The DCPs were produced with the following prediction

systems: MPI-ESM-LR, MIROC6, GFDL SPEAR, CanCM4, CAFE,

FGOALS-f3-L, MRI-ESM2, NorCPM1, BSC EC-Earth3, CMCC-

CM2-SR5, SMHI+DMI EC-Earth3, and HadGEM3-GC31-MM

(hereafter DePreSys4). Except for CanCM4 which contributed to

CMIP5, all other prediction systems are contribution to CMIP6.

The DCPs are ensembles of 10-year simulations, except of those

from MRI-ESM2 that represent 5-year simulations. Retrospective

predictions are initialized every year. The starting month differs

across the prediction systems (October, November or January). We

analyze the prediction skill over the common initialization period

for the retrospective DCPs (hindcast period) that is 1961–2018.

Further details on DCPs are presented in Table 1 and under the

System Configuration Information for Global Producing Centers

at www.wmolc-adcp.org.

We analyze the effect of AMOC initialization shock on

the prediction skill of the North Atlantic subpolar gyre (SPG).

The SPG index is calculated as the average of the near-surface

temperature anomalies (w.r.t. to climatology over the period

1991–2020) over the region 45–67◦N and 60–0◦W (Robson

et al., 2018). The choice of the climatology period follows the

WMO recommendations (https://community.wmo.int/en/wmo-

climatological-normals). ERA5 (Hersbach et al., 2020) and RAPID

(Bryden et al., 2014) are used as the reference (observational)

datasets. We apply the anomaly correlation coefficient, root

mean square error, and residual correlation (Smith et al., 2019)

as the verification metrics. For residual correlation, residual

predicted and observed time-series are generated. For this, the

uninitialized ensemble mean is removed via linear regression from

the predicted and observed time-series, respectively (see for details

Smith et al., 2019). The residuals represent the variability that

cannot be captured by the uninitialized simulations and their

correlation represents the impact of initialization. To evaluate

residual correlation for the SPG index, we use the historical

simulations that are available for the following models: MPI-

ESM-LR (10 members), MIROC6 (33 members), GFDL SPEAR

(1 member), CanCM4 (9 members), MRI-ESM2 (10 members),

BSC EC-Earth3 (14 members), CMCC-CM2-SR5 (1 member),

DePreSys4 (4 members), NorCPM1 (30 members), and FGOALS-

f3-L (3 members). Two models, BSC EC-Earth3 and SMHI+DMI

EC-Earth3, share the same historical simulations. For all the former

models, in the diagnostics of residual correlation, we removed in

the DCPs the external forcing signals estimated from the historical

simulations stemming from the same model. For CAFE, since we

do not have the corresponding historical simulations, we used the

115 members multi-model ensemble mean of the historical runs

from the available models.

3 Results

3.1 Prediction skill for the SPG

We analyze predictions of the SPG index from the 12 DCP

experiments (Figure 1). Overall, most DCPs predict the observed

warming in the 1990s and cooling in the 2010s. Some models

struggle with predicting the warming anomalies in the recent

observed decade (e.g., GFDL SPEAR and NorCPM1). In addition,

in the early initialization period of the 1960s–1980s, half of the

prediction systems show lower SPG temperature anomalies than

the ERA5 atmospheric reanalysis suggests (i.e., GFDL SPEAR,

MRI-ESM2, BSC EC-Earth3, CMCC-CM2-SR5, SMHI+DMI EC-

Earth3, and DePreSys4). This might have a relation to rather sparse

observational records for temperature and salinity profiles that

are used for initialization for that period (de Boisséson et al.,

2018). Interestingly, GFDL SPEAR which only implements ocean

surface initialization also shows lower SPG temperature anomalies

than ERA5. Another reason could be that the DCPs overestimate

warming trend. Since the climatological period for bias-correction

is 1991–2020, DCPs with a too large trend would appear colder in

the earlier period.

The prediction skill for the SPG index is shown in Figure 2.

