DEPARTMENT OF INFORMATICS
ALGORITHMS

Master Thesis

Localizing Cell Towers from
Crowdsourced Measurements

Supervisor:
Prof. Jan Arne TELLE
Author: .
Dep. of Informatics
Johan Alexander Nordstrand -
Co-Supervisor:
RUSVIK

Prof. Hans K. HVIDE
Dep. of Economics

Monday 1** June, 2015

Abstract

Today, several internet sites exist that aim to provide the locations and number of
cellular network antennas worldwide. For example [1], [2] and [3]. What makes this
task difficult to accomplish is the lack of information available about the whereabouts
and number of antennas. Only in a few countries are correct locations for some
cellular network antennas known. Otherwise, these sites base their knowledge about
cellular network antenna locations on measurement data collected from crowdsourcing.
OpenCellID uses a simple and primitive algorithm for estimating antenna locations
based on such measurements. In this thesis we suggest an alternative approach to
localize cellular network antennas based on data provided by OpenCelllD.

We start by giving an introduction to the problem, and give a brief overview of
related work. This includes localization of mobile devices in addition to localization
of cellular network antennas. We then present some background information for
our algorithm development. Next we develop two similar algorithms for localizing
cellular network antennas. One utilizes distance between measurements, the other
utilizes Received Signal Strength (RSS) values among measurements. We experiment
with the two algorithms on theoretical generated test data, and argue that utilizing
RSS gives the most accurate estimated antenna locations.

Next we present the OpenCelllD data. We explore this data in detail before
defining two subsets we will test our two algorithms on. One subset contains
measurement data where correct antenna locations are known. The other contains
measurement data for antennas in the Bergen City Center area. We then estimate
cellular network antenna locations with our two algorithms for the two subsets. Our
tests will show that utilizing RSS estimates more accurate antenna locations when
correct antenna locations are known and can be compared to. We end the thesis by
analyzing two measurement distribution patterns, and propose how the algorithms
can be improved.

i

Acknowledgements

Foremost, I want to thank my supervisor Jan Arne Telle. Without his invaluable
contribution of ideas and advice, this thesis would have been impossible to complete.

I would also like to thank my co-supervisor Hans K. Hvide for relevant discussions
as well as introducing me to the problem at hand.

I want to thank Markus Semm and Krzysztof Ociepa at OpenCelllD.org for
providing knowledge and explanations about the OpenCelllD data.

Many thanks go to lecturers and the administration at the Departement of
Informatics for providing an excellent student environment, both for learning and
festivities.

Last but not least, I want to thank my family, friends and the rest of the student
community for all the good times during my five years as a student at the University
of Bergen.

111

Contents

Contents fiv]
[List of Algorithms| bviil
(1__Introductionl m
[I.1 Motivation and Background| [
[I.1.T Applications|

1.2 Research Questions|
(1.3 Fundamental Terminology|
M3TCelll oot 21

[L3.2 Measurement]

[L4 Thesis Outlinel.
2__Related Workl @
2.1 Localization of Mobile Devices [
[2.2 Localization of Cell Towers based on Data Collected with Wardrivingl [
[2.2.1 Paper 1: Accuracy Characterization of Cell Tower Localization [

| 270 . .]
[2.2.2 Paper 2: Base Station Localization in Search of Empty Spec- |

| trum Spaces in Cognitive Radio Networks [28[| 9
[2.3 Localizing Cell Towers based on Data Collected with Crowdsourcing|. [O

[3 Background for our Algorithm Development] 11l
B.I Heuristicsd inll
[3.2° Generating Test Datal.
B3 Errorl o, 14
3.4 Chart Notationsl. 14
[3.5 Tmplementation Details|
[3.6 Localizing Cell Towers Theoretically|]

4 Cell Tower Localization based on Distance (D-CTL)| 16
[4.1 Small Angles|o 16
4.2 Sub-Routine: Direction Line based on Distance (D-DL)[. 17
4.3 Sub-Routines: Compute Sector (CS) and Find Sector (FS)[. 18
4.4 Sub-Routine: Choose Direction based on Distance (D-CD)| 20

v

4.5 Algorithm: Cell Tower Localization based on Distance (D-CTL)| . . .

[4.6 Scaling degtend - - - - . o oo
[4.7 Scaling Maximum Distance from Cell Tower|
[4.8 " TIncreasing Cell Sector Angle|
[4.9 Chapter Review| 28]

