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Abstract
Fast production of large-area patterns is crucial for the established semiconductor industry and
enables industrial-scale production of next-generation quantum devices. Metastable atom
lithography with binary holography masks has been suggested as a higher resolution/low-cost
alternative to the current state of the art: extreme ultraviolet lithography. However, it was recently
shown that the interaction of the metastable atoms with the mask material (SiN) leads to a strong
perturbation of the wavefront, not included in the existing mask generation theory, which is based
on classical scalar waves. This means that the inverse problem (creating a mask based on the
desired pattern) cannot be solved analytically, even in 1D. Here we present a machine-learning
approach to mask generation targeted for metastable atoms. Our algorithm uses a combination of
genetic optimisation and deep learning to obtain the mask. A novel deep neural architecture is
trained to produce an initial approximation of the mask. This approximation is then used to
generate the initial population of the genetic optimisation algorithm that can converge to arbitrary
precision. We demonstrate the generation of arbitrary 1D patterns for system dimensions within
the Fraunhofer approximation limit.

1. Introduction

All semiconductor device fabrication is currently based on pattern generation using mask-based
photolithography. The aim is to create patterns with smaller and smaller features at higher and higher
information densities. The state-of-the-art extreme ultraviolet (EUV) photolithography, which, with
photons (electromagnetic waves) of a wavelength of 13.5 nm, should be able to produce patterns with a
resolution of 6.75 nm according to the Abbe criterion. Smaller features could potentially be achieved using
immersion and/or over-exposure or under-development, as is done with the 193 nm light source, EUVs
predecessor. However, the problem is that in EUV lithography, due to the high energy of the photons
(91.8 eV), the pattern generation process is mediated by photo-generated secondary electrons, which can
travel for several nm before inducing a reaction. Current experiments and theory indicate that the secondary
electron blur radius for EUV is around 3 nm, limiting the feature size that can be achieved to around
6 nm [1]. This means devices based on small quantum dots and individual atoms and molecules cannot be
produced with EUV. Moving to wavelengths shorter than 13.5 nm would exacerbate the secondary electron
issue—an alternative to photons is needed.

Lithography with atoms (matter waves) was proposed as an alternative to photolithography almost three
decades ago. As stated in the first paper on this topic from 1995, the motivation remains the same. ‘Unlike
techniques that use beams of electrons or ions, there are no electrostatic interactions within a neutral beam that
limit focusing or flux density [. . .] Because of their short (< 0.01nm) de-Broglie wavelength, thermal beams of
neutral atoms can in principle be focused (4) to a spot that is limited by the size of the atom.’ [2].

A further advantage of atom lithography is that, for a given wavelength, the kinetic energy of an atom is
much less than the energy of a photon. A helium atom with the same wavelength as a EUV photon (13.5m)
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has a kinetic energy of only E= h2/(2mλ2)≈ 0.011eV, where h denotes Planck’s constant andm is the mass
of the helium atom. This is almost a factor of 10.000 less than the EUV photon. It is too little to modify a
resist, which is why metastable atoms are often used; see below. When a metastable atom hits the substrate, it
decays, and the decay energy is transferred to the substrate [2–4]. The energy released when a metastable
atom decays is about 10 eV for argon and 20 eV for helium [3, 5], much lower than the energy of a EUV
photon, thus eliminating the problem of electron blurring.

The first atom lithography experiment [2] used a proximity lithography setup with a transmission
grating placed above a substrate coated with a self-assembled monolayer of alkanethiolates on gold and
exposed to a beam of metastable helium atoms. This created a one-to-one image of the transmission grating
in the resist. Experiments on pattern generation by manipulating atomic beams by light or electrostatic fields
followed [6–9]. However, these methods cannot be used to generate complex patterns with high resolution.
For high-resolution pattern generation, experiments have been done focusing atom beams with
lenses [10–19], which were then used for serial writing of arbitrary patterns. However, for mass-scale
production, serial writing is not a suitable method.

A challenge for pattern generations with metastable atoms is that they decay when impinging on a
surface, so using masks made on substrates, as in photolithography, is impossible. The pattern must be
generated by open areas in the substrate where the beam can go through. This means any pattern with a
closed path (i.e. a circle) would lead to a mask segment falling out.