The models MPI-ESM-LR and CanCM4, as well as FGOALS-f3-

L, show reduced SPG skill in terms of correlation, especially for

the second pentad (Figure 2A). A few other models such as BSC

EC-Earth3 and SMHI+DMI EC-Earth3 show enhanced root mean

square errors (Figure 2B), possibly due to errors that have been

associated with a non-stationary expression of the forecast drift

(Bilbao et al., 2021). Overall, correlation and root mean square

error for other models are consistent with each other and support

long-lasting predictability for the SPG. The prediction skill from

the multi-model DCP experiments, some of which are also used in
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TABLE 1 WMO decadal predictions and their specifications.

Model (institution) Members
(start month)

Resolution for atm and ocn Initialization References

MPI-ESM-LR (DWD) 16 (Nov) T63L47 and 1.5◦L40 FF atm nudg and FF ocn EnKF Hövel et al., 2022

GFDL SPEAR (GFDL) 10 (Jan) 100 kmL33 and 1◦L75 FF atm nudg and FF SST nudg Yang et al., 2021

CanCM4 (CCCMA) 10 (Jan) T63L35 and 1.4◦×0.9◦L40 FF atm IAU and FF offline ocn Merryfield et al., 2013

CAFE (CSIRO) 10 (Nov) 2◦×2.5◦L24 and tripolar L50 FF atm EnKF and FF ocn EnKF Sandery et al., 2020

CMCC-CM2-SR5 (CMCC) 10 (Nov) 0.9◦×1.25◦L30 and 1◦L50 FF atm nudg and FF ocn nudg Nicolì et al., 2023

EC-Earth3 (BSC) 10 (Nov) T255L91 and 1◦L75 FF ERA5 and FF offline ocn Bilbao et al., 2021

HadGEM3-GC31-MM (MOHC) 10 (Nov) N216L85 and 0.25◦L75 FF atm nudg and FF ocn nudg

MIROC6 (JAMSTEC/ UT/NIES) 10 (Nov) T85L81 and 1◦L62 FF JRA55 and AN ocn IAU Kataoka et al., 2020

FGOALS-f3-L (LASG) 3 (Nov) 100 kmL32 and tripolar L31 AN ocn EnOI-IAU Wu et al., 2018

MRI-ESM2 (MRI) 10 (Nov) 100 kmL80 and 100 kmL61 AN ocn gridded T/S Yukimoto et al., 2019

NorCPM1 (BCCR) 10 (Oct) 1.9×2.5◦L26 and 1◦L53 AN ocn EnKF Bethke et al., 2021

EC-Earth3 (SMHI+DMI) 15 (Nov) T255L91 and 1◦L75 FF atm nudg and AN ocn nudg Tian et al., 2021

FF, full field; AN, anomaly field; atm, atmosphere; ocn, ocean; nudg, nudging,; EnKF, Enseble Kalman Filter; IAU, incremental analysis updating; EnOI, Ensemble Optimal Interpolation; SST,

sea surface temperature; T/S, temperature and salinity; T63, T85, and T255, atmospheric model spectral resolution; L, number of vertical levels.

our analysis, has been previously reported byHegerl et al. (2021) for

the subpolar gyre and by Delgado-Torres et al. (2022) and Kim et al.

(2012) for the AtlanticMultidecadal Variability index. Similar to the

results in our study, Hegerl et al. (2021) and Delgado-Torres et al.

(2022) suggest low SPG skill forMPI-ESM-LR and Kim et al. (2012)

suggest low Atlantic Multidecadal Variability skill for CanCM4.

The prediction skill for the SPG might be dominated by

the externally forced signal (Borchert et al., 2021). Therefore,

to assess the impact of initialization, we analyze the residual

correlation (Figure 2C). The analysis of the residual correlation

reveals a larger spread among DCPs from different models than

that of the total correlation (Figure 2A); more DCP experiments

from various models fall below the multi-model average of DCPs

(Figure 2C). Overall, the residual correlation tends to be not

statistically significant for the DCPs that show low skill either

in terms of the root mean square error (Figure 2B) or anomaly

correlation (Figure 2A).

