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Formation and growth of neutral SO2 clusters is investigated
in an adiabatic-expansion setup by means of sulfur 2p (S2p)
photoelectron spectroscopy and theoretical modeling. The shift in
S2p ionization energy between the cluster and a single molecule,
i.e., IE(cluster)-IE(monomer), is recorded and used to monitor
the mean cluster size over a wide range of expansion conditions.
The produced clusters were shown to fall into two different size
regimes. Comparison between theoretical simulations and
experimental observations suggests that while the smallest
clusters belong to the ultrafine particle mode and have a liquid-
like structure, the larger clusters belong to the accumulation
mode of fine particles and possibly have a frozen cluster core. The
transition between the two size/structure regimes occurs over a
narrow interval in expansion conditions and may possibly reflect
a change in growth mechanism from monomer addition to
growth by cluster-cluster collisions.

1. INTRODUCTION

Clusters are aggregates of atoms and molecules, containing

from a few to millions of building units (Johnston 2002) and

ranging in size from less than a nanometer to the lower-micron

scale (Finlayson-Pitts 2009). In this very concrete sense, clus-

ters bridge the gap between atoms and molecules and the con-

densed phases. Clusters often possess properties different from

those of their constituent building blocks and also different

from the corresponding condensed phases. An example is the

melting point, which, for many systems, is found to increase

with cluster size (Shvartsburg and Jarrold 2000; Nanda et al.

2002; Mei and Lu 2007). Other examples are the valence and

core-level ionization potentials that have been found to vary

systematically with cluster size (Bj€orneholm et al. 1996;

Harnes et al. 2011).

By following the evolution of a physical or chemical prop-

erty with cluster size, one may learn how the corresponding

macroscopic property derives from that of the atomic or

molecular building unit. Conversely, to some degree, by con-

trolling the size and composition of the cluster one can control

the size-dependent properties. The possibility to tune proper-

ties by size is one of the features that make clusters interesting

to nanoscience, the other being their extreme surface-to-bulk

ratio (Haberland 1994-1995a; Johnston 2002).

For in situ studies, a much-used approach to produce clus-

ters is to expand a gas adiabatically through a nozzle into vac-

uum. Under favorable stagnation conditions, the expanding

gas becomes highly supersaturated and clusters may form.

Based on assumptions of cluster growth through sequential

addition of monomers and cluster break-up by uniparticle

spontaneous decay (Pauly 2000, p. 144), Hagena et al. intro-

duced the concept of corresponding jets, to be characterized

by the dimensionless condensation parameter, G� (Hagena

1969; Hagena and Obert 1972; Hagena 1974a, b, 1981, 1987,

1992). According to this model, expansion conditions that

share the same G� value give rise to clusters with the same ter-

minal mean size, hN i .
Recently, we explored the use of inner-shell X-ray photo-

electron spectroscopy (XPS) to monitor the mean size of CO2

clusters (Harnes et al. 2011). For CO2, the cluster-to-mono-

mer shift in C1s ionization energy, DIE, was found to grow

smoothly with both G� and the terminal mean cluster size,

hN i . The empirical DIE- hN i relationship was found in

good agreement with independent theoretical calculations on

model clusters of size N D hN i . It may be noted that core-

level photoelectron spectroscopy is not affected by cluster

breakup following ionization, due to the short lifetime of the

core hole. Another promising approach to circumvent the frag-

mentation problem when determining cluster size is described

in Yoder et al. (2011).

The motivation for the present contribution is the need for

fundamental insight to the process of forming molecular
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clusters and in particular the transition in size from the ultra-

fine particle mode to the Aitken nuclei or accumulation

modes of fine particles (Finlayson-Pitts and Pitts, Jr. 2000).

SO2 is a key compound from the aspect of atmospheric partic-

ulate matter (Kulmala et al. 2000; Berndt et al. 2005; Ota and

Richmond 2011), and mixed water/SO2 clusters are also

important in the formation of acid rain (Dong et al. 2006; Ota

and

Richmond 2011). More to the point of this study, sulfur diox-

ide is a convenient compound for exploring cluster formation

over a wide range of conditions, partly because the high boil-

ing point (263.13 K) (Yaws 1999) facilitates access to the

strongly clustering regime without use of a carrier gas. Hith-

erto, neutral free SO2 clusters have been studied either in the

oligomeric regime (Dong et al. 2006) or, motivated by the

importance in planetary atmospheres, in the large-cluster

regime (Fleyfel et al. 1990; Signorell and Jetzki 2008). In

contrast, here we explore how the mean size hN i of SO2 clus-

ters produced in adiabatic expansion evolves over a wide range

of experimental conditions. The large cross section of the

sulfur 2p photoemission process makes XPS well suited for

monitoring the mean cluster size. Different from the spatial or

temporal resolution offered in some studies (Paci et al. 2004;

Laksmono et al. 2011; Pathak et al. 2013; Ezell et al. 2014),

the cluster beam is probed at a fixed distance about 10 cm

downstream from the nozzle neck, i.e., at a mature particle

population.

2. EXPERIMENTS

In 2009, we recorded S2p photoelectron spectra of neutral

free SO2 clusters at five different expansion conditions. The

series was greatly expanded one year later. Pure SO2 gas was

expanded into vacuum through a small conical nozzle with an

opening diameter of 150 mm, a total opening angle of 20�, and
a length of the diverging section of 2 cm (Tchaplyguine et al.

