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Abstract

Background: The nonrandom distribution of alleles of common genomic variants produces haplotypes, which are fundamental in
medical and population genetic studies. Consequently, protein-coding genes with different co-occurring sets of alleles can encode
different amino acid sequences: protein haplotypes. These protein haplotypes are present in biological samples and detectable by
mass spectrometry, but they are not accounted for in proteomic searches. Consequently, the impact of haplotypic variation on the
results of proteomic searches and the discoverability of peptides specific to haplotypes remain unknown.

Findings: Here, we study how common genetic haplotypes influence the proteomic search space and investigate the possibility to
match peptides containing multiple amino acid substitutions to a publicly available data set of mass spectra. We found that for
12.42% of the discoverable amino acid substitutions encoded by common haplotypes, 2 or more substitutions may co-occur in the
same peptide after tryptic digestion of the protein haplotypes. We identified 352 spectra that matched to such multivariant peptides,
and out of the 4,582 amino acid substitutions identified, 6.37% were covered by multivariant peptides. However, the evaluation of
the reliability of these matches remains challenging, suggesting that refined error rate estimation procedures are needed for such
complex proteomic searches.

Conclusions: As these procedures become available and the ability to analyze protein haplotypes increases, we anticipate that pro-

teomics will provide new information on the consequences of common variation, across tissues and time.
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Background

Linkage disequilibrium (LD) describes the nonrandom correla-
tion between alleles at different positions in the genome in a
population. LD arises when alleles at nearby sites co-occur on
the same haplotype more often than expected by chance. When
haplotypes are located in protein-coding portions of the genome
and include nonsynonymous changes, they can alter protein
sequences, forming so-called protein haplotypes, as defined by
Spooner et al. [1]. Based on the co-occurrence of alleles in the
1000 Genomes Project [2] and their in silico translation, Spooner
et al. [1] created a list of possible protein haplotype sequences.
Notably, they stress that for 1 in 7 genes, the most frequent pro-
tein haplotype differs from the reference sequence in Ensembl
[3]. In precision medicine, probing the proteotype—the actual
state of the proteome—adds valuable information concerning
the relationship between the genotype and the phenotype [4].
Therefore, it is important that genetic information, including LD,
is taken into account in proteomics searches.

Proteins in biological samples can be identified by liquid
chromatography coupled to mass spectrometry (LC-MS), usually

after digestion into peptides [5]. Then, the measured spectra are
matched to a database of expected protein sequences using a
search engine [6]. The identified peptides are used to infer the
presence of proteins [7] along with potential posttranslational
modifications (PTMs) [8]. When the peptides cover the relevant
parts of the protein sequences, it is also possible to discover
the product of alternative splicing or genetic variation [9]. In
precision medicine, proteomic searches need to be adapted to
individual patient profiles by extending the search space to
include noncanonical sequences [10].

This challenge is addressed by proteogenomics—the scientific
field integrating genomics and proteomics into a joint approach
[9, 11]. Recent work, mainly in the domain of cancer research, has
shown that accounting for genetic variation in proteomic analy-
ses provides the means to discover noncanonical proteins. Umer
et al. [12] have developed a tool to generate databases of variant
proteins derived from single-nucleotide polymorphisms (SNPs),
insertions and deletions, and the 3-frame translation of pseudo-
genes and noncanonical transcripts, appended with a database
of canonical proteins [12]. Levitsky et al. [13] use measures of
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A Mapping of 2,647,815 unique discoverable tryptic peptides
variation always canonical
80.73% of the proteome is covered by canonical peptides
W 782%  of the proteome maps to peptides that may contain variation
11.45% notdiscoverable
B Types of expected tryptic peptides
Coverage always canonical variation variation

Reference protein

Protein haplotype

Canonical peptide

ANV RAKKESSWVTPES
ANVDEDRAKKESSWVTPES

KESWLTGK
KESWLTGK

MHSLPGVVAVGYINEAIDEGNPLRDEIQQAVEC
MHSLPGVVAVGYINEAIDEGNPLRDEIQQAVD

Single-variant peptide Multi-variant peptide ~ ——= Linked a.a. substitutions

c 102,595 discoverable amino acid substitutions
87.58% always discoverable in single-variant peptides
239%  discoverable only in multi-variant peptides
10.03 %

discoverable in multi-variant or single-variant peptides, depending on the
number of missed cleavage sites or splicing

Figure 1: (A) Proteome coverage expressed in terms of the percentage of amino acids; that is, if 7 out of 100 residues belong to at least 1 discoverable
peptide containing the product of a substitution, we say that 7% of the proteome maps to peptides containing variation. See main text for details and
Materials and Methods for the handling of shared peptides. (B) Example of a reference sequence aligned to another haplotype. The classes of peptides
following the cleavage pattern of trypsin are highlighted by a colored background. Three amino acid substitutions encoded by this haplotype are
marked by red rectangles. The “coverage” layer indicates the alignment applied to obtain numbers shown in section A. (C) Distribution of variation in
discoverable peptides. Amino acid variants are stratified based on the category of peptide in which the substitution caused by the respective variant

can be identified.