5

Cell Tower Localization based on Received Signal Strength (RSS- |

—CTL) 51
[>.1 Large Angles: Estimating Cell Tower Location based on Received |

| Signal Strength (RSS)| 311
[5.2 Sub-Routine: Direction Line based on RSS (RSS-DL)[.
[5.3 Sub-Routines: Compute Sector (CS) and Find Sector (FS)|
[5.4 Sub-Routine: Choose Direction based on RSS (RSS-CD)| 34
(5.5 Algorithm: Cell Tower Localization based on RSS (RSS-CTL)| [Bd
(5.6 Scaling deyiend - - - - - - . . oo 30
[5.7 Scaling Maximum Distance from Cell Tower| 38
h.8 Deadzones O3]
[5.9 Chapter Review| 4Tl

[6 Understanding the OpenCelllD Data Set| 42
[6.1 Initiating Data Retrievall 42
6.2 The Data Objects|. 43]
6.3 Overview of the Datal 44
[6.3.1 Filtering the Data). 106l

[6.3.2 Cleaning Up and Validating the Data] 4

2 2 b i ... 49

6.5 Test Data: Cells where Correct Cell Tower Locations are Not Known |

[- Bergen City Center| H0
[6.6 Chapter Review| 531

[7 Running the D-CTL and RSS-CTL Algorithms on OpenCelllD |
[Datal 52
[[I Parameters
(.2 The Haversin Formulal 5%!
(7.3 Testing on Cells where Correct Locations are Known: Constant deyiend |

[aNd Tincludel - -« - - e e e e e e e %!
(7.4 Testing on Cells where Correct Locations are Known: Scaling d.,ieng |

| and Measuring Time| oL D0l

[7.5 Testing on Cells where Correct Locations are Known: Scaling 7;,c44. 60
[7.6 Bergen City Center: Estimating Cell Locations when These are Not |

Knownl 03]

(7.7 Chapter Review| 60

[8 Analysis and Improvements|
[8.1 Analyzing Measurement Distributions|.
B.1.1 Pattern 1: Cell with Scattered Measurements

8.1.2 Pattern 2: Cell with Structured Measurementsl

(8.2 Improvements|

8.3 Conclusionl.
(Bibliography|

vi

List of Algorithms

Direction Line based on Distance (D-DL).|
Compute Sector (CS)]
Find Sector (FS).|
Cell Direction based on Distance (D-CD)|
Cell Tower Localization based on Distance (D-CTL).|

Direction Line based on RSS ERSS—DL D|
Cell Direction based on RSS (RSS-CD i|

Cell Tower Localization based on RSS (RSS-CTL).|

oo [T =<][—

vil

Chapter 1

Introduction

In this chapter we explain the background and motivation for our work, present our
research goals, present some fundamental terminology, and give an outline of the
thesis.

1.1 Motivation and Background

Have you ever wondered where your mobile phone receives it signal from? Who can
honestly say they have spotted an antenna transmitting such signals? Would the
regular citizen recognize such an antenna, even if he saw one?

No one can reject that instant communication through mobile devices are be-
coming more and more a part of our society. The number of devices connected to
the cellular network is increasing and the demand for good reception is growing. In
urban areas the general citizen might get frustrated if she is disconnected from the
network unwillingly for just a second. Users expect to be able to surf the internet
inside car tunnels made of concrete, or make phone calls below the ground while
riding the subway. But how is this possible? To communicate with the outside world
through the cell phone requires the phone to be connected to the cellular network.
This means it needs to receive a signal from somewhere. These signals originate
from antennas that are placed all over the world. How many antennas are there and
where are they located?