2003). The expansion leads to a lowering of the rotational and

translational temperature of the gas (Pauly 2000, p. 129),

which, together with the initially large number of two- and

three-body collisions, leads to nucleation followed by cluster

growth. The flow of molecules and clusters is led through a

300 mm skimmer, which extracts the central cluster-rich part

of the flow and produces a beam of clusters and uncondensed

molecules, subsequently to be probed by S2p photoelectron

spectroscopy.

In 2009, the temperature on the nozzle, Tn, was measured

to be 301§ 1 K, while the pressure in the stagnation chamber,

P0, was varied between 510 and 1970 mbar. In the 2010

experiments, Tn was kept around 290 K while P0 was varied

from 200 mbar to 2420 mbar. In order to compensate for pos-

sible time-dependent variations in the experimental conditions,

the 2010 spectra were recorded at alternating low and high P0

values. In the online supplemental information (SI), it is shown

that with our setup and assuming that the stagnation

temperature is given by the temperature of the nozzle, the G�

condensation parameter relates to the experimental conditions

by Equation (1).

G�
SO2

D 1:08£ 109
P0

mbar

� �
T0

K

� �¡ 3:4

[1]

Figure 1 shows the experimental settings superimposed on a

contour plot of the G� condensation parameter.

The photoelectron spectra were recorded at the I411 undu-

lator beamline (B€assler et al. 1999, 2001) of the MAX II

storage ring located at MAX-lab in Lund, Sweden, using a

photon energy of 200 eV. The beamline is equipped with a

modified SX-700 monochromator and the photoelectrons are

detected using a Scienta R4000 hemispherical electron ana-

lyzer. We used a monochromator slit opening of 25 mm and a

pass energy Epass of 50 eV for the analyzer. The instrumental

broadening based on these experimental settings is approxi-

mately Gaussian and with a full-width-at-half-maximum

(fwhm) around 90 meV. The binding energy is calibrated to

the vertical ionization energies for the S2p3=2 and S2p1=2 levels

in gaseous SO2, which are reported as 174.78 § 0:03 eV and

175.99 § 0:03 eV, respectively (Coville and Thomas 1995).

2.1. Fitting Models

The photoelectron spectra contain signals from both uncon-

densed molecules, i.e., monomers, and clusters. In order to

extract the cluster component, each spectrum was fitted in

terms of a monomer spectrum that was recorded under similar

conditions, and a model cluster spectrum. The latter was pre-

pared from a monomer spectrum by convolution with a Gauss-

ian distribution to account for the distribution of ionization

energies within a cluster and excitations of intermolecular

FIG. 1. Contour plot of the condensation parameter (G�) (Hagena and Obert

1972; Hagena 1981, 1987) as a function of the nozzle temperature, Tn, and

stagnation pressure, P0. Experimental conditions are shown as open or filled

squares, representing experiments conducted in 2009 and 2010, respectively.
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vibrational modes following ionization (Bergersen et al.

2006b), and also additional broadening due to the distribution

of cluster sizes in the beam. A total of five free parameters

were used in the fitting procedure: peak height, position and

Gaussian width of the cluster component, the peak height of

the monomer component, and a constant background.

3. COMPUTATIONS

Molecular dynamics simulations were conducted with

canonical-ensemble conditions to obtain realistic distributions

of SO2 cluster geometries. Using the dynamic program in the

Tinker suite of programs version 5.1 (Ponder and Richards

1987), cluster geometries with 13, 55, 147, 309, and 561 mole-

cules were propagated at three different temperatures (100 K,

125 K, 150 K). For this purpose, the AMOEBA (Ponder et al.

2010) force field was parametrized for both neutral and

S2p-ionized SO2 as detailed in the SI, which also contains

results from validation tests for both oligomer structures, crys-

tal density, and chemical shifts in S2p energies. AMOEBA

contains an electrostatic distributed-multipole model, with

charge, dipole, and quadrupole at each atomic site. All simula-

tions were carried out in the rigid-body approximation with

5 fs timesteps. Initial structures were prepared by building

cuboctahedrons with the molecules randomly oriented in space

and placed at an fcc grid with an inter-gridpoint distance of

5 A
�
. First, the simulations ran for 1 ns at 150 K. Next, the

temperature was lowered to 125 K at a rate of 1 K/ps using the

anneal option in Tinker. At this temperature, the simulation

ran for 1 ns before a second annealing step followed. Finally,

the simulations ran for 1 ns at 100 K.

3.1. Attenuation Model

For quantitative use of photoelectron spectroscopy on con-

densed systems, attenuation of the photoelectron signal due

to interaction with matter needs to be taken into account. The

attenuation of the photoelectron signal is usually modeled by

an exponential Ansatz as I=Io D exp ¡ d=λð Þ (Amar et al.

2005; Bergersen et al. 2006a; Harnes et al. 2011), where d is

the distance traveled by the photoelectron through matter and

λ denotes the signal attenuation length. An upper bound to λ
may be obtained as λD 1=sin, where si is the cross section for

inelastic collisions between an electron and SO2 and n is the

number density at the expected structure and temperature.

While the inelastic scattering cross section is obtained as the

difference between the total and the elastic cross sections

(Bhardwaj and Michael 1999), the number density is taken to

be that of the solid at 143 K (0.030 mol cm¡ 3) (Post et al.

1952). The effect of elastic scattering is to increase the dis-

tance that the electron travels before escaping from the cluster.

If elastic scattering were neglected, one would arrive at

an upper bound of 12.0 A
�

for λ. We have modeled the

effect of elastic scattering by Monte Carlo simulations of the

propagation of electrons through an N = 561 cluster following

the approach outlined in Werner (2001). The results are in

good agreement with escape probabilities calculated from the

exponential Ansatz (Amar et al. 2005) with the effective atten-

uation length λ set to 10 A
�
, and this value is henceforth

adopted here.