proteome coverage, including variant peptides, to verify the pres-
ence of single amino acid variants. Choong et al. [14] proposed an
algorithm to generate the optimal number of protein sequences
containing combinations of amino acid substitutions possibly
occurring in the same tryptic peptide. In their approach, the
database includes not only the combinations of alleles encoded
by haplotypes but all combinations possible per peptide. Lobas
et al. [15, 16] showed that peptides containing variation were 2.5
to 3 times less likely to be identified than canonical peptides.
Wang et al. [17] have analyzed data for 29 paired healthy human
tissues from the Human Proteome Atlas project to detect amino
acid variants at the protein level. However, the majority of amino
acid variants predicted from exome sequencing could not be
detected [17], suggesting that proteogenomics remains highly
challenging and methods for discovering noncanonical proteins
need further development.

Here, we used the protein haplotypes generated by Spooner
et al. [1] to evaluate the ability of mass spectrometry-based pro-
teomics to identify peptides encoded by combinations of variants
in LD. We show that in some protein haplotypes, multiple amino
acid substitutions affect the same peptide after digestion. Those
protein haplotypes can only be identified if the combinations of
amino acid variants are included in the search space, and sev-
eral of these protein haplotypes are predicted to be more common
than the reference sequence. Then, we mined the publicly avail-
able data from Wang et al. [17] for peptides including a combina-
tion of amino acid variants, demonstrating how such peptides can
be identified according to the standards of the field but also how
the quality control of the results remains challenging.

Results

The consequence of haplotypes on the
proteomics search space

We digested in silico the protein sequences translated from haplo-
types obtained from Spooner et al. [1] using the canonical cleav-
age pattern of trypsin, allowing for up to 2 missed cleavages. Note
that indels were not considered, and we focused only on common
variants with a minor allele frequency >1% in any population of
the 1000 Genomes Project [2]; see Materials and Methods for de-
tails. After excluding contaminants, this yielded 2,647,815 unique
tryptic peptide sequences of length between 8 and 40 amino acids
(Fig. 1A). The coverage of protein sequences from Ensembl can
be partitioned as follows: 80.73% can only be covered by canoni-
cal peptides, 7.82% map to peptides that may contain 1 or multi-
ple amino acid substitutions, and the remaining yields sequences
that are either too short or too long to be identified. Most pep-
tides discoverable in proteomic studies therefore map to canoni-
cal sequences, making it challenging for nontargeted approaches
to assess the allelic status of a common genetic variant using pro-
teomics, in agreement with [15, 16].

We classify the obtained peptide sequences in 3 types (Fig. 1B):
(i) canonical, no haplotype is known to yield an amino acid sub-
stitution in the sequence of this peptide; (ii) single-variant, a hap-
lotype encodes an amino acid substitution in the sequence of
this peptide; and (iil) multivariant, a haplotype encodes a set of
2 or more amino acid substitutions in the sequence of this pep-
tide. In total, common haplotypes encode 102,595 amino acid
substitutions, with 87.58% of them found only in single-variant
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Figure 2: Classification of peptides based on their ability to distinguish between protein sequences (bar color) and to identify amino acid substitutions
(position on x-axis). The height of the bars represents the distribution of categories (nonspecific, protein-specific, proteoform-specific) among the

peptide types (canonical, single-variant, multivariant).

peptides, 2.39% in multivariant peptides, and 10.03% in either
single- or multivariant peptides depending on the number of
missed cleavages (Fig. 1C). Note that substitutions in different iso-
forms of the same protein are reported separately by Spooner
et al. [1], creating multiple consequences for the same genetic
variant. The total number of amino acid substitutions is con-
sequently higher than the number of genetic variants. Interest-
ingly, based on the frequencies among all participants in the 1000
Genomes project, 22.3% and 32.4% of the amino acid substitu-
tions discoverable in single-variant and multivariant peptides, re-
spectively, occur in protein haplotypes that are predicted to be
more frequent than the Ensembl reference sequence. If these alle-
les are not accounted for, proteomics analyses will, therefore, not
be able to identify these parts of the genome for the majority of
individuals.

Peptides can be classified based on their ability to distinguish
between protein sequences. We propose the following categories:
(i) nonspecific peptides map to the products of different genes; (ii)
protein-specific peptides map to multiple sequences, which are all
products of the same gene; and (iii) proteoform-specific peptides
map uniquely to a single form of a protein (i.e., single splice vari-
ant and haplotype), referred to as proteoform [18]. In this classi-
fication, based on the identification of a proteoform-specific pep-
tide, one can uniquely identify products of a given gene. A protein-
specific peptide allows for discriminating certain groups of pro-
teoforms but does not yield a single candidate sequence (e.g., it
determines which amino acid substitution is present but maps
to multiple splicing variants). Nonspecific peptide sequences map
to multiple genes, where the sequence of 1 gene matches the se-
quence of another, making it challenging to infer which protein is
covered. We found 198,046 distinct nonspecific peptide sequences,
covering up to 17.53% of the proteome. The prevalence of canon-
ical, single-variant, and multivariant peptides among the above
introduced types is displayed in Fig. 2, with exact numbers pro-

Table 1: Classification of peptides types and the number of in silico
digested peptides in each of the categories

Peptide type Peptide type Number of
(variation) (specificity) possible peptides
Canonical Proteoform-specific 291,400
Canonical Protein-specific 1,949,615
Canonical Nonspecific 196,255
Single-variant Proteoform-specific 47,583
Single-variant Protein-specific 147,308
Single-variant Nonspecific 1,652
Multivariant Proteoform-specific 4,282
Multivariant Protein-specific 9,581
Multivariant Nonspecific 139

vided in Table 1. As expected intuitively, peptides containing the
product of 1 or multiple variants present a higher ability to dis-
tinguish between protein products of different genes and between
proteoforms of the same gene.