3.2 AMOC after initialization

To analyze the prediction skill of the SPG index linked with the

AMOC initialization, the initial conditions from the assimilation

runs are needed. Due to the absence of these runs in the WMO

dataset, we use the respective first month of each DCP as a proxy

for the initial state and further examine decadal predictions from

the first few months to few years after the initialization. The

target here is to look for abrupt changes indicative of the potential

shock from initial conditions when the system is released from

observational constraints. The overturning cells in different models

in the first month after initialization exhibit large differences

(Figure 3). Due to different initialization months (Table 1), the

AMOC cells from different models for the first lead month cannot

be directly compared with each other. The analysis of the timeseries

of the AMOC leadtime-dependent climatology at 25◦N and 40◦N

shows that AMOC experiences drift of 1 to 12 Sv depending on the

model and latitude (Figure 4 and Supplementary Figures 1, 2). The

AMOC drift is approximately linear initially and, for some DCPs,

it saturates after several years (e.g., MPI-ESM-LR, CMCC-CM2-

SR5, andNorCPM1; Figure 4 and Supplementary Figures 1, 2). The

AMOC drift is also not stationary, i.e., in some models, it is

larger in the earlier initialization period (e.g., BSC EC-Earth3 and

CAFE; Supplementary Figures 1–4) and in other models in the

more recent initialization period (e.g., MPI-ESM-LR and GFDL

SPEAR; Supplementary Figures 1–4).

Comparing the initial AMOC cells of each DCP with that of

at later lead years suggests a distorted cell structure in some of the

DCPs at the initialization step (e.g., MPI-ESM-LR and CanCM4;

Supplementary Figures 5–7). During integration, the upper AMOC

cell in DCPs “recovers” presumably to the preferable model’s

state; however, depending on the severity of the initialization

shock, this process might take different times in various DCPs.

To visualize the AMOC drift for the whole Atlantic basin, we

fit the linear regression to the leadtime-dependent climatology of

AMOC (Figure 5). The climatology is calculated over the period

1991–2020, which is used to diagnose the bias for the bias-

correction procedure in DCPs. If the AMOC drift is associated

with the ocean heat transport toward or from the SPG gyre, it

could affect the variability of the SPG, especially in the later lead

years (2nd pentad) as previous studies showed that changes in

the AMOC in northern high latitudes lead temperature anomaly

in the subpolar gyre region by several years (Zhang and Zhang,

2015; Borchert et al., 2018). The AMOC was shown to affect the

skill of the SPG in one of the early development stages of the

decadal prediction system based on MPI-ESM-LR (Marotzke et al.,

2016; Kröger et al., 2017, with the ocean initialization based on

full-field nudging). Similarly, Robson et al. (2012) showed for the

earlier version of DePreSys that ocean heat transport changes are

responsible for the predictability of the SPG in the 1990s and that

successful AMOC initialization was essential for skilful temperature

predictions. Thus, in the following, we analyze the AMOC drift in

more details and contrast it against the SPG skill in themulti-model

ensemble.
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FIGURE 1

The time-series for the North Atlantic SPG index from ERA5 (black, all panels), the ensemble mean of the historical simulations (in red, lower panel),

and the WMO initialized decadal predictions for di�erent starting dates (in color, corresponding panel). The ensemble mean of the multi-model

ensemble of all DCPs is shown in multi-color in the lower panel. The SPG index is calculated as the average of the near-surface temperature

anomalies over the region 45–67◦N and 60–0◦W. The lead-time dependent bias (calculated with respect to 1991–2020) is removed from the

hindcasts’ time-series of the SPG index.

Several models show large trends in the overturning cells,

pointing to the regions where models attempt to fix the AMOC

structure after the initialization shock (Figure 5). For example, in

CanCM4, there is more overturning in the northern hemisphere

and less in the southern one. In MPI-ESM-LR, there is more

overturning in 0-20◦N, where there is a split of the upper

overturning cell at the initialization step (Figure 3). These trends

originate from initialization as the models in non-initialized

experiments do not show such features; (e.g., for CanCM4 and

MPI-ESM-LR; Yang and Saenko, 2012; Brune and Baehr, 2020).

The DCPs with the largest drift are full-field initialized (Figure 5).

Further analysis of the errors in AMOC from different DCPs are

presented in Supplementary Figures 1–9. For example, comparing

the AMOC cells among different models in the first month after

initialization shows multiple maxima in several models, e.g., for

MPI-ESM-LR and DePreSys4. However, without observing the

AMOC cells from historical simulations for all models, it is

difficult to assess how unusual the AMOC mean state is just after

initialization and, if the AMOC in later lead years, represents the

AMOC of themodel attractor or if it would continue to drift further

(beyond 10 lead years).