There are several internet sites that attempt to answer this question. For example
opensignal.com |2|, cellmapper.net [3] and opencellid.org |1]. Their goal is to show
exactly where the antennas that broadcast cell signals are located. They provide
quite accurate antenna locations but not correct, at least in most cases. What makes
this goal difficult to accomplish is that the cellular network providers are not obliged
to provide data about the antenna locations. Only in a few specific countries are
some correct cellular network antanna locations known. So how can these sites know
where the rest of the antennas are located? The answer is crowdsourcing [12].

Crowdsourcing involves using a large crowd of people to accomplish a task or
solve a problem. The word means to outsource something to an undefined crowd. The
people in such crowds do not usually know each other, like online communities or

Figure 1.1: A 120° horizontal broadcasting area of a cellular network antenna, also
called a cell which we will define more thouroughly in section [1.3.1] The black dots
are measurements. The yellow dot is the estimated cellular network antenna location
as estimated by OpenCellID.

the public in general. When a crowdsourcing process is set in motion, the originator
makes a request to the targetted crowd. The request may for example concern ideas,
feedback or content.

These sites provide smart phone applications mobile users can download. The
applications gather data about the antenna the phone is connected to, the strength
of the received signal, and the location of the smart phone. This collection of data,
also called a measurement, is then transmitted to a database. We will define a
measurement more thouroughly in section|1.3.2] Based on this data the sites attempt
to locate the antennas. This thesis is concerned with the algorithmic challenge facing
these sites: how can we estimate the location of cellular network antennas based on
crowdsourced data?

OpenCellID [1] is the worlds largest collaborative community project for collecting
GPS locations of cellular network antennas. As of January 2015, their database con-
tained almost 7 million unique antennas and 1.2 Billion crowdsourced measurements.
The algorithm used by OpenCellID to compute cellular network antenna locations is
very simple. Based on the measurements collected for an antenna, the longitude and
latitude coordinates for the antenna is set to be the mean of those measurements’
longitudes and latitudes. This is not a good approach since antennas broadcast
their signals in the shape of a pizza slize, usually 120° horizontally. Omnidirectional
antennas are very rare. This means most antennas in OpenCellID are estimated to
be located approximately in the middle of the pizza slice shaped sector, when the
correct location is somewhere so that every measurement lies to some direction of
the antenna within 120°. See figure [L.1]

Depending on the map scale, this error in antenna localization might not be

that significant. We can still get a good idea of how many antennas are within a
specific area, and approximately where they are located. But out on the street, in a
more practical sense, it is more significant. 500 or even 1,000 meters might look like
nothing on a map at a certain scale, but is a significant distance in reality.

1.1.1 Applications

How can we benefit from knowing correct cellular network antenna locations? The
most direct application is an alternative to the Global Positioning System (GPS)
[17]. GPS provides below 1 meter localization error for devices which receive signals
from more than four GPS satellites, but requires special hardware technology which
is both expensive and energy-consuming. Say we know the correct locations of every
cellular network antenna and which mobile devices every antenna is broadcasting to.
Then we can use this information to locate and track individual devices. This can be
a cost-effective alternative to GPS. Especially in places where GPS is not available
can localization by the cellular network be a valuable asset.

For the individual user, knowledge about cellular network antenna locations can
help find the best network provider in areas where the user resides. If the user is
concerned with radiation from radiowaves, he can choose his areas of residence based
on radio emission data collected by keeping track of where cellular network antennas
are located.

In a larger perspective, society can also benefit from cellular network antenna
localization of mobile devices. By gathering data about antennas dozens of mobile
devices are connected to, for example at certain times of the day or year, or when it
is raining or the sun is shining, can help develop infrastructure or cultural visiting
places. For example, such data can justify decisions regarding new roads along paths
where many people travel, or the building of an amusement park at a place many
people travel by in the summer when the sun is shining.

1.2 Research Questions

With this thesis we want to briefly identify techniques and approaches that has been
developed to localize cellular network antennas. We want to investigate if these
techniques and approaches can be applied to the measurement data collected by
OpenCellID, and thereby improve the accuracy of their estimated cellular network
antenna locations. We want to develop our own algorithm for locating the antennas,
and test it on generated theoretical test data and real data provided by OpenCelllD.