3.2. Calculating Cluster–Monomer Shifts in S2p
Ionization Energies

Time-dependent distributions of shifts in S2p ionization

energy (IE) between the cluster and the monomer, i.e.,

DIED IE clusterð Þ¡ IE monomerð Þ, were calculated based on

cluster geometries obtained from the last 200 ps of the trajec-

tories. For each molecule at each cluster geometry, a unique

DIE value is calculated and weighted by the probability that

the photoelectron escapes from the cluster without undergoing

inelastic scattering. The theoretical DIE value for the given

cluster size and temperature is obtained as a time-average dis-

tribution of ionization energies. Contrary to what is the case

for the experimentally determined DIE values, the calculated

DIE values are based on single cluster sizes. However, in a

recent study of CO2 clusters (Harnes et al. 2011), it was found

that the mean ionization energy for a log-normal distribution

of clusters corresponds closely to the mean ionization energy

of a cluster of size equal to the mean of the cluster distribution,

N D hN i . A similar result was previously reported for argon

clusters (Bergersen et al. 2006a).

The calculation of shifts is based on a polarizable force field

with an accurate description of the electrostatic potential

around both the neutral and ionized molecules. In general, the

force-field-predicted DIE values are found to be in good agree-

ment with ab initio methods. For instance, the distribution of

force-field-derived DIE values for a pentamer is bracketed by

the corresponding results obtained by means of Møller-Plesset
perturbation theory of 2nd order (MP2) (Møller and Plesset

1934) using two different but closely related basis sets (cc-

pVTZ and aug-cc-pVTZ) (Dunning 1989; Kendall et al. 1992;

Woon and Dunning Jr. 1993), respectively. Moreover, for an

N D 46 cluster, the present approach to compute cluster–

monomer shifts in ionization energy is validated against a

combined quantum mechanics/molecular mechanics (QM/

MM) approach. The agreement between the two models is

very good except for an almost constant deviation between the

QM and the MM estimates due to contributions from the first

coordination shell of the site of ionization. A second source of

error comes from a slight underestimation of the density at the

force-field level of theory (see the SI). To correct for these

small yet highly systematic errors, our theoretical estimate of

the mean cluster–monomer shift, DIEtheory, is formed by add-

ing the mean contribution from the first coordination shell,

computed as 1:08DIEFF;shell1 ¡ 0:043 eV, to that from all sub-

sequent shells, computed as 1:04DIEFF;shell> 1. Here, DIEFF

denotes the corresponding force-field (FF)-based values.
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The computational cost for force-field calculations that

include mutual induction of dipoles at each atomic site

and also a distributed electrostatic multipole description is

substantial and increases fast with increasing cluster size

(Ren et al. 2011). In order to obtain DIE values for clusters

that are significantly larger than those propagated in the molec-

ular dynamics simulations, we apply a polarizable continuum

model as described in Bj€orneholm et al. (1996) in combination

with an exponential attenuation model (Amar et al. 2005;

Bergersen et al. 2006a). Within the attenuation-dependent con-

tinuum model, the clusters are modeled as spheres. Each

sphere is further divided into shells with thickness equal to

21=6 £ n¡ 1=3, which, for spherical particles in a face-centered-

cubic packing, corresponds to twice the atomic radius. Here, n

is the number density of solid SO2 at 143 K (Post et al. 1952).

By computing the ionization energy for a site in the middle of

each shell, a radial distribution of ionization energies is

obtained. The distribution of ionization energies is thereafter

weighted according to the volume of each shell and by the

probability that the photoelectron escapes from the cluster

without undergoing inelastic scattering.

It is well known that the continuum approximation overesti-

mates the polarization contribution to DIE from the nearest

solvation shell (Bj€orneholm et al. 1996). However, since the

overestimation is of local origin, the difference between DIE
values obtained using the continuum approximation and the

force-field model, respectively, converges fast with cluster

size. Reliable mean DIE values for large clusters may there-

fore be obtained as

DIEN > 561 DDIEN > 561;C C DIEN D 561;FF ¡DIEN D 561;C

� �
; [2]

where the subscript C and FF denotes the continuum approxi-

mation and the force-field model, respectively.

3.3. The Cluster Temperature

The cluster temperature is an input parameter to the

molecular dynamics simulations and affects the DIE values

mainly through the density. The temperature may be estimated

from a model that assumes the clusters to cool primarily

by evaporation until reaching their so-called evaporative

temperature, Te, which in Pauly (2000) is approximated as

Te D 0:04 Du
kB
. In this expression, Du is the change in internal

energy caused by the evaporation and kB is the Boltzmann con-

stant. Approximating Du by the enthalpy of vaporization at the

boiling point, DHvap = 25.72 kJ/mol (Yaws 1999), one obtains

Te = 124 K. Moreover, by plotting the experimental terminal

cluster temperature (Tc) for a handfull of atomic and molecular

clusters as given in Haberland (1994-1995b) vs. their respec-

tive boiling points (or sublimation temperatures), we obtain

Tc � 0:48Tb, where Tb is the boiling point or sublimation

temperature at standard conditions, respectively. From

Tb D 263.16 K (Yaws 1999) for SO2, this empirical

relationship suggests that Tc is about 126 K. Taking into

account the relatively large uncertainy of Tc values in Haber-

land (1994-1995b), we estimate the terminal temperature for

SO2 clusters in this work to 125§ 25 K.