In 1996, Fujita et al [20] came up with an idea to circumvent this problem. They demonstrated pattern
generation with metastable neon atoms using a solid mask consisting of a distribution of uniformly sized
holes (30 nm in diameter) etched into a silicon nitride membrane. The hole distribution was calculated using
the theory of grid-based binary holography developed by Lohmann and Paris [21], and later by Onoe and
Kaneko [22] for scalar waves: this theory imposes the limitation that the openings are all of the same sizes
and positioned on a regular grid structure. The hole distribution approximates the Fourier transform of the
final, desired pattern. In recent publications, binary lithography was further explored, investigating how
many holes are needed to generate a particular pattern and what maximum resolution can be achieved with
typical matter-wave wavelength scales [9, 23]. However, it was recently shown that the wavefront of
metastable helium atoms is perturbed by dispersion forces when it passes through a hole in a silicon nitride
membrane [24], an effect not considered in previous publications. Dispersion forces, in this case, the
Casimir–Polder forces, are caused by the quantum-mechanical ground-state fluctuations of the
electromagnetic field in the absence of charges [25, 26]. Due to the field fluctuations, the helium atom will be
polarised for a short time. The resulting induced dipole moment interacts with the dielectric membrane via
dipole–dipole interactions. These forces decay dramatically with the distance, r−3-power law [27], but play a
significant role on the nanometre length scale and have been observed in several matter-wave diffraction
experiments [12, 28–30]. Independent of the atom lithography work, several experiments have been carried
out on manipulating atomic and molecular beams using light fields or solid-state diffraction gratings. For
example, ground-state atoms (rubidium, Rb [31]; caesium, Cs [32]; sodium, Na [33]; potassium, K [34];
helium, He [35]; neon, Ne [35]; argon, Ar [35]; krypton, Kr [35]; iridium, Ir [30]), metastable atoms (argon,
Ar [36]; helium, He [13]), and ground-state molecules (deuterium dimer,D2 [35]; buckyballs, C60 [28] and
C70 [37]; tetraphenylporphyrin [37]; fluorofullerene, C60F48 [37]; phthalocyanine, H2Pc [29]). Several of
these experiments are published with theoretical calculations showing the impact of dispersion force
interactions in the shape of the diffraction patterns; see, for instance, [28–30, 35, 38].

For Fujita et al, the mask holes were so big that the dispersion force interaction was negligible. Hence,
they could use the standard binary holography theory to generate the mask design for their patterns.
However, the effect of the dispersion force interaction becomes significant for smaller mask holes, which are
required for high resolution. [24] shows that metastable helium atoms cannot penetrate holes in 5 nm thick
silicon nitride membranes with less than 2 nm diameter.

This paper aims to establish a theoretical framework for mask-based matter-wave lithography, initially in
one dimension, to generate a mask for a given desired pattern, atom wavelength, and dispersion interaction.
Mathematically this is a so-called inverse problem [39]. We now explain why machine learning is the only
realistic approach to solving this problem, even in the one-dimensional case:

As discussed above, the existing binary holography theory for scalar waves uses a grid of holes of equal
size as the base for the masks. The work of Born and Wolf furthermore assumes system dimensions and
wavelengths that fulfil the well-known condition of optics: Fraunhofer approximation [40]. In the
Fraunhofer approximation, the inverse problem is reduced to a Fourier transform of the desired pattern,
which yields the required mask. The mask needs to be sampled according to the Nyquist–Shannon sampling
theorem to account for the finite size of the holes and mask. In one dimension, this can be done analytically;
see section 2.2.1. However, this solution cannot be adapted to matter waves because the dispersion interaction
between the particles and the diffraction object induces a complex phase distribution of the matter wave [19].
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An alternative approach to Fourier transformation starts from the convolution of the mask function with
the so-called point-spread functions [41] representing a basis of elementary openings. This approach,
however, raises several issues: (i) the complex structure of the required integral kernel (analogously to the
Airy disc for matter waves [38]), which (ii) does not scale linearly with the dimension of the holes [24] and
(iii) would require additional optimisation algorithms to consider a variation of the hole sizes.

In this paper, we use machine learning as a new approach to mask generation for metastable atoms; Like
Fujita et al we remain in the Fraunhofer regime, but we include the dispersion interaction and open up the
possibility that holes can be of different sizes and not positioned on a regular grid structure. Our
machine-learning architecture is based on a combination of deep learning and genetic algorithms. The
problem is solved in two steps: first, a deep neural network [42] is trained on large amounts of generated
data. Second, the neural network resolves the desired diffraction pattern, producing a mask. This mask is
then mutated to produce an initial population fed to a genetic algorithm [43]. The genetic algorithm then
can quickly converge to a mask that produces the desired diffraction pattern with arbitrary precision (see
figure 1).

Deep learning has been used extensively to solve inverse problems because neural networks are universal
function approximators [44]. For example, it has been applied to light inverse scattering problems [45]. The
high-level combination used in this paper (deep learning plus genetics algorithm) has been used in photonic
device design [46], inverse molecular design [47], and robot manipulators [48], among others. However, to
our knowledge, it has never been used to solve an inverse diffraction problem, where a diffraction mask is
recovered from a diffraction pattern.

2. Results

2.1. Mask generation framework
The general idea of our mask generation framework follows: first, a deep convolutional neural network is
used to approximate a general solution to the inverse problem. This neural network is trained with an
extensive data set of randomly generated examples that map a mask to a diffraction pattern represented by a
sequence of real numbers (see section 2.2.3 for details of how the examples are generated). Masks are
represented as binary sequences of finite length where 1 represents openings in the mask and 0 blocked space.
In the experiments presented here, we chose masks of length 50. Lists of 1000 numbers represent the
diffraction patterns.