1.3 Fundamental Terminology
We now define some fundamental terminology. The problem this thesis addresses is

based on the service provided by OpenCelllD, so we use the same terminology as
them. Other terminolgy will be explained throughout the thesis.

1.3.1 Cell

Figure 1.2: Cells as a system of hexagons. [13]

A cell is a geographic area that is covered by a cellular network antenna |20,
p. 548]. The signal originating from this antenna can potentially reach every mobile
device within the cell area. The antenna is placed on a cell tower, or more generally
a base station. Throughout this thesis we will also use the term cell tower when
referring to a cellular network antenna. To make it easy for the reader we will refer
to the coverage area of a cell as the cell sector, the angle of the cell sector as the cell
sector angle, and the edges of the cell sector as the cell edges. These components,
along with measurements, makes a cell.

The cell sector angle is with few exceptions always 120°. Some cellular network
providers also use cells where the cell sector angle is smaller, for example 60°. This
may be beneficial in for example urban areas. It is normal that three or more cells
share a cell tower to cover everything in a 360° angle around the cell tower. The cell
tower will then have several antennas pointing in different directions.

To avoid disconnection and support high demand, the cells and cell towers are in
theory organized as shown in figure We can think of the cells as a system of
hexagons where each hexagon contains at least three different cells. Each hexagon is
then covered by at least three different cell towers. Depending on the strength of the
cell tower or antenna, it may cover more than its own hexagon. This ensures efficient
overlapping and constant connection to the cellular network for the users. In reality,
it is difficult to maintain the hexagon system. Cell towers need to be placed at a
certain hight, and buildings, mountains or other obstacles must be considered when
attempting to cover a specific area. Urban areas may need more than one antenna to
cover a small area where there are many obstacles, and rural areas may need fewer

4

than in theory. Today, several cellular network providers exist in every country and
each has their own cellular network and own interests.

We will also consider a cell as an object in the OpenCelllD database. The data
fields of an OpenCellID Cell object contain information about the cell and will be
defined in section [6.2]

1.3.2 Measurement

A measurement represents a smart phone’s registration of data about the cell tower
it is currently connected to. OpenCellID obtaines such measurements with the
help of smart phone applications and crowdsourcing. In addition to data about the
cell the measurement also includes the current coordinates of the phone, and some
other information related to the phone’s location. The data fields of an OpenCellID
Measurement object will be defined in section [6.2] In this thesis we will say that
measurements within the same cell belong to that cell.

1.4 Thesis Outline

A brief description of the contents of the remaining chapters:

Chapter Related Work In this chapter we briefly examine the research that
has been done when it comes to localizing mobile devices and cell towers. The two
are related.

Chapter Background for our Algorithm Development In this chapter
we establish some background information for our algorithm development.

Chapter [4: Cell Tower Localization based on Distance (D-CTL) In this
chapter we simplify our problem definition and develop the D-CTL algorithm. We
then experiment with different parameters involved in the algorithm.

Chapter [5 Cell Tower Localization based on RSS (RSS-CTL) In this
chapter we develop the RSS-CTL algorithm. We then experiment with different
parameters involved in the algorithm.

Chapter [6f Understanding the OpenCellID Data Set In this chapter we
examine the data provided by OpenCelllD. We define two datasets on which we will
test D-CTL and RSS-CTL on.

Chapter Running the D-CTL and RSS-CTL Algorithms on OpenCel-
IID Data In this chapter we test D-CTL and RSS-CTL on real data provided by
OpenCellID, and experiment with different parameters involved in the algorithm.
We will estimate cell tower locations with D-CTL and RSS-CTL for cells where

the correct cell tower locations are known, to measure their accuracy. And we will
estimate cell tower locations for the Bergen City Center, where the correct cell tower
locations are not known.

Chapter Analysis and Improvements In this chapter we analyze some cell
tower locations estimated by D-CTL and RSS-CTL. We then suggest improvements
to the algorithms and end the chapter with a conclusion for the thesis.