4. RESULTS

Clusters were formed by adiabatically expanding pure SO2

gas at high pressure into vacuum. The resulting beam of clus-

ters and uncondensed monomers was subsequently probed by

S2p photoelectron spectroscopy; see Figure 2 for a representa-

tive spectrum. The monomer contribution to the S2p spectrum

appears as a spin-orbit-split doublet of sharp peaks near

174.8 eV and 176.0 eV in ionization energy. The cluster con-

tribution to the spectrum consists of two broad peaks shifted to

lower ionization energies compared to the monomer peaks.

These form a spin-orbit doublet as described for the monomer,

and each of these components reflects the combined signal

from both surface and bulk parts of the clusters.

The most important observable from the photoelectron

spectrum is the mean ionization energy of either of the cluster

peaks. It is convenient to use the monomer line for internal ref-

erence, and hence we will focus on the mean cluster–monomer

shift in S2p3=2 ionization energy (DIE). The second important

observable in the spectrum is the width of the S2p3=2 cluster

peak. However, since we describe this peak as a convolution

between a monomer lineshape and a cluster-specific Gaussian

broadening function, we will consistently use the full width at

FIG. 2. S2p photoelectron spectrum (circles) of a beam of clusters and free

monomers of SO2 produced with a stagnation pressure of 1.97 bar and nozzle

temperature of 301 K. The spectrum is decomposed into contributions from

clusters (dark colored area) and free monomers (light color) by means of

least-squares fitting as detailed in the text. Energy calibration is achieved by

assigning the vertical 2p1=2 ionization energy of the monomer to 175.99(3)

eV (Coville and Thomas 1995).
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half maximum of the Gaussian distribution (fwhmG) to charac-

terize the width of the cluster peak.

Figure 3 shows the experimental spectra, recorded in 2009

and 2010 under 39 different expansion conditions and

arranged vertically according to the corresponding value of

the condensation parameter G� (Figure 1). According to the

principle of corresponding jets, expansions that are character-

ized by the same G� value are similar with respect to cluster

formation and end up with the same terminal mean cluster

size, hN i (Hagena 1987). A word of caution is in place, as

the gas-specific constant q appearing in the definition of G� is
not known for SO2 and is here somewhat arbitrarily chosen

equal to that of CO2. Any realistic change in q would stretch

or compress the G� axis slightly, but not affect any of qualita-

tive conclusions to be drawn.

The maximum of the 2p3=2 cluster peak moves toward

lower ionization energies with increasing G� value, as indi-

cated by the shaded area in Figure 3. This means that the clus-

ter energy shift (DIE) increases in magnitude with increasing

G� value. The mean cluster size is generally expected

to increase with G�, thus implying that Figure 3, read from

bottom to top, shows spectra in the order of increasing cluster

size. The first spectrum at the bottom of Figure 3 is recorded

at conditions corresponding to G� D 940, showing that the

onset of condensation takes place at conditions G� < 940.

In order to detect possible time-dependent variations in the

experimental conditions, the 34 spectra from 2010 were

recorded at alternating high and low G� values. No time-depen-

dent variations were observed, and the dataset is therefore

believed to be of good quality with respect to both reproduc-

ibility and stability of experimental conditions.

To bring out more detailed information from the spectra,

DIE and fwhmG are plotted toward G� in the lower and upper

parts of Figure 4, respectively. For G��5000, DIE is seen to

FIG. 3. Experimental and fitted S2p photoelectron spectra of cluster beams

recorded at different conditions and arranged vertically according to increasing

G� value such that the high-energy tail of each spectrum indicates the corre-

sponding G� value. For details about the fitting, see caption of Figure 2. The

shaded area marks the interval spanned by the maximum of the 2p3=2 cluster

peak in the spectra corresponding to the lowest and highest G� values,

respectively.

FIG. 4. The experimentally determined cluster–monomer shift in S2p ion-

ization energies (open [2009] and filled [2010] squares), DIE (lower

panel), and the width parameter fwhmG of the cluster peak (upper panel)

plotted against the G� condensation parameter; see Equation (S1) in the SI.

The vertical dotted lines indicate the transition zone between two regimes I

and II. Based on the fitting procedure, the uncertainties of DIE and fwhmG

were determined as indicated at each data point by vertical bars. The corre-

sponding C1s DIE and fwhmG values for CO2 clusters are included for com-

parison (filled diamonds).
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increase smoothly in magnitude, first quite steeply at low G�

values and then reaching a plateau at about ¡ 0:9 eV. For

high G� � 7000, on the other hand, DIE is constant at

¡ 1.03 eV within the experimental uncertainty. The develop-

ment of DIE might be contrasted to that of fwhmG, which

appears almost constant in each of two highlighted intervals,

but at different constant values of about 0.65 (G��5000) and

0.79 eV (G��7000), respectively. On the basis of these differ-

ences, it seems useful to introduce the notation of regions I

and II as indicated in Figure 4. Regions I and II are separated

by a transition zone in which both DIE and fwhmG change

rapidly.