Once the approximate solution is obtained, this solution (a binary mask) is randomly mutated. The
random mutations of this approximate solution form the initial population of a genetic algorithm. The
genetic algorithm—known to be an efficient optimiser for binary sequences [49] — further refines the mask
provided by the neural network until a convergence constraint is satisfied.

2.1.1. LACENET: a neural network for approximate inversion of the Kirchhoff diffraction formula
LACENET is a deep convolutional neural network that takes as features (inputs) the desired intensity pattern
and its fast Fourier transform and has to output the mask pattern, a binary intensity map. We choose the
real-input fast Fourier transform as one of the network’s features because the Fourier transform of the
diffraction pattern plays a significant role in far-field diffraction [9, 40]. Thus, the diffraction patterns have
periodic components that can be efficiently compressed by using its Fourier decomposition, and for this
reason, allowing for better learning by our neural network.

We split the network graph into three towers; each is specialised in one of the three different features (the
intensity map and the real and intensity parts of the fast Fourier transform). Within each tower, we use skip
connections—a mechanism used effectively in the U-Net architecture, an inverse architecture for light
scattering problems [50]. Skip connections consist of taking the input to a neural network layer (or
succession of layers) and summing it after the neural network layer has been applied to it [51].

Finally, we use a fully connected layer to learn the predicted mask (see figure 2 for the full architecture).
Unlike many popular computer vision architectures, we do not use batch normalisation because we did not
see any benefit for our task after extensive experimentation. We train the neural network with focal loss. A
loss commonly used to train segmentation masks in computer vision [52]. The focal loss is derived from the
binary cross entropy loss

lBC(y, ŷ) = [y log ŷ+(1− y) log(1− ŷ)] . (1)

By summing over all the mask points with the total number Npoints, we reach the total loss per mask

L(y, ŷ) =− 1

Npixels

∑
mask

lBC(y, ŷ) , (2)

3



Mach. Learn.: Sci. Technol. 4 (2023) 025028 J Fiedler et al

Figure 1. General mask generation framework used in this paper. First, the desired intensity pattern is fed to LACENET. LACENET
then computes an approximated mask expected to produce this pattern. From this mask, an initial population is generated and
fed to a genetic algorithm run until the accuracy condition is met.

with the true value of each pixel in the mask sequence y and the value predicted by the neural network ŷ.
The focal loss is a variation of the binary cross-entropy loss and reads

liFO(y, ŷ) =−αi

[
1− elBC(y,̂y)

]γ
lBC(y, ŷ) . (3)

This loss function is designed to achieve two purposes: (I) weight the classes (in our case, 1 and 0)
according to their rarity through the weights αi so that they contribute equally to the loss, and (II) reduce the
loss of easily-classified examples, so that the network can focus on the more complex parts of the mask.

LACENET can be defined as a deterministic non-linear function that depends on its parameters w. The
optimisation problem that LACENET solves as training is to find the set of parameters w that minimise the
loss function over the training setΨ,

w∗ =min
w

[∑
Ψ

L(y, ŷ)

]
. (4)

LACENET is trained on a data setD of 300k samples, randomly generated as described in section 2.2.3. As
it is standard in deep learning, this data set is split into three smaller subsets: a training setDtrain, a test set
Dtest, and a validation setDval. The split used is 81/9/10 (train/validation/test). One-tenth of the data is
reserved for testing, and one-tenth of the remaining training data is reserved for validating
hyper-parameters. The training of LACENET is split into two parts: hyperparameter tuning (which optimises
for hyperparameters of the neural network such as learning rate, loss function type etc) and the training of
the network itself (i.e. the training of its weights and biases).

We use a variety of Bayesian searches to train the hyperparameters of the neural network and evaluate the
validation data set using mean squared error over the result of the integrals of the produced mask. We
consider using mean squared error because that is the metric that tells whether the mask produces the
required pattern. In the discretised space, the inverse may not be unique and slight differences in the binary
sequence that represents the mask might substantially affect the focal loss while affecting the mean squared
error loss of the integrated mask to a much lesser extent.
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Figure 2. LACENET architecture. A three-tower architecture. The two towers on the left are three-filter, 1-D convolutional layers
with skip blocks that ingest the angle and the modulus of the right fast Fourier transform of the input. The tower on the right also
comprises one skip block with two convolutions. Fully connected layers and concatenations combine the information coming
from the three blocks. All activations are linear rectifier units except the last output that uses no activation as we handle the
activation in the loss function.

For the training of the neural network, we use the best optimisation algorithm (typically Adam [53], or
RMSProp [54]) that is returned by the hyperparameter search. Training is stopped using early stopping with
patience 10 and delta 0.001. Full details of this procedure and the space over which hyperparameter search is
performed can be found in table A1. The hyperparameters used to produce the results presented here are
optimiser: Adam, learning rate: 0.00 016, batch size: 225, α: 0.439, γ: 5.952. Figure 3 shows the focal loss and
the mean squared error after integrating the masks evaluated over the validation data set.