Chapter 2
Related Work

We can divide the discussion of localization within cellular networks into two topics.
Localization of cell towers, and localization of mobile devices. In academics, the
latter is larger and more established, but since our task concerns localization of cell
towers we will only give a brief overview of this. The two topics are related because
many techniques for locating mobile devices assume that the locations of cell towers
are known.

2.1 Localization of Mobile Devices

Localization of mobile devices can be used for many interesting applications. The
applications usually involve tracking the mobile device, and thereby the owner of the
device. Existing approaches for positioning mobile devices fall into two categories:
Range-Based positioning and Range-Free positioning. A more thorough overview
can be found in [2§], [21]. A general overview of available localization schemes can
be found in [16].

Range-Based Approaches This type of approaches assumes that the mobile
devices are equipped with special hardware technology. The type of technology
depends on the technique used to obtain the location of the device. Time of Arrival
provides the concepts used in GPS [17]. Two other techniques is called Time
Difference of Arrival [25] and Angle of Arrival [23]. In addition, Received Signal
Strength (RSS) [22] can be utilized. Although range-based approaches can be very
accurate, it requires expensive and energy-consuming technology.

Range-Free Approaches This type of approaches are cost-effective alternatives to
Range-Based approaches when there are hardware limitations and energy constraints
to consider. The trade-off is accuracy and scalability of the localization estimates.
This approach is largely based on connectivity measurements with a high density
of seeds. The connectivity measurements from multiple sources are used to track
the movement of the mobile device. Examples of techniques are Centroid [10], APIT
[15], MCL [18] and DV-hop [24].

2.2 Localization of Cell Towers based on Data
Collected with Wardriving

When a technique for localizing mobile devices are dependent of cell towers and their
locations, these are mostly assumed to be known. The amount of research done on
localization of cell towers are significantly smaller than on localization of mobile
devices. What we found are techniques based on data collected with wardriving
[11]. Wardriving involves collecting cellular network data with one mobile receiver
while on the move, usualy driving. This way they generate structured trails of
measurements and can detect where the mobile receiver finds or loses signals from
cell towers. The data provided by OpenCelllD are not structured like that. This
data contains measurements with random locations within cell sectors. There is no
way to know which other cell towers they are within range of and can connect to
at the time and place of creation. We present two techniques on localization of cell
towers based on wardriving data, given in two different papers.

2.2.1 Paper 1: Accuracy Characterization of Cell Tower Lo-
calization [27]

This paper presents the Bounding Technique. This is a three-step procedure to
improve the existing localization algorithms Strongest RSS and Weighted Centroid.
The results are based on measurement data obtained with wardriving.

Strongest RSS This algorithm estimates a cell tower’s location as the location of
the measurement with the strongest observed RSS in the corresponding cell.

Weighted Centroid This algorithm estimates a cell tower’s location as the geo-
metric center of the locations of the measurements belonging to the cell. That is,
the mean of the longitudes and latitudes of the measurements. When calculating the
geometric center, the coordinates of each measurement are weighted by the signal
strength observed by that measurement.

Bounding Technique This technique does not target the algorithms, but the
measurement data used to estimate a cell tower location with Strongest RSS or
Weighted Centroid. The three steps are called RSS Thresholding, Boundary Filtering
and Tower-based Regrouping.

RSS Thresholding In this step, all cells whose strongest RSS observed in a
measurement that is lower than a certain threshold, is detected. These cells, with
corresponding cell towers and measurements, are filtered out.

Boundary Filtering In this step it is assumed that cell towers far away have
their strongest RSS observations in measurements at the boundaries of the wardriving
area. These cells, with corresponding cell towers and measurements, are filtered out.

The purpose of RSS Thresholding and Boundary Filtering is to detect the cell
towers that can be accurately localized with the current wardriving data. Cell towers
observed that are far away may be more accurately localized by gathering data closer
to them.

Tower-based Regrouping In this step, measurements within cells that share
a cell tower are combined, thus simulating a 360° or omnidirectional cell on which
Weighted Centroid and Strongest RSS will perform better.