Overall, several models stand out in terms of both reduced

prediction skill for the SPG in the later lead years (Figure 2)

and overturning cell features (such as multiple maxima of the

mean AMOC cell, AMOC drift, or AMOC root mean square

error w.r.t. RAPID): MPI-ESM-LR, CanCM4, FGOALS-f3-L, BSC

EC-Earth3, and SMHI+DMI EC-Earth3. A possible link between

the drop of the prediction skill in the full-field initialized DCPs

for their SPG surface temperatures could be the drift in the

meridional ocean heat transport (OHT) induced by the assimilation

procedure as reported by Kröger et al. (2017). Anomaly initialized

predictions can also experience drifts, although somewhat smaller,

when the anomalies, from which predictions are initialized, are

not compatible with the simulated variability range. In fact, from
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FIGURE 2

Prediction skill for the SPG index in terms of the anomaly correlation coe�cient (corr; A), root mean square error (rmse in ◦C; B) and the residual

correlation (residual corr; C). The skill is calculated over the period 1961–2018. The skill for the multi-model average of DCPs is in solid black and for

the multi-model average of DCPs based on the four models, the choice for which will be explained at the end of Section 3 is in dashed red. The skill

for the multi-model average of historical simulations is in dashed black. For correlation, the significant values are estimated with the t-test (p < 0.05;

Smith et al., 2019) and significant correlation values in (A, C) are shown in bold lines.

Figures 4, 5 and Supplementary Figures 1, 2, it is evident that the

anomaly-initialized DCPs also experience AMOC drift (MIROC6,

FGOALS-f3-L and NorCPM1). Following the hypothesis of OHT

being driven by the AMOC (Zhang and Zhang, 2015), Borchert

et al. (2018) showed that in the North Atlantic region, the AMOC

and the OHT are highly correlated and that OHT changes at 50◦N

lead to changes in the North Atlantic sea surface temperature by

up to 9 years. To investigate the AMOC fingerprint, they identified

the range of latitudes for the propagation of AMOC anomalies

stretching between 40◦N and 50◦N.

3.3 Relationship between the AMOC drift
and the SPG skill

Thus, as shown in Figure 6A, we contrast the SPG residual

correlation for the second pentad of the DCPs (lead years 6–10)

and the AMOC drift associated with initialization in the range

of latitudes 40–50◦N and depth 0–5,000 m. The mean AMOC

drift in the larger latitudinal band 20–60◦N vs. SPG residual

skill is shown in Supplementary Figure 10. We also contrast the

SPG skill and the AMOC root mean square error estimated with

respect to the RAPID data (Figure 6B). When contrasting the

AMOC drift and the SPG residual skill, three models fall into the

region of low SPG residual skill and high AMOC drift: CanCM4,

BSC EC-Earth3, and MPI-ESM-LR. All three models use full-

field initialization in the ocean. The other four models with low

SPG residual skill show small drift in the region: among them,

MIROC6, SMHI+DMI EC-Earth3, FGOALS-f3-L, and NorCPM1.

For the latter, the SPG residual skill is statistically significant. They

are anomaly initialized in the ocean. The rest of the models are

full-field initialized and show small drift at 40–50◦N as well as

high and significant residual correlation. This suggests that the

strong AMOC drift that originates from initialization can affect

the evolution of the SPG in the later lead years. However, this

does not seem to be the only reason why some models lack

predictability due to internal variability in the absence of the

large drift. For the anomaly initialized models, this might be poor

representation of the observed anomalies, with the large biases

being an indicator of poor initialization. Due to the absence of

long-enough observational AMOC data in the range of latitudes

40–50◦N, we cannot estimate the relation between the AMOC skill

in higher latitudes and the SPG skill. Instead we analyzed AMOC

root mean square error at 25◦N, as shown in Figure 6B. The root

mean square error does not only focus on the initial shock but is a

general measure of prediction errors. Similar to Figure 6A, it also

points at the models CanCM4 and MPI-ESM-LR with large-scale

ocean circulation errors which echo in the SPG skill. Figure 6B also

highlights NorCPM1 that has a very large bias for the AMOC.