Matching multivariant peptides to mass spectra

To investigate the prevalence of spectra matching multivariant
peptides encoded by common haplotypes and the quality of the
obtained matches, we searched the deep proteomics data of
healthy tonsil tissue made available by Wang et al. [17] against the
sequences of common protein haplotypes using X!Tandem [19]
as a search engine without refinement procedure and Percolator
[20] with standard features for the evaluation of the confidence
in all peptide-to-spectrum matches (PSMs). The resulting PSMs
were thresholded at a 1% PSM-level false discovery rate (FDR).
Note that because our study focuses on evaluating the quality of
the spectrum matches, a PSM-level FDR was therefore preferred to
peptide-level statistics. After thresholding, 1,318,152 target PSMs
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remained (13,467 decoy PSMs would have passed the threshold),
representing 176,193 unique peptide sequences (8,047 decoy pep-
tide sequences would have passed the threshold), covering the al-
ternative amino acid of 4,582 substitutions. The distribution of al-
ternative alleles among single- and multivariant peptides (Fig. 3A)
mirrored the values obtained from the in silico digestion of protein
haplotypes (Fig. 1C). On average, the products of 2,249.67 substi-
tutions were found per sample (2,360, 2,165, and 2,224 in samples
1, 2, and 3, respectively). The matched peptide sequences cover
21.56% of the proteome predicted to map exclusively to canonical
peptides and 16.89% of the proteome possibly mapping to pep-
tides with substitutions (Fig. 3B). Note, however, that 19,678 pep-
tide sequences (identified in 231,181 PSMs) map to the products of
multiple genes that cannot be distinguished, hence affecting the
coverage estimates.

Out of the 1,318,152 spectra matched to peptides, 0.57% were
matched to single-variant peptides and 0.03% were matched to
multivariant peptides. The share of spectra matched to variant
peptides is thus lower than the expected error rate, and cur-
rently, no method allows the evaluation of error rates in these
subgroups of matches specifically. We thus investigated whether
these classes of peptides showed signs of an overrepresentation
of false-positive matches. No substantial difference was notice-
able in the density of the posterior error probabilities (PEPs) and
g-values for all 3 classes of PSMs (Fig. 3C, D), indicating that a more
stringent FDR threshold would not alter the prevalence of variant
peptides. We also compared the observed peptide retention time
and fragmentation with predictions from DeepLC [21] and MS2PIP
[22], respectively. Overall, the density of the distance to prediction
in both retention time and fragmentation was very similar for all
3 classes of peptides (Fig. 3E, F), displaying no obvious shift in the
distribution, which would have been indicative of a strong over-
representation of false positives. Yet the distributions of variant
and multivariant peptides showed stronger tails toward high dis-
tance to prediction compared to nonvariant peptides, indicative
of the presence of false-positive matches. In comparison, the dis-
tance to prediction for decoys showed high retention time differ-
ence and low spectrum similarity.

Quality metrics on all matches are available as supplemen-
tary material. Three examples, sampled from the multivariant
matches passing the FDR threshold at low, medium, and high PEP,
representing high, medium, and low confidence, respectively, are
displayed in Fig. 4 along with the predicted spectra. As expected,
the share of peaks matching predicted fragment ions decreases
as the PEP increases: (A) the highly confident match presents an
excellent coverage of the spectrum with fragment ion masses,
with an extensive mapping of the peptide y-ion series; the re-
tention time distance to prediction of 320.8 seconds represents
only a fraction of the gradient (approximately 2.5 hours); and the
spectrum similarity to prediction, 0.79, shows good but not per-
fect agreement, which is in the lower range of the distribution
of similarity scores for the canonical matches. (B) The medium
confidence match presents a good coverage of the spectrum lack-
ing prediction for many peaks, and the agreement scores with
retention time and fragmentation predictions are excellent. (C)
The low confidence match presents a poor coverage of the spec-
trum with poor agreement with retention time and fragmentation
predictions. In addition to passing commonly accepted statistical
thresholds, the matches in Fig. 4A and B would pass expert qual-
ity control. On the other hand, the match in 4C is most probably
a false positive. Together, while these 3 sampled PSMs represent
only a limited set of examples, they are very representative of the
difficulty to confidently assess the presence of individual peptides

from large proteomic experiments. This task is, however, impor-
tant given that chimeric spectrum matches [23-26] and partial
matches are known to be difficult to account for in error rate es-
timation [27, 28].