2.2.2 Paper 2: Base Station Localization in Search of Empty
Spectrum Spaces in Cognitive Radio Networks [28]

This paper presents a two-step procedure to localize cell towers called Localization
estimation based Gaussian Mizture Model (LGMM). The two steps are called Grid-
LGMM and Expectation Maximization-LGMM (EM-LGMM).

Grid-LGMM This is an algorithm that estimates the rough locations of the cell
towers using a grid-search method and the maximum likelihood estimation. This is
accomplished using the Bayesian Information Criterion (BIC). Grid-LGMM works
as follows. For each iteration it adds a new cell tower, which it tries to fit to all
possible grid points. The BIC value decides which grid point is best. Then all
previously added cell towers are readjusted to see if the new cell tower would find
better locations for the existing cell towers according to the BIC. The BIC value is
updated after each step until it is maximized. This means no more readjustments of
the cell towers are beneficial.

EM-LGMM This step refines the grid locations by edging in to the true locations
using the EM-method. This is divided into the E-step and M-step, both complex
mathematical equations.

2.3 Localizing Cell Towers based on Data Col-
lected with Crowdsourcing

Our task is to estimate the location of cell towers based on measurement data
collected with crowdsourcing. Since section [2.1] concerns a different problem, these
techniques or approaches are not of much use to us. The OpenCelllID data do
not have the neccassary properties for these ideas to be utilized. The exception is
information about RSS, which we will utilize in chapter [f

In section we described two papers, each presenting a technique to localize
cell towers. The drawback is that these techniques are based on wardriving data.

9

Wardriving data has properties the data from OpenCellID do not have, as described
in section 2.2l This means we cannot apply these techniques directly, or in worst
case, not at all.

Strongest RSS This algorithm is simple, but inaccurate. Assuming that the
measurement with the strongest observed RSS within a cell, also is the measurement
closest to the cell tower, is risky. Especially when the OpenCelllD measurements are
collected from dozens of random mobile devices. RSS can potentially be affected by
many factors. For example buildings, hills or other obstacles, other types of radio
waves, or the signal receiver in the mobile device. We conclude that this algorithm
is useless to us.

Weighted Centroid Weighted Centroid is a simple and effective algorithm for
estimating cell tower locations for omnidirectional cells. For cells with a 120° cell
sector, it is not effective. Weighted Centroid will estimate the cell tower location to
be the geometric center of the measurements belonging to the cell. For cells with a
120° cell sector, the correct location of the cell tower is not the geometric center of
the measurements. See figure[I.1] Thus, we cannot rely on this algorithm to estimate
accurate cell tower locations based on OpenCelllD measurements.

Bounding Technique The purpose of the two first steps of the Bounding Tech-
nique, RSS Thresholding and Boundary Filtering, is to improve measurement data
collected through wardriving. We immediately conclude that these two steps are
useless to us. The third step, Tower-Based Regrouping, is more interesting. If the
OpenCellID data provides information that lets ut combine cells that share a cell
tower, we can simulate an omnidirectional cell and use Weighted Centroid to estimate
the cell tower location.

LGMM The LGMM algorithm is based on a structured distribution of measure-
ments collected with wardriving within a small area. The measurements collected
by OpenCellID are not structured in the same way, and most cells have their mea-
surements spread out over much larger areas. Thus, we conclude that the LGMM
algorithm is not applicable for estimating cell tower locations based on data provided

by OpenCellID.

10

Chapter 3

Background for our Algorithm
Development

Our task concerns the estimation of cell tower locations based on measurement
data collected from crowdsourcing. In this chapter we start by exploring the notion
of heuristics, and establish this as the basis for our algorithm development. We
then define other preliminaries for our algorithm development: the generation of
theoretical test data, a measure of accuracy for estimated cell tower locations called
error, and how we will visualize the errors in charts. We end the chapter by briefly
presenting our approach for estimating cell tower locations.

3.1 Heuristics

With this algorithm we want to compute good estimates of cell tower locations. We
want to start this chapter by exploring what such a good estimate is.