2.1.2. Genetic algorithm
Genetic algorithms are stochastic classical evolutionary algorithms, that is, algorithms that dynamically
change to optimise a fitness function F. Genetic algorithms are inspired by Darwin’s theory of evolution
which describes how the genes in the population evolve according to their capacity to reproduce and mutate.
In genetic algorithms, the population is not an actual population of living beings but instead a set of
solutions for a particular optimisation problem (known as chromosomes). Furthermore, the mutation is not
necessarily the result of natural stochastic processes but occurs according to different rules that the
programmer can decide. For each chromosome in the population, a fitness value can be calculated using a
pre-defined formula set at the researcher’s choice. Finally, the reproductive process of life is simulated by
combining different chromosomes (parents) into the next generations of offspring. The reproductive process
can also be defined by the researcher [55].

Genetic algorithms are very robust optimisation algorithms that are especially suited to work with
sequences of categorical variables (such as the four types of bases present in DNA: adenine (A), cytosine (C),
guanine (G), and thymine (T)). The masks we want to obtain in this paper are a perfect example: they are
entirely defined by a sequence of binary values.
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Figure 3. Training (red) and validation (green) focal loss (equation (3)) compared with mean squared error computed over the
validation set after performing the integral of the solution (blue). Note how the focal loss over the validation exhibits a clear
over-fitting effect. However, when calculating the mean squared error of the mask’s intensity, the network improves gradually as
the epochs advance. This is likely due to two effects (i) the intensity integral does not have a unique inverse when discretised,
(ii) after a certain number of epochs, the masks produced become very stable as the 0.5 thresholds convert the continuous output
of the network into a discrete binary mask.

The genetic algorithm that we use here is applied to the solution by LACENET; the fitness function is
simply the inverse of the mean absolute error of the generated diffraction pattern plus a small numerical
constant α,

F=
1

α+
∑

ri

∣∣P̃(ri)−ψ(ri;x,d)ψ⋆(ri;x,d)
∣∣ , (5)

where P̃(ri) is the absolute square value of the wave function discretised over a grid of radial coordinates ri
measuring the distance to the centre of the diffraction pattern. ψ(ri;x,d) is the wave function that is made to
depend on the the positions x= (x1,x2, . . .) and thicknesses d= (d1,d2, . . .) of the grating (mask) openings.
A detailed description of how the wave function is computed can be found in section 2.2. To run our genetic
algorithm, we use a pygad: a well-known genetic algorithm solver for python [56]. Within pygad we use the
following hyper-parameters (obtained through grid search). (i) uniform crossover, in which random
recombining parents’ chromosomes form offspring. (ii) fit parent persistence: the fittest chromosomes are
carried on to the next generation. (iii) initial population size of 50 chromosomes. (iv): The number of
solutions selected as parents are set to 7.

The initial population is not generated by pygad but by our bespoke script. The script inputs the number
of mutations allowed in each chromosome and generates a population by randomly mutating the output of
LACENET. LACENET’s solution is also kept as part of the initial population. The results presented here have 15
mutations in the chromosome. Mutations are assigned sampling randomly from a discrete uniform
distribution—which means that gen randomly set to mutate can maintain its initial value if it is sampled
again from the distribution.

Figure 4 shows the average difference in percentage when using LACENET to generate the initial solution
population and using a random initial population. Note that within 4σ error bars, LACENET outperforms a
naive genetic approach. More importantly, perhaps, LACENET becomes better than using a randomly
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Figure 4.Mean difference in percentage between using LACENET to generate the initial population for the genetic algorithm and
using a random approach. Results averaged over 100 never-seen randomly sampled test masks. Each mask is approximated by the
generated algorithm 50 times. Error bars (shaded area) are 4σ. Note how LACENET outperforms the randomly-generated
population, with the percentage difference growing as the genetic algorithm runs more generations.

initiated genetic algorithm the more generations the genetic algorithm is run, showing that the edge
provided by the neural network increases with computational time.

Figure 5 shows an example of a particular mask in which LACENET performs significantly better than
random. Results for all 100 randomly generated masks can be found in appendix B. As shown above, when
all masks are averaged, LACENET outperforms random significantly (by more 4σ). Figure 6 compares the
solutions returned by LACENET and the genetic algorithm for a particular inverse problem. Note how
LACENET provides a reasonable first approximation to mask design and how further Genetic iteration
incorporates small changes (mutations) that make the solution closer to the ground truth.