For the full-field initialized DCPs that fall into the category

of low AMOC drift (CAFE, CMCC-CM2-SR5, DePreSys4, and
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FIGURE 3

The AMOC cells at the first lead month after initialization (LM1) averaged over the period 1991–2020. Notably, the initialization month is di�erent

among the prediction systems: October, November, or January (see Table 1).

GFDL SPEAR), we recalculated the prediction skill based on the

ensemble mean constructed from these models. The subsellected

multi-model mean beats the prediction skill of the full multi-

model ensemble mean, especially in the last pentad of the decadal

prediction years (shown in red dash in Figure 2).

Previous studies suggest the importance of SPG-AMOC

coupling in the models (Sun et al., 2021). In this respect, Yang et al.

(2021) found that GFDL SPEAR’s predicted SPG temperatures at

three different lead times (including 6–10 lead years) are highly

correlated with the corresponding initial values of AMOC with

correlations larger than 0.75. The initialization that updates the

ocean surface and the atmosphere states with observations without

breaking up this coupling could explain high skill for the SPG in

this model. We analyzed correlation between AMOC at 40◦N and

1,000 m depth for lead year 1 and SPG temperatures for lead years

6–10 from the WMO ensemble of DCPs. From four DCP systems

(with low AMOC drift and high SPG residual skill), CMCC-CM2-

SR5, GFDL SPEAR, and CAFE indeed show statistically significant

correlation between the time-series of the initial AMOC at 40◦N

and the SPG index at later lead years (Supplementary Figure 11).

This does not necessarily mean that other models, when not

initialized, do not have this relationship. However, lacking or out
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FIGURE 4

AMOC drift for the period 1991–2020 at 40◦N and 1,000 m depth

calculated as absolute di�erence between AMOC climatology at

each lead year and AMOC climatology at the 1st lead year.

of phase relationship particularly in the prediction mode represents

yet another indicator of initialization issues.

4 Summary and discussion

While the research centers assimilate ocean and atmosphere

observations from the same data, they use different models and

different assimilation/initialization methods. Ocean circulation

reacts sensitively to these different choices so that the initial ocean

state varies across different DCPs. In our study, we dealt with the

question: why do the decadal prediction systems start from so

different ocean circulations but the prediction skill at the ocean

surface is similar and hardly improves the skill over the historical

simulations (Borchert et al., 2021)? Our results show that this may

appear so at first glance because the skill at the air–sea interface is

largely dominated by the externally forced response. The picture

starts changing when we analyze the skill due to internal variability

such that DCPs that appear to have smaller errors in initial Atlantic

meridional overturning circulation have a better total skill for the

subpolar gyre than a multi-model average of DCPs. Below, we

summarize several key findings and recommendations for future

studies:

• Multi-model and single-model predictions (e.g., CAFE and

CMCC-CM2-SR5) of the SPG index are skilful on decadal

time scales. Evaluations of residual variability obtained from

linear regression against historical simulations suggest that the

prediction skill of most of the DCPs is largely explained by

the forced response, while tentative initialization of internal

variability provide additional skill in the later lead years

only in a few prediction systems (Figure 2). We identified

systematic behavior of the initialized predictions in the 1960–

80s, where most of the DCPs underestimated or overestimated

temperature in the SPG region. Excluding the 1960–80s period

from the analysis improved the prediction skill of somemodels

(Supplementary Figure 12). This result calls for improving the

reconstruction runs that provide the initial conditions for

DCPs over 1960–80s or at least keeping in mind the possible

poor performance of the DCPs in this verification period.

• The analysis of the lead-time dependent climatology of

multiple DCP systems indicates individual initialization errors

in the AMOC, e.g., multiple maxima in MPI-ESM-LR, strong

AMOC drifts in MPI-ESM-LR, CanCM4 and BSC EC-Earth3,

and large AMOC biases in NorCPM1. DCPs that initially

have strong AMOC drift at 40–50◦N also have generally low

residual skill in the SPG for the 2nd pentad of the prediction

period. The analysis indicates that the mechanism affecting

the skill reduction is not local and instantaneous but rather

remotely driven and lagged, presumably via changes in the

ocean heat transport.