As highlighted by Spooner et al. [1], depending on the pop-
ulation studied, specific haplotypes often have higher frequen-
cies than the canonical haplotype by Ensembl. For example, there
are 5 haplotypes of the IQ motif containing the GTPase activat-
ing protein 2 (IQGAP2, ENSP00000274364) gene that have higher
predicted frequencies than the canonical haplotype in the Eu-
ropean population (with combined frequency of 84.9% accord-
ing to Spooner et al. [1]). These haplotypes encode a tryptic pep-
tide containing 2 amino acid substitutions when compared to
the canonical sequence in Ensembl: VEWLDEIQQAVDEANVDEDR
(amino acid substitutions in bold). At position 527 of the pro-
tein sequence, aspartic acid is changed to glutamic acid (527D>E,
1s$2431352), and at position 532, lysine is changed to glutamic
acid (532K>E, rs2909888), preventing cleavage by trypsin. In our
results, 2 peptides overlapped with this sequence, 1 featuring a
missed cleavage, supported by 13 and 10 spectra, respectively.
Fig. 4D and E display 2 examples of highly confident matches,
and Supplementary Table S1 lists PEP, g-value, and agreement
with predictors for all PSMs. Altogether, the PEPs and agreement
with predictors for these PSMs support the identification of this
sequence and thus the presence of these haplotypes in the data
reported by Wang et al. [17], consistent with the frequencies of
these haplotypes in the European population. The sequence en-
coded by these haplotypes cannot be detected using canonical
databases.

For diploid chromosomes, in the absence of deletion or copy
number alteration, each individual carries 2 versions of a given
gene—1 paternally and 1 maternally inherited—which can rep-
resent different haplotypes. We thus expect to find evidence for
heterozygosity in some of the identified variants. We have come
across such cases in 26,21, and 19 genes in samples 1, 2, and 3, re-
spectively. For example, the protein CR1 (complement component
[3b/4b] receptor 1, ENSP00000356016) is commonly affected by
multiple SNPs. First, at the position 2060, threonine is commonly
changed to serine (2060T>S, rs4844609). Haplotypes including ser-
ine at position 2060 are expected in the European population with
the combined frequency of 98%. Second, at the position 2065,
isoleucine can be changed to valine (20651>V, 1s6691117); valine is
expected in the European population with a frequency of 22.57%.
However, a valine at position 2065 is only expected when preceded
by a serine at position 2060. In one of the samples, we identi-
fied spectra matching confidently to both a multivariant peptide
encoded by both alternative alleles (SFFSLTEIVR, substitutions in
bold) and to a single-variant peptide encoded by the alternative
allele of the first SNP (SFFSLTEIIR, substitution in bold). Mirrored
spectra and associated quality metrics are shown in Fig. 5. In this
case, including haplotypes in the protein database enables the
identification of not only the alternative but also the reference
allele of a variant.

While including the sequences from different haplotypes offers
the ability to detect new protein haplotypes, it also increases the
likelihood of similar peptides to map to different proteins. For ex-
ample, the protein POTE ankyrin domain family member I (POTEI,
ENSP00000392718) contains in its most frequent haplotype 8
amino acid substitutions, 2 of which fall into the same tryptic
peptide. In the actin-like domain of POTEI at position 918, tyrosine
changes to phenylalanine (918Y>F, rs147268452), and at position
929, methionine changes into threonine (929M=>T, rs201878083),
thus encoding the peptide LCFVALDFEQEMATAASSSSLEK
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Figure 3: A: Coverage of the proteome by identified peptides, stratified by the possibility to contain variation. Lighter shades indicate the coverage by
predicted peptides, darker shades represent the actual coverage by identified peptides. B: Distribution of variation in identified peptides. Amino acid
variants are stratified based on the category of peptide in which the substitution caused by the respective variant can be identified. C-F: Distribution of
four confidence measures among PSMs for peptide categories: posterior error probability (PEP), g-value, difference between observed and predicted
retention time, and angular similarity between the observed and predicted spectrum. Decoy PSMs for this comparison were thresholded to 1%
PSM-level FDR.

(Table 2). The frequency of this haplotype among participants
of the European population in the 1000 Genomes project is 46%,
while in this population, the aggregated frequency of all haplo-
types not containing any of these substitutions is 1.98%. However,
the sequence of the corresponding region of POTEI is highly simi-
lar to the sequence of actin beta (ACTB), actin gamma 1 (ACTG1),