2.2. Forward propagation
Here we describe how the forward propagation of matter waves generates the training patterns through
randomly generated masks. The diffraction at a dielectric interface can be described via classical waves due to
the duality of waves and particle [57], which can be derived via Kirchhoff ’s diffraction formula [40]. This
method is commonly applied to describe the interference of matter waves in eikonal (or paraxial)
approximation [40], which is valid when the transversal momentum of the matter wave is negligible
compared to the longitudinal ones. [28–30, 38] This formula determines the propagation of a classical wave
with amplitude a0

ψcl(rD) =
a0k0
2π i

ˆ
d2riT(ri)

eik0(rS,i+ri,D)

rS,iri,D

cosϑ+ cosϑ ′

2
, (6)

through an interface, in analogy to Huygens–Fresnel principle [58]. The interface is usually described by a
transmission function T, which varies (for electromagnetic waves) between 1 for transmission and 0 for
absorption. The source of the wave is located at rS (subscript S for source), and the grating is placed at the
intermediate points ri (subscript i for intermediate), leading to the relative coordinates rS,i = rS − ri to the
grating and continues the propagation to the detector rD (subscript D for detector) ri,D = ri− rD. The wave
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Figure 5. Average fitnesses F for an arbitrary mask after several generations of the genetic algorithm. The plot shows the solution’s
fitness when the initial population is given by LACENET (blue) compared with an initial population sampled randomly (red).
Here is an example where LACENET helps to converge to a much more precise solution. Error bars (shaded area) are 4σ,
equivalent to 99.99% certainty.

vector is related via the de-Broglie wavelength k0 = 2π/λdB = p/h̄ with the particle’s momentum
p= pep. [57] The geometric correction angles ϑ and ϑ ′ are the angles between the aperture’s normal n and
the wave’s propagation directions, rS,i and ri,D, respectively.

By considering plane waves passing the obstacle, the propagation lengths are dominated by the distances
between the source and the interface rS,i ≈ L1 and between the interface and the detector ri,D ≈ L2. This
approach simplifies Kirchhoff ’s diffraction formula (6) to the Fourier transform of the transmission function
and is known as Fraunhofer approximation

ψcl(r) =
a0k0
2πi

eik0[L1+L2+r2/(2L2)]

L1L2

ˆ
dATei

k0
L2

r·s , (7)

where r denotes the position on the screen. Furthermore, the transmission function is invariant along the
direction of the slit, and thus, the wave at the screen is just given by the one-dimensional Fourier transform
of the transmission function

ψcl(r) =
a0k0
2πi

eik0[L1+L2+r2/(2L2)]

L1L2

ˆ
dxT(x)ei

k0
L2
rx . (8)

Assuming the mask to be an array of slit openings, the superposition of the single slits can determine the
total transmission function

T(x) =
∑
n

t(x− xn;dn) , (9)

with the centre coordinate of each opening xn. We allow each opening to vary in its width dn. By inserting the
transmission function (9) into the wave equation (8), the field at the screen decomposes into the

8
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Figure 6. Example of a mask returned by LACENET (blue) and by LACENET enhanced by the genetic algorithm after 2000
generations compared (red) to the ground truth (green). Note how the genetic algorithm introduces certain openings in the mask
that were missed by the neural network, thus increasing the general fitness of the solution. Note how LACENET (blue) also
provides a reasonable first approximation to the mask design.

superposition of single slits with a phase correction due to the corresponding spatial shift

ψ(r) =
a0k0
2πi

eik0[L1+L2+r2/(2L2)]

L1L2

∑
n

e−i
k0
L2
rxn

ˆ
dxt(x;dn)e

i
k0
L2
rx . (10)

The interference pattern is given by the absolute square value of the wave function

P(r) = ψ(r)ψ⋆(r) . (11)

This yields that a target pattern P̃(r) can be approximated by minimising the error function

E(x,d) =

ˆ
dr
(
P̃(r)−ψ(r;x,d)ψ⋆(r;x,d)

)2
, (12)

with respect to the positions x= (x1,x2, . . .) and thicknesses d= (d1,d2, . . .) of the grating openings.
Ordinarily, one would apply a least-square fitting algorithm to reduce the error (12) concerning the positions
and grating openings.

2.2.1. Propagation of electromagnetic waves
In the absence of dispersion forces, which is achieved for electromagnetic waves, the wave propagation (10)
can be calculated explicitly, leading to

ψ(r) =
a0
πi

eik0(L1+L2+r2/(2L2))

L1r

∑
n

e−i
k0
L2
rxn sin

(
k0rdn
2L2

)
, (13)

and, thus, the interference pattern reads

P(r) =
a20

π2L21r
2

∑
n,m

ei
k0
L2
r(xm−xn) sin

(
k0rdn
2L2

)
sin

(
k0rdm
2L2

)
. (14)
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To analyse the relationship between the interference pattern P(r) and the transmission function
parameters x and d concerning the resolution and contrast of the interference pattern, a Fourier analysis is
required, which yields [59]