Interestingly, in region I, the evolution of DIE as a func-

tion of G� shows large similarities to our recent findings

(Harnes et al. 2011) for CO2 clusters where the C1s cluster–

monomer shift in ionization energy could be nicely fitted as a

power function of G�, suggesting that a similar approach may

prove fruitful also for SO2. We choose the functional form

DIED a G�
1000

� �¡ b C c, where a and b are left as fitting

constants. Anticipating that b> 0, c is the high-G� limiting

value of the chemical shift assuming there are no phase or

structural transitions as G� increases. From MD simulations

undertaken at 125 K and continuum-model calculations

detailed toward the end of the Results section, we obtain a

value of ¡ 1.11 eV for the theoretical DIE value for infinitely

large clusters as shown in Equation (5) and Figure 8, and

hence we fix cD ¡ 1:11 eV. The two remaining parameters a

and b are determined by fitting to the experimental data in

region I (Figure 5). The parameters show significant covari-

ance and the error bar of the exponent (b) expresses the uncer-

tainty associated with the final model where a was kept fixed.

This error bar is estimated by refitting the model to 1000 sets

of synthetic data prepared by adding noise to the original data

points consistent with their respective uncertainties. The

resulting fit is given in Equation (3).

DIED ¡ 1:11 eVC 0:39 eV
G�

1000

� �¡ 0:51 § 0:02ð Þ
;

where G� 2 f900; 5000g: [3]

As confirmed in Figure 5, Equation (3) fits the experimental

data well.

In the following, a relationship between DIE and cluster

size is established by means of theory, and subsequently com-

bined with Equation (3) to estimate cluster size from experi-

mental conditions in region I. For region II, the theory-based

DIE- hN i relationship will be used to show that the observed

DIE value does in fact correspond to very large clusters. The

sizeable jump in width of the cluster S2p3=2 peak from region I

to region II will be discussed in terms of possible structural

changes.

4.1. DIE and fwhmG vs. Cluster Size

Figure 6 shows computed mean cluster–monomer shifts

in ionization energy (DIE, bottom panel) as well as the

full-width-at-half-maximum (fwhmG, top panel) of Gaussian

fits to theoretical models of S2p spectra as a function of cluster

size. The theoretical spectra were prepared by convoluting the

experimental monomer lineshape with computed distributions

of S2p ionization energies taking into account signal attenua-

tion in term of an effective attenuation length of λD 10A
�
. The

cluster geometries were generated by molecular dynamics

simulations for five different cluster sizes (N = 13, 55, 147,

309, and 561), by propagation at three different temperatures:

100, 125, and 150 K. The aim of the simulations is to produce

a distribution of realistic geometries that resemble the experi-

mentally produced clusters of the selected size. Details of how

the theoretical shift data were computed are given in the

computational section.

The experimental S2p spectrum of a cluster beam reflects

the distribution of ionization energies for each cluster size

and is further broadened by intermolecular Franck-Condon

effects and by the variation in mean shifts among the cluster

sizes present in the beam. Our theoretical model spectrum,

on the other hand, is based on the distribution of ionization

energies within a single cluster, and a direct comparison

of linewidths between theoretical and experimental spectra

is not straightforward. However, in several recent studies

(Bergersen et al. 2006a; Abu-samha et al. 2007; Harnes et al.

2011) on Ar and molecular clusters, it was demonstrated

that except perhaps for the smallest clusters, broadening

of the cluster peak is strongly dominated by the width of the

distribution of vertical ionization energies for a single

FIG. 5. The cluster–monomer shift in S2p ionization energy, DIE, plotted

against the condensation parameter, G�. The squares show the experimental

data points; open (2009) and black (2010). The black solid line represents

Equation (3) while the dashed lines indicate the uncertainty associated with

the exponential factor in Equation (3).
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(representative) cluster. Moreover, it was demonstrated that

a cluster of size N equal to the mean of the cluster-size distri-

bution, i.e., N D Nh i, is representative both in terms of repro-

ducing the mean ionization energy of the cluster beam and the

cluster-specific broadening of the cluster peak, fwhmG. This

may be surprising knowing that cluster size distributions are

typically quite broad (Soler et al. 1982; Bobbert et al. 2002)

and intuitively should contribute to the fwhmG parameter.

However, convergence of the ionization energy with increas-

ing cluster size suppresses the impact of the large-N tail of the

size distribution on the spectral width and allows for our com-

puted fwhmG values for large single-size clusters to be directly

compared to the experimental fwhmG values.

From Figure 6, one can see that the mean shift value DIE
decreases in magnitude with higher temperature, consistent

with lower density. The width of the cluster peak increases

with T, though, due to larger diversity in cluster structures.

When comparing pairs of DIE and fwhmG of the computed

distributions of ionization energies with the experimentally

determined values, the agreement is best for data from simula-

tions at 125 K. With this choice, Figure 7 demonstrates that

the computed (shift, width) data points for the largest clusters

simulated (N = 147, 309, and 561) agree well with the experi-

mentally determined data in region I; cf also the caption to Fig-

ure 4. An immediate conclusion based on the cluster–

monomer shift is that in all experiments we produce clusters

having a terminal mean size that is larger than or equal to

about 50–60 molecules.

MD simulations have been carried out only for clusters up

to size N D 561, corresponding to DIE�¡ 0:93 eV at T =

125 K and DIE�¡ 0:88 eV at T = 150 K. Many of the experi-

mental data points are found outside the range spanned by the

force-field-based calculations and in order to prepare theoreti-

cal shift data that apply to very large clusters, we make use of

the continuum model as outlined in the computational section.

The short-range correction in Equation (2) is fixed to 0.41 eV

by comparison to the force-field-based shift for N = 561 as

averaged over T = 125 K and 150 K. The corresponding

values for the 125 and 150 K simulations are 0.38 eV and

0.44 eV, respectively.

DIEN DDIEN ;C C 0:41 eV; N > 560 [4]

Figure 8 shows the DIE values computed using Equation (4).