and actin alpha 1 (ACTA1), differingin 1, 1, and 2 residues, respec-
tively. Such highly similar sequences represent peptides differing
in their composition by only a few atoms, a mass difference that
can be indistinguishable from a chemical or posttranslational
modification (e.g., a chemical modification of methionine can
be mistaken for a substitution of methionine to threonine [29]).
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Figure 4: Quality control metrics and spectra of 5 multivariant PSMs. Amino acid substitutions are marked in bold. PSM A is among the 10%
top-scoring matches to multivariant peptides by posterior error probability, B scores as the median value, and C is the lowest-scoring match to a
multivariant peptide. PSMs D and E are within the 5 top-scoring matches for the most common haplotype of IQGAP2. The posterior error probability as
obtained from Percolator is listed along with retention time difference to prediction as obtained from DeepLC and spectrum similarity with prediction
as obtained from MS2PIP. The intensity of the measured spectrum is plotted (top; blue, pink, and gray) with the scaled predicted intensity mirrored
(bottom; green and red). Peaks in the measured spectrum matching predictions are highlighted in blue, measured peaks matching an ion with a
missing intensity prediction are highlighted in pink, and other measured peaks are plotted in gray. Note that in this representation, peaks matching a
fragment ion with a predicted intensity of zero will not be annotated.
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Figure 5: Quality control metrics and spectra for PSMs matching both the reference (A) and the alternative (B) allele in the same sample. The posterior
error probability as obtained from Percolator is listed along with retention time difference to prediction as obtained from DeepLC and spectrum
similarity with prediction as obtained from MS2PIP. The intensity of the measured spectrum is plotted (top; blue, pink, and gray) with the scaled
predicted intensity mirrored (bottom; green and red). Peaks in the measured spectrum matching predictions are highlighted in blue, measured peaks
matching an ion with a missing intensity prediction are highlighted in pink, and other measured peaks are plotted in gray. Note that in this
representation, peaks matching a fragment ion with a predicted intensity of zero will not be annotated.

Table 2: PSMs mapping to the 5 highly similar protein sequences:
actin gamma 1 (ACTG1)/actin beta (ACTB), actin alpha 1 (ACTA1),
and 3 haplotypes of POTEI. REF marks the canonical sequence.
We specify the number of confident PSMs matching the sequence
of interest and number of samples with any spectra matching to
these peptides.

No. of
Peptide confident

Protein haplotype sequence PSMs
ACTG1: REF
ACTB: REE LCYVALDFEQEMATAASSSSLEK 3,298
ACTA1: REF LCYVALDFENEMATAASSSSLEK 385
POTEL REF LCYVALDFEQEMAMAASSSSLEK 103
POTEL 918Y>F929M>T LCFVALDFEQEMATAASSSSLEK 19
POTEL 918Y>F LCFVALDFEQEMAMAASSSSLEK 18

Therefore, telling these 2 proteins apart can be extremely
challenging when accounting for variants. Conversely, if only
canonical sequences are included in the database, the spectra ob-
tained from POTEI will be arbitrarily assigned to actin. Numbers
of spectra matching the corresponding regions of these proteins
are listed in Table 2. Matching spectra to each of the peptide
sequences in Table 2 have been identified in all 3 samples.

The need to distinguish very similar sequences makes the
use of haplotype-specific databases particularly sensitive to the
spectrum identification strategy. As an example, we conducted
the search again after enabling the refinement procedure of
X!Tandem. This procedure is a multistep approach that selects a
limited set of proteins for a secondary search with different search
parameters, including more modifications and relaxing thresh-
olds (e.g., in terms of missed cleavages). While this procedure

presents the advantage to quickly scan for new peptides, it makes
the evaluation of matches challenging [30] and increases the like-
lihood to encounter cases where a modification can be mistaken
for an amino acid substitution and vice versa. Fig. 6 shows such
an example of 2 matches to the same spectrum, obtained using
the refinement procedure: 1 peptide contains the product of the
alternative allele of 2 variants (Fig. 6A) while the other has the
product of the reference allele for 1 of the variants with a mod-
ification on the N-terminus compensating the mass difference
(Fig. 6B). Both matches show a good matching of the higher-mass
peaks and good agreements with the predictors but a high preva-
lence of unmatched peaks. Based on their scores, both matches
would pass a 1% FDR threshold, but the similarity between the
sequences makes it challenging to assess whether 1 or the other
haplotype is a better match. This example shows the difficulty
to distinguish variant peptides when the amino acid substitu-
tion has a mass difference equal or very similar to a modifica-
tion. Overall, we observed inflated identification rates for mul-
tivariant peptides using the refinement procedure (1,060 PSMs
with refinement vs. 342 PSMs without). For example, without the
refinement procedure, 19 spectra matched the multivariant se-
quence of POTEI among the PSMs passing a 1% FDR threshold
(Table 1); with the refinement procedure, the results contained
113 matching spectra. From the 94 additional matches, we sus-
pect that many correspond to other sequences that were artifac-
tually matched to this sequence, possibly through the addition of
modifications.