P(κ) =− a20
2L21

∑
n,m

{(
κ− c1

2π

)[
2θ

(
κ− c1

2π

)
− 1

]
+
(
κ− c2

2π

)[
2θ

(
κ− c2

2π

)
− 1

]
+
(
κ− c3

2π

)[
2θ

(
κ− c3

2π

)
− 1

]
+
(
κ− c4

2π

)[
2θ

(
κ− c4

2π

)
− 1

]}
, (15)

with the Heaviside function θ and the frequency shifts

c1 =
k0
2L2

(2xm − 2xn − dn + dm) ,c2 =− k0
2L2

(−2xm − 2xn − dn + dm) , (16)

c3 =
k0
2L2

(2xm − 2xn + dn + dm) ,c4 =− k0
2L2

(−2xm − 2xn + dn + dm) . (17)

This analysis illustrates that the relevant contributions are located in the range κ=O (10−5/λdB) for
typical parameters used in matter-wave lithography [spatial resolution of the mask∆x=O(nm) and
distance between the mask and the object plane L2 =O(100µm)]. By increasing the mask’s extension to be in
the same order as L2, the entire spectral resolution will be in the range 10−5/λdB ≤ κ� 1/λdB. The Fresnel
number determines the upper bound of the resolution to stay in the Fraunhofer regime. The resolution
(smallest structure) is determined by the largest mode κ leading to the relation for periodic gratings

∆x=
λdBL2
d+D

, (18)

with the opening size d and illumination range D.
However, due to the presence of dispersion forces, applying such a method would result in several

numerical issues caused by the complexity of the dependence on these quantities, which will be illuminated
in the next section.

2.2.2. Dispersion force interactions
The dispersion force interaction between an atom and a dielectric membrane can be approximated by [24]

UCP,app(r) =−9C3

π

ˆ
d3s

|s− r|6
, (19)

with the C3-coefficient denoting the interaction strength between the atom and a plane built of the same
material as the membrane, the position of the atom r, and the integration volume of the membrane’s surface
bound d3s.

The reduction of the slit opening can be found analogously to [24] (table 3) due to the applied
assumption of a single-wall interface. However, the phase shift needs to be adapted and reads for a
membrane of thickness w with a slit opening d

φ(x)≈−mλdB
2πh̄2

ˆ
U(x,z)dz=−

12C3mλdBwd
(
d2 + 12x2

)
h̄2π (d+ 2x)3 (d− 2x)3

. (20)

To this end, the transmission function for a single slit adapts due to the dispersion force interaction to

t(x) = θ

(
d− 2∆R

2
− x

)
θ

(
d− 2∆R

2
+ x

)
eiφ(x) . (21)

The impact of the dispersion forces (Casimir–Polder) is illustrated in figure 7, which shows the difference
in the interference pattern from the classical double slit experiment using a scalar wave and a matter-wave
with dispersion force interaction. A much higher population of the higher diffraction orders can be
observed. A typical helium source generates a flux of 1010 atoms/(mm2s) [60] leading to a population of
≈ 800atoms/(mms) in the zeroth order.

In older works, see, for instance, [20], the impact of the dispersion forces has been neglected due to the
large openings. Due to the r−3 power law of the dispersion force near an interface (20), its dominant impact
occurs in a region close to the bar’s surface up to a distance x for the surface. Thus, if this length is much

10
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Figure 7. Comparison of the interference patterns obtained by passing a light wave (electromagnetic wave) (orange) and a
metastable helium atom matter wave (blue) through the same SiN double-slit mask of 5 nm thickness with 8 nm openings
separated by an 8 nm wall. The right inset shows the mask used for both cases. The left inset zooms into the first diffraction orders.

smaller than the opening d, 2x/d� 1, the impact of the dispersion force is negligible. To estimate the
threshold, we consider the diffraction from a single opening,

ψ ′(r) = eik0L1e
ik0

(
L2+ r2

2L2

) d/2ˆ

−d/2

e
i
C3w
h̄vz

[
1

(x− d
2 )

3 − 1

( d
2+x)

3

]
e−i

k0
L2
rxdx , (22)

where we only insider the dominant part of the dispersion potential inside the opening and neglect the
particle’s arrival and departure [29]. Furthermore, we neglect the impact of the opening reduction [24]. This
field in the target plane has to be compared with the corresponding field of an electromagnetic wave

ψ(r) = eik0L1e
ik0

(
L2+ r2

2L2

) d/2ˆ

−d/2

e−i
k0
L2
rxdx , (23)

to estimate the relative deviation

E=
1

d

∞̂

−∞

[ψ(r)−ψ ′(r)]
2
dr . (24)

By applying Parseval’s theorem and substituting x 7→ 2x/d in the remaining integral, the error can be
evaluated numerically by substituting ã= 8C3w/(h̄vzd3) and a critical value for ã can be found by setting the
deviation 1% leading to ã= 2.0448 · 10−4. Finally, we find the critical opening

dC =
2

h̄
3

√
C3wh̄

2

ãvz
≈ 33.95

h̄
3

√
C3wh̄

2

vz
. (25)

If the opening is larger than this critical value, d> dC, the impact of the dispersion force can be
neglected. In our case, the critical opening is larger than 100 nm.