Following Jortner (1992) the computed DIE values are fitted

to a linear function in N ¡ 1=3, to give

DIEN D 1:68N ¡ 1=3 eV¡ 1:11 eV: [5]

Equation (5) and Figure 8 show that our theoretical estimate

of DIE converges toward ¡ 1.11 eV for the average of the

125 K and the 150 K data, and that DIE is most sensitive to

FIG. 7. Comparison of computed and experimentally determined fwhmG vs.

DIE values. Computed values are shown for clusters of size N = 55, 147, 309,

and 561, in geometries obtained from molecular dynamics simulations. The

upper and lower dashed lines trace values obtained at 150 and 125 K, respec-

tively, with diamonds marking the values obtained as the average of the 125 K

and the 150 K data. Estimated error bars have been added to the experimental

data points.

FIG. 6. Calculated mean value (DIE, bottom) and width (fwhmG, top) of theo-

retical models of S2p photoelectron spectra, plotted against the number of mol-

ecules, N , in the cluster. The clusters were propagated at three different

temperatures (100, 125, and 150 K). At each temperature, the uncertainties in

calculated DIE and fwhmG values are estimated to 0.02 eV. The effective

attenuation length λ is taken to be 10 A
�
.
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changes in size for clusters with diameter smaller than 10 nm,

corresponding to clusters in the ultrafine particle range

(Finlayson-Pitts and Pitts, Jr. 2000). The corresponding values

for the 125 K and 150 K data are ¡ 1.13 eV and ¡ 1.08 eV,

respectively. Combining Equations (3) and (5) with N

replaced by hN i gives (Bergersen et al. 2006a; Harnes et al.

2011)

Nh iD 80
G�

1000

� �1:51 § 0:06ð Þ
; where G� 2 f900; 5000g: [6]

The error bar in Equation (6) is based solely on the uncertainty

in the exponent in Equation (3). Equation (6) shows that hN i
grows with G� raised to the power of about 1.5. This exponen-

tial factor can be compared to suggested exponential factors

for Ar (1.997) (Krauss et al. 1991), for H2O (1.886) (Bobbert

et al. 2002), for CO2 (2.23) (Ramos et al. 2005; Harnes et al.

2011), and for NH3 (1.348) (Bobbert et al. 2002).

Figure 4 shows that the experimentally determined DIE
value stabilizes to ¡ 1.03§ 0:02 eV in region II. The agree-

ment between this value and the asymptotic value of the

theoretical estimate in Equation (5) is good if we take the

uncertainty in temperature and the uncertainty in the theoretical

estimate into account. While Figure 8 shows that the theoreti-

cally DIE values have an asymptotic value of ¡ 1.13 eV for

the 125 K data, the asymptotic value for the 150 K data is

¡ 1.08 eV. This suggests that the temperature may be

somewhat higher for the clusters in region II compared to the

clusters in region I.

However, based on the evolution of DIE toward G� as

shown in Figure 4, it seems that the experimental value of DIE
has in fact converged to the large-cluster limit of the cluster–

monomer shift in S2p ionization energy. Recently, Aksela

et al. (2010) and Holappa et al. (2011) presented experimen-

tally measured core-level solid–atom shift in ionization energy

for Sb, Bi, K, and Rb. Due to problems with charging, the

solid–monomer shift in ionization energy has not previously

been obtained for insulators. To the best of our knowledge, this

is the first time that such a quantity is probed experimentally.

5. DISCUSSION

Figure 4 shows that the magnitude of the cluster–monomer

shift in S2p ionization energy and also the linewidth parame-

ter of the cluster peak, fwhmG, assume essentially constant

values at stagnation conditions that in the course of this work

are referred to as region II. Moreover, both of these quantities

attain values that are significantly larger (in magnitude) than

those observed in region I. It is to be noted that the reproduc-

ibility of the observations is very good, and hence these obser-

vations warrant an explanation. The question arises, what

information do these observations convey about the evolution

of SO2 clusters with size? We start out by discussing implica-

tions from the observed evolution in ionization energy.

A preliminary assumption of no structural changes (apart

from size) between clusters in regions I and II opens for

applying the shift–size relationship obtained for region I also

to the transition zone. In doing so, one finds from Figure 8

that the jump in DIE observed in the transition zone would

correspond to a jump in cluster size from about N D 600 to

N�9£ 103. This large increase in cluster size takes place

within a rather narrow window of experimental conditions,

i.e., for a stagnation pressure P0 between 1.1 and 1.5 bar,

which, according to Equation (6), would be expected to double

the cluster size rather than to increase it ten-fold. At least one

of the assumptions underpinning either the scaling law or the

definition of the condensation parameters seems to be violated,

implying that crossing the transition zone involves either a

major change in cluster structure or access to a much more

efficient mechanism for cluster growth than assumed in the G�

formalism, or both of these.

At this point it is useful to bring into discussion the com-

plementary observation of the increase in cluster linewidth,

fwhmG, from region I to region II. The evolution of this quan-

tity, with size as observed experimentally for both regions I

and II in Figure 4 (top) and also computationally in Figure 6,

suggests that fwhmG converges rather fast with size and signif-

icantly faster than does DIE. Hence, it appears that the signifi-
cant jump in fwhmG cannot be explained solely by a jump in

mean cluster size from region I to region II. On the other hand,

from MD simulations of medium-sized clusters as reported in

FIG. 8. Cluster–monomer shift in S2p ionization energy (DIE) is plotted vs.

the number of molecules in the cluster (N, lower horizontal axis) and cluster

diameter (D, upper horizontal axis) in the spherical-cluster approximation.