The study retains several open questions, and we would

like to encourage the scientific community to contribute to the

investigations since very multi-model analysis of initial shock

is quite scarce, while this might constitute a crucial issue for

decadal prediction systems as highlighted here. For instance,

the effect of the drift is expected to be removed by the lead-

time dependent bias correction. However, we observe that the

lead-time dependent bias-correction does not seem to completely

debias the AMOC predictions (Supplementary Figures 4, 5), which

might also explain their low skill for the SPG index. On the

other hand, if initialization/assimilation could indeed introduce

artificial flows in the dynamically sensitive regions as suggested

by Kröger et al. (2017), they might also evolve the observed

anomaly contained in the initial conditions, modifying potential

internal variability and creating main signal that is a drift. It

thus appears necessary to further analyze the exact mechanism by

which the AMOC drift and other errors could affect the SPG skill

in DCPs.

The mechanism proposed by Borchert et al. (2018) about

strong OHT leading to high SPG skill could be considered

to understand better the relation between strong AMOC and

OHT drifts and the SPG skill. For instance, models with weak

AMOC mean state might be prone to having low prediction

skill. Moreover, too low or too high AMOC variability could

also have a negative impact on the prediction skill because the

response to AMOC variability will not be appropriate. Further

analysis of the assimilation runs and ocean heat content budget

as in the study by Kröger et al. (2017) might be useful to

trace origins of the initialization shock of the ocean circulation.

We thus encourage the research groups that will contribute to

future DCP and CMIP experiments along with DCPs to also plan

providing initial conditions (assimilation runs) to better assess

the impact of initialization shock. In addition, we encourage

more institutes to contribute to WMO decadal prediction project,

in order to increase the sampling for multi-model analysis,

which will also improve the robustness of the results from this

international initiative.
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FIGURE 5

AMOC drift (Sv/year) calculated in terms of the slope of the linear regression fitted into 10 lead years of the leadtime-dependent climatology of

AMOC, except of MRI-ESM2, for which the fit is performed over 5 lead years. The climatology is calculated over the period 1991–2020. The panels

have a di�erent range of the colorbar.

The analysis of AMOC initial shock in depth space is

recommended for future studies to gain more insight into the

problem from the point of view of the water mass transformation

across isopycnals. The AMOC indices in depth and density space

are equivalent as long as the isopycnals are relatively flat across the

basin, which is the case in the tropical and subtropical regions but

not in the subpolar region (50–60◦N; Xu et al., 2014). In our current

analysis, we relate the skill of the SPG with the heat transport

between 40 and 50◦N, where the relation between the two AMOC

indices is still rather high.

AMOC is one of the diagnostics for the assimilation runs.

In the attempt to answer the question of how good should the

AMOC be in the assimilation runs, it appears reasonable to aim

at representing a realistic vertical structure of the AMOC. It

is necessary to further evaluate the strength and variability of

AMOC on obtaining the right impact on the SPG and density

dominance by temperature or salinity (Menary and Hermanson,

2018). Our study shows that DCPs with low SPG skill also

have AMOC errors (strong and non-stationary drifts). In this

study, we could not contrast the AMOC residual skill against
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FIGURE 6

SPG residual skill for lead years 6–10 vs. AMOC drift (A) and vs. AMOC rmse (Sv) w.r.t. RAPID data at the first lead year (B). The significant SPG residual

skill (in black circles) is estimated with the t-test, p < 0.05 (Smith et al., 2019). The AMOC drift is diagnosed as the slope of the linear regression fitted

to 10 lead years of the leadtime-dependent AMOC climatology. Climatology is estimated for the period 1991–2020. Then, L2-norm of the AMOC

drift is calculated for the region 40–50◦N and 0–5,000 m depth as the sum of the squared AMOC drift values in each grid cell. Orange markers signify

anomaly initialized DCPs, blue markers full-field initialized.

the SPG residual skill mostly because the WMO dataset lacked

the respective historical simulations for AMOC. The AMOC root

mean square error w.r.t. RAPID points at the DCPs with both

drifts and biases, suggesting value for continuing the RAPID

as well as OSNAP (Overturning in the Subpolar North Atlantic

Program) observing periods, to guide and improve the tuning

of the underlying climate models, and the production of more

realistic assimilation runs to provide initial conditions. For the

3D AMOC view, it remains difficult to judge what the good or

realistic structure of the AMOC should be in each model. In

this respect, the ocean reanalyses remain our best estimate so

far.
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