This critical opening dC describes the upper bound for the impact of the dispersion forces. Its lower
bounds are determined by the reduction of the grating opening∆R, considered in previous works [24],

11
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where we analysed the particle’s trajectories terminating in the grating bar yielding a minimum distance to it
for the particle to enter. Due to the high velocity of the particles meaning short interaction times, the classical
consideration of the trajectories is sufficient. This reduction is around 1 nm for our case. Finally, the
considered openings need to be in the range

2∆R< d< dC , (26)

to observe the dispersion interaction’s impact and transmit the matter wave.

2.2.3. Generation of training data
In this proof of concept paper, we have considered a 1D system with dimensions so that the Fraunhofer
approximation applies. We use a typical wavelength for metastable helium λdB = 0.1nm (corresponding to a
particle velocity of≈ 1000ms−1), assuming a helium point-source located L1 = 1m away from the mask,
and a substrate patterning plane at L2 = 300µm behind the mask. The mask is considered to be made of SiN
with a thickness of 5nm. Such a mask will stay stable under the penetration with Helium atoms due to their
small kinetic energy of 20–25meV. In the experiment reported in [29], the authors used grating with
doubled thickness, and the molecules had a kinetic energy of up to 650meV. The maximum extension of the
mask is restricted to D= 200nm to stay within the Fraunhofer approximation (satisfying a Fresnel number
below 1). Furthermore, the mask is separated into 50 sections of 4nm width each, corresponding to the
minimum opening width. This width was selected based on [24], which shows that the effective entrance
width is reduced by about 2 nm due to the dispersion force interaction.

We randomly generate masks represented via arrays with entries 0 for close or 1 for open sections.
Neighbouring open sections will be combined into a single opening with a larger thickness. Hence, the
randomly generated array will be transferred into a set of widths and positions for each opening. Thus, the
allowed openings vary between 1 and 50 units meaning the network is trained on single-slit diffraction and
multi-slit interference with up to 25 openings leading to an angular dispersion of 1− 7degnm. To this end,
we calculate the single slit diffraction (integrant in equation (10))

ˆ
dxt(x;dn)e

i
k0
L2
rx , (27)

for all possible thicknesses dn for matter waves (21) and electromagnetic waves (13) via standard numerical
integration techniques. These results are tabled, and a second program calculates multi-slits’ superposition to
generate the training data.

2.3. An application example: the double slit pattern
To demonstrate the performance of LACENET, we invert a well-known diffraction pattern: the pattern
resulting from a double slit mask, see figure 7. Note that a double slit differs greatly from the LACENET’s
training set, consisting of randomly generated masks with no particular preset structure.

LACENET successfully inverts the pattern to a good degree of accuracy after 10 000 generations of the
genetic algorithm. Interestingly, it does not obtain the same mask as the ground truth, but the mask it
produces matches very closely to the desired pattern (see figure 8).

3. Discussion

Despite the known capabilities of deep learning as a powerful inverse strategy, we found that the best method
to obtain accurate results was to couple it with an additional optimisation step (in our case, a genetic
algorithm). LACENET’s difficulty in fully solving the inverse could be due to (i) insufficient data, (ii) low
network complexity, or (iii) the challenging inverse problem that it is trying to solve.

We performed several experiments with some examples to determine the cause of LACENET’s difficulty.
Interestingly, increasing the complexity of the network (by adding layers and increasing the number of
neurons in the layers) did not produce a better generalisation. With regards to point (ii), we did see a clear
improvement with increasing the size of our data set (which we can arbitrarily scale up by solving for
equation (27)). The experiments presented here use a data set of 300k examples. Using the data generation
procedure described in section 2.2.3, one can extend the data set arbitrarily, potentially increasing the
generalisation capabilities of LACENET.

Finally, we saw some examples where initialising the mask using a random sequence or using LACENET
made no significant difference. By observing these examples, it seems to be the case that this happens more
often for masks that contain many small openings. These masks are more likely to be automatically randomly
produced by the genetic algorithm. Therefore, it is possible that for some cases, the random initialisation is as
good as, or even better than LACENET’s guess.
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Figure 8. Pattern returned by the mask produced by LACENET after attempting to solve the double slit inversion problem. Note
the near-perfect match with the ground truth despite the significant difference in the returned mask (lower left corner). The
upper left inset shows the first diffraction orders, and the right inset (with the blue curve) depicts the deviation between the
ground truth and the returned pattern in per cent.

4. Conclusion

We present a machine learning architecture for solving the inverse problem for matter-wave lithography in
1D in the Fraunhofer regime using a monochromatic plane wave: LACENET. The architecture of LACENET
consists of a convolutional deep neural network followed by a genetic algorithm. This is a key technological
step for industrial-scale matter-wave lithography, needed to achieve the ultimate goal of fast patterning
individual atoms and molecules over large areas. The dispersion force interaction for matter waves presents a
tremendous computational challenge compared to scalar waves due to its complex integration and nonlinear
solution.