Recall that a cell broadcasts it’s signal in a 120° cell sector. Every measurement
belonging to that cell must be located within the same cell sector. This is the
most basic requirement for our development. So if we compute a cell sector with
a corresponding cell tower location, so that every measurement fits within it, can
we automatically say that this cell tower location is the correct location? No, we
cannot. There may be several possible 120° cell sectors satisfying this requirement.
We cannot know which one is correct, unless we ask the cellular network providers.
This is why we cannot aim to compute the correct cell tower location. Instead,
we will focus on developing an algorithm that will compute a cell tower location
satisfying the requirements for the location of a cell tower. We turn to heuristics for
this.

A heuristic algorithm is an algorithm that aims to find an approximate or partial
solution to a problem |19]. When a problem occurs where the time or space complexity
of the algorithm that finds the most optimal solution is unacceptable, we turn to
heuristic algorithms. In reality, it is often sufficient to find an approximate or partial
solution, and not the most optimal one due to cost or time constraints. In most
cases, several heuristic solutions exist. That is why heuristic algorithms operate with

11

a set of rules to evaluate each approximate or partial solution to decide which one is
the best choice. Since we cannot aim to compute correct cell tower locations, we will
develop a heuristic algorithm.

In our case we must accept an approximate solution as we cannot know for sure
which estimated cell tower location is more correct than the others. For a cell, we
are looking for a location of the cell tower such that the cell tower successfully can
broadcast it’s signal to all the cell’s measurements. Our algorithm need to satisfy
the following rules:

1. Obviously, every measurement belonging to the cell must fit within the cell
sector.

2. The distance from the cell tower to each measurement must be valid with
respect to broadcasting technology.

3. The algorithm must be able to compute a good cell tower location given only
a random subset of the measurements, given potential time constraints.

We choose to exclude one rule that might otherwise seem obvious: The algorithm
must find a cell tower location such that the corresponing cell sector does not include
measurements from other cells. To include this rule seems only natural if we assume
that the cell tower a measurement belongs to, is the closest cell tower to that
measurement. Can we make this assumption? First, we must take into consideration
the direction of the cell. If the closest cell tower to a mobile device has it’s cell
sector pointing in the opposite direction, the mobile device would not be able to
receive that cell’s signal. Second, there are buildings, hills and other obstacles to
consider that may block the closest cell tower’s signal completely. Third, the cellular
network contains cells from several different cellular network providers, even within
small areas. If a mobile device subscribes to one specific cellular network provider,
it would not be able to receive a signal from a cell belonging to a different cellular
network provider, even if the cell was closer. We therefore conclude we cannot make
the stated assumption, and cannot include this rule.

3.2 Generating Test Data

As part of developing an algorithm for localizing cell towers, we will want to generate
theoretical test data to test it on. When developing the algorithm we want to
implement and test it every step of the way to make sure it behaves as desired and
required. Generated theoretical test data will help us see how the algorithm performs.
Since we are generating it ourselves we can decide it’s characteristics to simulate
different scenarios, and see how that affects the outcome the algorithm.

The test data needs to represent cells and measurements. When we generate a
cell and it’s measurements we include the location of a cell tower. This is the most
optimal location our algorithm can compute. Real data would not be able to provide
the correct location of the cell tower, with some exceptions as explained in section

12

[L.1] It is still important that we generate complete cells so we can compare estimated
cell tower locations to correct cell tower locations.

Figure 3.1: A generated cell. The black square represents the correct cell tower
location. The angle of the first cell edge is 10° and the angle of the cell sector is 60°.
This means we generate the cell edges at 10° and 70°, represented by the black lines.
The maximum distance for measurements from the cell tower is 113, which means
we also set the length of the cell edges to 113. 20 measurements are generated at
random locations within the cell sector, with a maximum distance of 113 from the
cell tower. Measurements are represented by black dots.

We use a two-dimensional Cartesian coordinate system [8, page 11] for infrastruc-
ture. Measurements and cell towers will then be given locations in the form of x and
y coordinates. We use a two-dimensional Cartesian coordinate system to simulate
the surface of the real world. To simulate it perfectly would require an environment
that matches the earth’s spherical shape, along with hills and buildings. We choose
to use a Cartesian environment for simplicity.