Error rates derived from the target-decoy strategy rely on the
modeling of the null distribution of scores using random matches.
Distinguishing a variant peptide from a modified one, however, re-
quires telling apart 2 matches that are very similar and both bet-
ter than random. In such cases, it is expected that modeling the
null distribution using random matches provides underestimated
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Figure 6: Comparison between predicted spectra for 2 different peptides matched to the same observed spectrum. The posterior error probability as
obtained from Percolator is listed along with retention time difference to prediction as obtained from DeepLC and spectrum similarity with prediction
as obtained from MS2PIP. The intensity of the measured spectrum is plotted (top; blue, pink, and gray) with the scaled predicted intensity mirrored
(bottom,; green and red). Peaks in the measured spectrum matching predictions are highlighted in blue, measured peaks matching an ion with a
missing intensity prediction are highlighted in pink, and other measured peaks are plotted in gray. Numbers in the peptide sequence are identifiers of

posttranslational modifications in UniMod [31].

error rates, and additional quality control measures can be ap-
plied to assess the quality of the matches [32]. We submitted the
variant matches passing the target-decoy 1% FDR threshold in the
X!Tandem search without the refinement procedure to PepQuery,
a targeted peptide search engine providing additional validation
for variant peptides identified using proteomics [33]. PepQuery
found that a substantial share of the matches were low scoring or
could also match another peptide (10% and 11% of the matches,
respectively), and the prevalence of these matches decreased with
the PEP (Fig. 7A). Conversely, 47% of the matches were labeled
as confident, and the prevalence of confident matches increased
with the PEP. The remaining matches were labeled as possibly
matching a modification not considered in the original search—a
rare posttranslational modification or an artifact introduced dur-
ing sample preparation. Interestingly, the prevalence of such am-
biguous matches was stable around 30% across PEP bins. These
results highlight the difficulty posed by modifications in the con-
fident identification of variant peptides. In the case of highly sim-
ilar expected spectra between a variant and a modified peptide,
analysts need to rely on prior knowledge on the likelihood of find-
ing a given allele or modification in the sample studied or on the
presence of diagnostic ions (Fig. 8). In the example of Fig. 8B, the
detection of y29++ would advocate in favor of the variant peptide
rather than the modified peptide, but this peak is of low intensity
and therefore represents only thin evidence.

Moreover, we searched all spectra again using the search en-
gine Tide [34], using the same parameters. Out of the 7,988 con-
fident variant matches given by X!Tandem, 3,604 (45.12%) were
confirmed by Tide. For 4,314 (54%) variant PSMs reported by
X!Tandem, the spectra were not confidently matched to any pep-
tide by Tide. The remaining 70 spectra were confidently matched
to another peptide by Tide—in 51 cases to a canonical peptide, in
12 cases to a decoy peptide sequence, in 4 cases to a variant pep-

tide encoded by a different haplotype but coming from the same
gene, and in 3 cases to a contaminant.

Conclusion and Discussion

In this study, we propose to take advantage of the correlation be-
tween alleles through linkage disequilibrium to allow for the iden-
tification of peptides containing multiple linked amino acid sub-
stitutions, hence avoiding the computation of all possible combi-
nations of alleles [14]. Co-occurring alleles in the protein-coding
regions of a gene yield specific protein sequences—protein haplo-
types. Building upon previous work in proteogenomics, we created
a search space of protein haplotypes. We observe that 7.82% of the
whole proteome maps to peptides that can contain an amino acid
substitution, and up to 12.42% of all discoverable substitutions are
located in peptides where multiple substitutions co-occur (multi-
variant peptides). These cases suggest that linkage disequilibrium
between alleles resulting in amino acid substitutions should be
included in a proteomics search space when identifying common
variation. Subsequently, we performed a reanalysis of 3 samples
of healthy tonsil tissue provided by Wang et al. [17]. We iden-
tifled peptides encoded by haplotypes containing 4,582 unique
amino acid substitutions compared to the reference sequences
of Ensembl, 6.37% of which were found only in multivariant
peptides.

Although searching haplotype-specific sequences allows for
the discovery of novel peptides that match to protein haplotypes,
numerous challenges still remain. Of the predicted haplotypes,
78.23% contain only substitutions, and the remaining haplotypes
contain other types of polymorphisms (insertions, deletions, or
polymorphisms introducing or removing a stop codon). These can-
not be detected using the sequences obtained from Haplosaurus.
Moreover, with the introduction of haplotypes, the search space
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Figure 7: Analysis of variant peptides passing a target-decoy 1% FDR threshold using PepQuery. (A) Histogram of the PSM type according to PepQuery.
Low score: the match was not further investigated by PepQuery due to a low score; Ambiguous peptide: the spectrum could be matched to a reference
peptide at a similar score; Ambiguous modification: the spectrum could be matched to a reference peptide at a similar score when accounting for a
modification that was not included in the original search; Confident: the match passed all PepQuery validation filters. (B) Mirrored annotated spectra
obtained using PDV [35] of a variant PSM with better match when accounting for a modification not included in the search, here a dioxydation of

tryptophan.
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Figure 8: Comparison between predicted spectra as obtained from MS2PIP for 2 different peptides matched to the same observed spectrum. (A)
Peptide candidate suggested by PepQuery is a canonical sequence with a modification. (B) Peptide candidate suggested in our search is a variant
peptide. We list the retention time difference to prediction as obtained from DeepLC. The intensity of the measured spectrum is plotted (top; blue,
pink, and gray) with the scaled predicted intensity mirrored (bottom; green and red). Peaks in the measured spectrum matching predictions are
highlighted in blue, measured peaks matching an ion with a missing intensity prediction are highlighted in pink, and other measured peaks are
plotted in gray. Numbers in the peptide sequence are identifiers of posttranslational modifications in UniMod [31].

consists of a large number of proteoforms with a high degree of
similarity, making it challenging to infer which proteoform has
been identified. Amino acid substitutions of a mass difference
equal to a posttranslational or chemical modification are partic-
ularly challenging, as their distinction relies on the detection of
few specific ions. This implies that searching without the correct
haplotype or modification will generate incorrect sequences or
modifications that are not caught by current error rate estimation
strategies. Even worse, using the wrong haplotype on a protein se-
quence can result in a match in another protein. The prevalence
of such errors in published proteomic datasets is currently un-
known.