The diameter is computed assuming a cluster density (1.92 g/cm3) equal to

that of crystalline SO2 at 143 K (Post et al. 1952). DIE is calculated from

Equation (4) as mean of the corresponding models parametrized toward theo-

retical shift data obtained from cluster structures obtained in MD simulations

at 125 K and the 150 K, respectively. The upper and lower dashed lines trace

values obtained using Equation (4) with the constant 0.41 eV replaced by

0.44 eV and 0.38 eV for the 150 K and 125 K data, respectively.
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Figure 6, the linewidth (fwhmG) increases with increasing

simulation temperature. Assuming this to apply also to large

clusters, the increase in fwhmG from region I to region II may

be rationalized as an increase in cluster temperature with size.

This is, however, contradicted by the observed increase in the

magnitude of DIE, as heating would in general lead to less neg-
ative DIE values (Figure 6, lower panel) through lower extra-

molecular polarization with decreasing density. Moreover, it

was shown for Ar clusters (Farges et al. 1981) that the termi-

nal cluster temperature shows only a weak size dependency.

An alternative hypothesis for the observed increase in

linewidth (fwhmG) between clusters in regions I and II is a

significant change in the contribution from extra-molecular

electrostatic interactions to core ionization energies. This

seems to require some kind of structural change, the most

likely candidate being that of a phase transition, to which we

turn next.

Bartell et al. (1989) report on the phase state of more than

50 different single-component clusters that were generated in

supersonic beams, based on electron-diffraction measure-

ments. The clusters had a diameter of about 10 nm, which,

according to Figure 8, corresponds to clusters in the beginning

of the transition zone between regions I and II. The phase state

was found to correlate with an empirical index,

RC D Tb ¡ Tmð Þ=Tb C 0:007 DSm=Rð Þ2, where Tb and Tm are

the boiling and melting temperatures at standard conditions,

respectively, and DSm is the entropy of melting. For com-

pounds with RC < 0:32, the clusters were found to be solid,

while liquid clusters were produced if RC > 0:32. For com-

pounds with RC close to 0.32, both the solid and the liquid

phases could be produced. While the extensive list of

compounds in Bartell et al. (1989) does not include SO2, an

RC-value of 0.38 (Yaws 1999) suggests that SO2 clusters in

region I should be in the liquid phase. This result is also in line

with our MD simulations at 125 K and 150 K, whereas at

100 K the cluster structures became rather glassy, i.e., amor-

phous but with little mobility.

It is well established that the melting temperature of

nanoparticles depends on the cluster size, and except for a

few anomalies, Tm is found to increase with size (Nimtz

et al. 1988; Rytk€onen et al. 1997; Mei and Lu 2007). Inter-

estingly, the melting temperature changes by far the most at

the smallest sizes, suggesting that it may be significantly

larger at the end of region I compared to the beginning.

Hence, while the cluster temperature probably increases

slightly with size (Farges et al. 1981), the melting point

changes much more, and at some size, the cluster temperature

drops below the melting point. This implies a transition to

solid clusters, with a slowly increasing degree of crystallinity

with size. This view gets some support from vibrational-spec-

troscopy studies of pure SO2 clusters. Signorell and Jetzki

(2008) produced large SO2 clusters (10
6 molecules) in a col-

lisional cooling cell with helium as buffer gas and concluded

that the clusters were partially amorphous in the temperature

range 20–80 K. Fleyfel et al. (1990) produced very large

SO2 clusters in an N2 atmosphere and at higher temperatures

of 80–130 K, with the conclusion that the clusters had crys-

talline structure.

In order to see the impact of structural order on the S2p

spectrum, we constructed a constrained model of a cluster of

size N = 1181 displaying a crystalline core. Starting from a

spherical cut of crystalline SO2 at 143 K (Post et al. 1952), a

central core made up from the 253 molecules within a 15 A
�

radius from the center of mass was kept frozen in the crystal-

line structure while the remaining 79% of the cluster mole-

cules were propagated under canonical-ensemble conditions at

125 K and with 1 fs timestep. The cluster surface soon under-

goes surface relaxation (melting) and is propagated for 260 ps

until reaching a stable value for the intermolecular interaction

energy. The crystalline SO2 core contains chains of zig-zag-

ging molecules with one component of the dipole moment

adding constructively. Past the core, there is a region with the

molecular dipoles tending to be orthogonal to the core dipole,

while the outer or molten part of the cluster is characterized

by molecules with their dipoles oriented antiparallel to that of

the core and benefiting from a favorable electrostatic interac-

tion with the latter. This picture is evident from Figure 9,

which shows the cartesian components of the dipole moment

of spherical shells of thickness 1 A
�
from the cluster. The fully

drawn line shows the dipole component that is parallel to the

net dipole moment of the frozen core, while the other curves

show the two components orthogonal to the first one.

FIG. 9. Components of the mean electric dipole of molecules within a spheri-

cal shell at the indicated radial distance from the cluster center-of-mass, as

obtained in a simulation of an SO2ð Þ1181 cluster that is constrained to have the

central 20% of the molecules in a crystalline arrangement. The fully drawn

line corresponds to that direction of the net dipole of the crystalline core,

whereas the two other lines refer to directions orthogonal to this. See text for

more information.
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When comparing computed values for the mean and root-

mean-square deviation in the cluster–monomer shift in S2p

ionization energy for our constrained cluster to those obtained

for a fully relaxed cluster of the same size, some interesting

differences appear. First, the difference in mean shift is small

between the two models, amounting to about 0.05 eV com-

pared to a mean shift of ¡ 0.83 eV. Next, the difference in

peak width (fwhm) between the two distributions of shifts, is

large, at 0.96 compared to 0.63 eV, respectively, as computed

from the root-mean-square deviation from the mean in each

case. While these findings support the idea that the formation

of a crystalline core may increase the peak width appreciably

without affecting the peak position much, they also show that

either a small crystalline core or a semi-ordered larger core

would be sufficient to account for the change in peak width

that we observe between regions I and II.