In this proof of concept paper, we have restricted ourselves to the 1D case in the Fraunhofer
approximation regime. Future work will focus on modifying LACENET to solve the general problem in 2D
and extending the method to incorporate polychromatic waves and extended sources.
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Appendix A. Hyperparameter tuning

Table A1. Results of the hyperparameter tuning rounds in LACENET.

optimizer lr batch_size alpha gamma MSE

11 Adam 0.000 163 225 0.439 672 5.951 962 1.399 777
43 RMSprop 0.000 288 225 0.448 443 6.431 573 1.404 423
47 RMSprop 0.000 123 87 0.439 803 6.291 578 1.421 799
48 RMSprop 0.000 283 200 0.448 358 6.074 838 1.433 143
39 RMSprop 0.000 099 66 0.466 304 7.131 291 1.450 584
4 Adam 0.000 098 225 0.584 123 5.253 094 1.456 233
22 Adam 0.000 173 225 0.40 145 5.910 984 1.456 791
23 Adam 0.000 109 225 0.450 265 5.525 971 1.465 228
12 Adam 0.000 187 225 0.412 308 6.12 187 1.465 743
32 RMSprop 0.000 089 114 0.179 152 7.315 897 1.466 564
40 RMSprop 0.000 082 570 0.471 317 3.003 355 1.469 744
46 RMSprop 0.000 059 153 0.295 671 7.276 354 1.472 631
16 Adam 0.000 133 225 0.521 078 5.03 229 1.477 234
6 Adam 0.000 097 225 0.467 451 5.42 483 1.478 946
35 RMSprop 0.000 179 66 0.540 199 7.791 814 1.485 383
2 RMSprop 0.000 052 225 0.487 136 7.756 889 1.485 913
0 RMSprop 0.000 075 225 0.505 513 6.664 503 1.488 749
15 Adam 0.000 035 225 0.436 437 5.701 631 1.490 682
37 RMSprop 0.000 151 73 0.560 933 6.776 026 1.495 198
28 RMSprop 0.000 035 265 0.364 326 4.117 896 1.497 929
19 Adam 0.000 144 225 0.582 637 6.224 196 1.499 658
21 Adam 0.000 261 225 0.422 763 6.114 556 1.502 561
20 Adam 0.000 025 225 0.401 408 6.951 192 1.506 756
7 Adam 0.000 069 225 0.496 068 7.374 401 1.51 577
13 Adam 0.000 031 225 0.452 886 5.889 216 1.530 536
49 RMSprop 0.000 265 195 0.52 036 6.28 119 1.544 203
18 Adam 0.000 016 225 0.43 794 5.56 616 1.549 521
38 RMSprop 0.000 434 605 0.494 833 6.954 664 1.549 902
29 Adam 0.000 039 400 0.360 762 7.630 682 1.560 381
45 RMSprop 0.000 329 332 0.413 058 4.932 252 1.580 241
1 RMSprop 0.000 285 225 0.555 782 7.176 087 1.583 419
26 Adam 0.000 047 987 0.32 565 4.25 768 1.593 861
33 Adam 0.000 032 155 0.120 995 5.757 826 1.606 285
36 RMSprop 0.00 018 142 0.59 511 7.965 855 1.611 265
27 RMSprop 0.00 003 391 0.234 176 1.175 896 1.626 354
34 RMSprop 0.000 013 789 0.38 773 4.12 605 1.627 522
31 Adam 0.000 076 900 0.167 727 5.418 842 1.630 291
10 Adam 0.000 013 225 0.593 005 6.110 873 1.638 141
41 RMSprop 0.000 013 241 0.270 598 5.188 218 1.647 733
25 Adam 0.00 029 784 0.230 935 2.162 501 1.686 709
8 RMSprop 0.00 037 225 0.478 398 5.746 003 1.688 195
14 Adam 0.000 184 225 0.533 729 6.477 521 1.69 213
42 RMSprop 0.000 112 435 0.101 017 6.930 886 1.71 168
30 RMSprop 0.000 706 285 0.407 261 6.188 819 1.725 915
24 Adam 0.000 514 225 0.400 875 5.872 189 1.773 344
5 RMSprop 0.000 757 225 0.415 991 5.231 926 1.793 177
44 RMSprop 0.000 935 226 0.460 966 6.326 114 1.799 258
17 Adam 0.00 037 225 0.553 661 6.577 556 1.904 586
3 Adam 0.000 923 225 0.498 035 5.16 874 2.041 645
9 Adam 0.000 786 225 0.57 071 5.326 067 2.277 016
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Appendix B. Extended data

In figure 5, we show a randomly selected example from the 100 examples that are averaged in figure 4. In this
section, we show all other examples. There is no inherent physical difference between the figures shown here
and figure 4—they simply correspond to different randomly-generated masks. The figures are vectorised, so
they can be zoomed in digitally and explored at full resolution. It is evident from the figures presented here
that most of them follow the same trend as figure 5.
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