The dataset of protein haplotypes provided by Spooner et al. [1]
was created using the genome assembly version GRCh37, which is
now deprecated by Ensembl. During PepQuery analysis, we noted
that a substantial share of variant peptides in GRCh37 would be
canonical in GRCh38. For results that are fully up to date, a reanal-
ysis of the data provided by the 1000 Genomes project on the cur-
rent genome assembly is necessary. Limitations also come with
the dataset of phased genotypes, as phasing may be inaccurate in
regions with low linkage disequilibrium or in repetitive regions, re-
sulting in an overestimation of haplotype frequencies [1]. Finally,
the methods for the scoring of confidence of peptide-spectrum
matches are not well suited to distinguishing between multiple
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candidate sequences with a high degree of similarity. In the liter-
ature, the identification of variant peptides is validated by gener-
ating reference spectra using synthetic peptides [36, 37], but such
an approach presents a substantial cost and low throughput. In
the present work, we used retention time and fragmentation pre-
dictors to generate the reference spectra in silico and used these to
evaluate the matches. Predictors can instead be directly coupled
to Percolator, as implemented in MS2Rescore [38], and hence pro-
vide features that can improve the discrimination power between
very similar peptides.

In conclusion, accounting for protein haplotypes in the search
space for mass spectrometry-based proteomic identification im-
proves the ability to cover relevant regions of the proteome and
holds the potential to be utilized in the medical context, given that
the database of protein haplotypes is complete and up to date, and
novel methods of quality control are developed.

Materials and Methods

Database of protein sequences

The sequence database used for the search was built using data
provided by Spooner et al. [1], who generated a database of pro-
tein haplotypes using their tool Haplosaurus, available as a part
of the Ensembl Variant Effect Predictor [39]. The haplotypes were
generated using phased genotype data from the 1000 Genomes
project Phase 3, obtained using methods described in [2]. The hap-
lotype analysis was performed using the transcript database En-
sembl version 83 [40], human reference genome assembly ver-
sion GRCh37 [1]. The data provided by Spooner et al. [1] can be
found at [41]. For this work, we selected only protein haplotypes
generated from minor alleles with frequency at least 1% world-
wide. This database was appended with the list of canonical pro-
tein sequences in the corresponding version of Ensembl and a list
of common sample contaminants, obtained from [42]. The result-
ing search space contains 104,736 reference sequences, assembly
version GRCh37, 290,080 protein haplotype sequences obtained
as described above, and 116 sequences of sample contaminants.
In total, 394,959 decoy sequences were generated using the algo-
rithm DecoyPyrat [43], provided by the tool py-pgatk [12]. The fi-
nal protein sequence database in the FASTA format is available as
supplementary material (SD1, SD2).

Classification of peptides

We classified peptide sequences as canonical, single-variant, or
multivariant based on the number of amino acid substitutions
they contain. If a peptide is canonical with respect to one pro-
tein sequence and single-variant or multivariant with respect to
another protein sequence, it is classified as canonical. Similarly,
if a peptide is a single-variant peptide with respect to one pro-
tein sequence and multivariant with respect to another protein
sequence, it is classified as a single-variant peptide. Substitutions
mapping to a peptide that has been “downgraded” in such manner
are not considered as discovered, or discoverable.

Public data reanalysis

We used this database to perform a reanalysis on a subset of data
published and initially analyzed by Wang et al. [17]—108 fractions
from 3 samples of healthy tonsil tissue digested by trypsin, frag-
mented using higher-energy collisional dissociation (HCD) (MS ex-
periment IDs: P013107, P010694, P010747).

The search was performed using the command-line interface
of SearchGUI v. 4.1.16 [44], employing the X!Tandem search algo-

rithm [19], allowing for the oxidation of methionine as a variable
modification and carbamidomethylation of cysteine as a fixed
modification, with the “quick acetyl” and “quick pyrolidone” op-
tions of X!Tandem enabled. PeptideShaker v. 2.2.20 [45] was used
for postprocessing of the search results and export of the PSMs to
Percolator v. 3.5 [20], which was used to evaluate the confidence
of the matches and threshold using an FDR analysis [46]. The list
of PSMs was filtered to retain matches with a g-value below 0.01
(i.e., FDR is lower than 1%). If a peptide matched to a contam-
inant sequence, it was removed from further analysis. As some
of the canonical protein sequences in Ensembl contain multiple
stop codons, the stop codon symbols were removed from their
sequences for compatibility with X!Tandem. Peptides that would
contain a stop codon were removed from further analysis.