In Figure 10a, the distribution of ionization energies in the

outermost 10 A
�
shell of the cluster is decomposed into contri-

butions from molecular polarization (DP) and interaction

between permanent electrostatic moments (DM), such that

(DIEDDM CDP) (Abu-samha et al. 2007). While the polari-

zation part is clearly dominant in deciding the magnitude of

the chemical shift values, the permanent molecular moments

are responsible for the rather large spread in DIE, correspond-
ing to the width of the spectrum. Figure 10b demonstrates that

DM is clearly correlated to the net dipolar potential from the

frozen core, eFcore
m , at the site of ionization. Also noteworthy

is the fact that DM is largely centered about zero, showing

how the frozen, dipolar cluster core acts to increase the width

of the S2p XPS signal without affecting the mean ionization

energy much.

According to Figure 4, both cluster–monomer shift and the

width of the cluster peak evolve rapidly in the transition zone

between regions I and II. While a structural transition from

liquid or amorphous clusters to clusters with a partly frozen

core may explain the increase in width, this does not seem to

affect the mean ionization energy much. However, the evolu-

tion of a crystalline core, wrapped in a liquid surface layer

with molecular dipoles that are partially oriented in the field

from the former, does provide a mechanism for increasing

cluster stability through stronger molecule–host cluster inter-

action with increasing size (Nanda et al. 2002), leading to

lower saturation pressure, higher saturation ratio, and thereby

larger clusters.

Alternatively, while the smaller clusters grow by monomer

addition as assumed in the G� formalism, in the absence of an

inert carrier gas and with increasing stagnation pressure and

cluster size, coalescence of clusters may possibly become a

more efficient growth mechanism and give a strong increase in

mean cluster size and a corresponding jump in cluster–mono-

mer shift over a narrow interval of G�. In addition to coagula-

tion, the present system and observations may be of interest in

the study of nonisothermal effects on particle growth, as these

may be expected to be important in the absence of carrier gas

(Pathak et al. 2013).

For CO2 (Soler et al. 1982), N2O (Echt et al. 1983), H2O,

and NH3 (Bobbert et al. 2002), the transition between the two

growth mechanisms was investigated and determined by

means of mass spectrometry. In these studies, the working

hypothesis was that the shape of the cluster size distribution

would give information about the governing growth mecha-

nism. More specifically, a cluster size distribution that is expo-

nentially decaying with size was regarded to indicate cluster

growth through monomer addition, while a log-normal would

be consistent with growth through cluster coagulation. This

hypothesis is contested (S€oderlund et al. 1998; Feiden et al.

2008) and, moreover, other authors (Vostrikov and Dubov

2004) have underscored the importance of taking into account

the size-dependency in the cluster stability with respect to

evaporation of molecules.

FIG. 10. Analysis of S2p ionization energies (relative to that of the free molecule) for the cluster model described in Figure 9 and in the text. (a) Decomposition

of S2p shifts (DIE) into contributions from molecular polarization (DP) and permanent electrostatic moments (DM ), and (b) DM vs. the net dipolar potential at

the site of ionization, eFcore
m , defined by the innermost 20% of molecules frozen to a crystalline core.
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While the expression for the condensation parameter G� is
derived based on cluster growth through monomer addition,

Bobbert et al. (2002) used the same formalism also for experi-

mental conditions claimed to be consistent with cluster coales-

cence. For H2O and NH3, hN i seems to increase linearly

with the logarithm of G� for all cluster sizes investigated.

Naively, one would expect a large increase in hN i when

exceeding the G� value that corresponds to the transition

between the two growth regimes (Smirnov and Strizhev 1994)

and hence the smooth evolution of hN i with G� is surprising.
Recently, we used carbon 1s photoelectron spectroscopy to

follow the size-evolution of CO2 clusters as a function of

expansion conditions (Harnes et al. 2011). hN i was found to

grow smoothly with G� for hN i between 50 and about 6000.

In contrast to what was reported in Soler et al. (1982), no tran-

sition between growth regimes could be identified. This

smooth evolution of hN i with G� is in line with the observa-

tions made for H2O and NH3 in Bobbert et al. (2002). While

this might suggest that hN i is rather insensitive to the growth

mechanism, a more probable explanation is that the transition

between the two growth mechanisms takes place at larger G�

values than probed in Harnes et al. (2011).

6. CONCLUSIONS

The formation of SO2 clusters by adiabatic expansion is

studied by means of core-level X-ray photoelectron spectros-

copy and theoretical modeling. By carefully monitoring the

evolution of the spectral properties as a function of expansion

conditions, a transition between two different clustering

regimes is found, suggested to differ in phase composition and

mean size. At low-to-medium clustering conditions, liquid

clusters are formed with mean size increasing to about 600

molecules as the stagnation pressure increases. Over a rather

narrow range of higher values of the stagnation parameter, the

S2p spectral observables undergo rapid and monotonous evo-

lution and then stabilize at values that are consistent with theo-

retical simulations for large clusters having a partly crystalline

interior and a molten surface.
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