Quality control

To provide supporting evidence for the confidence of the PSMs,
chromatographic retention times were predicted by DeepLC v.
1.0.0 [21], and expected peptide fragment ion intensities were pre-
dicted using MS2PIP v. 3.6.3 [22]. Peptides passing the 1% FDR
threshold were used for calibration of the DeepLC predictions. The
absolute distance between the centered and scaled predicted and
observed retention times was computed. The MS2PIP predictions
were used to measure the distance between the predicted and ob-
served spectrum. The peaks are scaled so that the median inten-
sityin the observed spectrum corresponds to the median intensity
in the prediction. A peak in the observed spectrum is considered
matching to a peak in the prediction if it differs in m/z by no more
than 10 ppm. The distance between the matched predicted peaks
and the observed ones is expressed as their angular similarity, cal-
culated by the formula in Equations 1 and 2:

n
C (M, P) — Zi — 1 Mipi (1)

\/Z?: 1 m?\/Z?: 1 piz
_arccos (7CT? (M, P)) )
where M = (my, ..., my) is the set of intensities for the matched
measured peaks, and P = (p, ..., pn) is the set of intensities for the
matched predicted peaks, and n is the number of matched peaks
in the spectrum. C(M, P) denotes the cosine similarity between
M and P, and A(M, P) denotes the angular similarity between M
and P.

Predicted and observed spectra were also displayed as mirror
plots for visual comparison in selected PSMs. The peaks in the
observed spectrum matching to a predicted peak are highlighted
in blue. As the intensity prediction for certain ion fragments by
MS2PIP is missing, peaks matching those ions are highlighted in
pink. The remaining measured peaks are displayed in gray. Peaks
of the predicted spectrum are shown as negative values and la-
beled by the corresponding fragmention. The predicted peaks that
match a measured peak are displayed in green, and unmatched
predicted peaks are displayed in red.

AMP)=1

PepQuery analysis

The variant PSMs passing 1% FDR at PSM level using X!Tandem
were further validated using PepQuery (v2.0.3) [33]. The follow-
ing parameters were used: fixed modifications, carbamidomethy-
lation of C; variable modifications, oxidation of M, ammonia loss
of C, Glu—pyro-Glu of E, Gln—pyro-Glu of Q, acetylation of pep-
tide N-term; precursor ion mass tolerance, 20 ppm; MS/MS mass
tolerance, 0.05 Da; enzyme specificity, trypsin; maximum missed
cleavages, 2; allowed isotope range: —1,0,1,2. The parameter “-hc”
was also set in the analysis. The human protein database from
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GENCODE Release 43 (GRCh37) was used as the reference protein
database in the validation. The PSMs that passed all the filtering
steps in PepQuery were considered confident. The filtering process
is described in detail in [33]. Amino acid substitution modifica-
tions were not considered in the filtering process. PSMs classified
as low scoring were assigned a score above the threshold of 12
by the Hyperscore algorithm, as is the default; see [33] for details.
A complete list of variant PSMs with possible alternative peptide
candidates suggested by PepQuery is available as supplementary
material (SD5).

Source Code and Requirements

The pipeline to reproduce the postprocessing steps and a further
description of the resulting files are provided in https://github.
com/ProGenNo/FindingHaploSignatures [47].

® Project name: Finding Haplotypic Signatures in Proteins

® Project homepage: https://github.com/ProGenNo/
FindingHaploSignatures

® Operating system(s): Platform independent

® Programming language: Python

® Other requirements: Snakemake v. 7.0.0 or higher, Anaconda
2022.10 or newer

® License: MIT

Additional Files

Supplementary Table S1. PSMs matching to the multivariant pep-
tide covering a region of the most common haplotype of the
IGQAP2 protein and their respective confidence measures. The
posterior error probability and g-value as obtained from Percola-
tor are listed along with retention time difference to prediction as
obtained from DeepLC, as well as spectrum similarity with pre-
diction as obtained from MS2PIP.

Supplementary Table S2. Search parameters used for the
X!Tandem implementation in SearchGUI.

Data Availability

Supplementary data can be downloaded from figshare [47]. Other
data further supporting this work are openly available in the Gi-
gaScience repository, GigaDB [48].

We provide the following files:

Supplementary Data 1: FASTA file including all target protein
sequences (Ensembl reference proteome, protein haplotype se-
quences, contaminant sequences), excluding decoys.

Supplementary Data 2: FASTA file including all target and de-
COy sequences.

Supplementary Data 3: List of all peptide-to-spectrum matches
(PSMs), resulting from the first run of X!Tandem without the re-
finement procedure, with all related metadata and quality control
measures.

Supplementary Data 4: List of substitutions identified, along
with IDs of corresponding PSMs.

Supplementary Data 5: List of variant PSMs and peptide can-
didates suggested by PepQuery, along with confidence scores for
each peptide candidate.

Abbreviations

FDR: false discovery rate; HCD: higher-energy collisional dissoci-
ation; LC: liquid chromatography; LD: linkage disequilibrium; MS:
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mass spectrometry; MS/MS: tandem mass spectrometry; PEP: pos-
terior error probability; PSM: peptide-to-spectrum match; PTM:
post-translational modification.
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