To satisfy rule number 2 presented in section [3.1, we need to control how far
away the measurements will be generated from the cell tower. In reality, cell towers
have different range capabilities and cell phones have different reception capabilities.
In addition to this, measurements collected for different cells can appear in a lot
of different patterns. Sometimes the measurements are really close to the cell
tower and sometimes they are really far away from the cell tower. This makes the
theoretical maximum distance difficult to set. We will pick a distance that seems
reasonable. When we know this maximum distance in addition to the correct cell
tower coordinates, the angle of one of the cell edges and the cell sector angle, we can
set the cell edges.

If each measurement is to be generated with RSS, we assume the following: If
the measurement is close to the cell tower the RSS is strong, and if it is far from
the cell tower the RSS is weak. To make theoretical RSS as realistic as possible it
is stored as a negative value. In reality, RSS values are negative Decibel-milliwatts
(dBm) numbers. The RSS value for a measurement is calculated in the following way:
After the location of the measurement has been randomly generated, the RSS value
is equal to the distance from the measurement to the correct cell tower location,
multiplied by -1.

13

In section [5.8 we will experiment with deadzones. Deadzones within cell sectors
are generated as follows, after measurements has been generated: To create a
deadzone we take a random point within a cell sector, and choose a radius from
that point. Every measurement within the circle this point and radius forms, are
removed.

The actual generation of a cell happens as follows, see figure |3.1

1. The correct cell tower location is set,
2. The maximum distance for measurements from the cell tower location is set,

3. Given the angle of one of the cell edges and the angle of the cell sector, the
cell edges are set,

4. The measurements are generated with random locations within the cell sector
and within a maximum distance from cell tower, and optionally with RSS,

5. If the cell is to have a deadzone, this is now generated.

3.3 Error

Throughout this thesis we will need a way to measure the accuracy of an estimated
cell tower location when we know the correct cell tower location. We will measure
this accuracy by calculating the distance from the estimated cell tower location to
the correct cell tower location. We will call this distance the error. Say we have
estimated the cell tower location of a cell. Then the error of the estimated cell tower
location is the distance from the estimated cell tower location to the correct cell
tower location. Say we have estimated the cell tower locations of several cells. Then
the average error of the estimated cell tower locations is the average distance from
the estimated cell tower locations to the correct cell tower locations. We can only
use this measure of accuracy when the correct cell tower location is known.

3.4 Chart Notations

We will use charts to visualize several average errors throughout this thesis. Each
chart will have several graphs, so we need notations to tell them apart. Each graph
is presented with the following information to the right of the chart:

e [f a chart contains graphs resulting from estimated cell towers locations com-
puted by more than one algorithm, the algorithm is specified.

e Non-constant parameters.

14

3.5 Implementation Details

Everything we implement is done using Java 7 [4] and Eclipse Integrated Development
Environment [5]. When running one of the algorithms or some other part of the code,
we set initial heap size and maximum heap size to 512MB. We used a MacBook Air
[6] with a 1.7 GHz Intel Core i7 Processor and 8 GB RAM.

3.6 Localizing Cell Towers Theoretically

To estimate the location of a cell tower as effective as possible in real time, we need
to develop a heuristic algorithm that works on a random subset of the measurements
available. For some cells, not many measurements exist and we may have to use all
of them. We assume the measurements of a cell is randomly distributed. To estimate
the location of the cell tower we start by computing a line with two measurements
as endpoints. This line will give us a good impression of which direction the cell
is pointing. This is done with either the D-DL or RSS-DL sub-routine. After the
computation of this line we propose two possible cell sector solutions, one for each
endpoint. We use the F'S sub-routine for this. We then choose one of the estimated
cell sectors as the final estimated cell sector solution, and output the corresponding
cell tower location, with the help of either D-CD or RSS-CD.

We start by simplifying our problem definition by assuming that RSS is not
available and cells broadcast in a cell sector of only 10°.

15

Chapter 4

Cell Tower Localization based on
Distance (D-CTL)

In this chapter we develop an algorithm for estimating the location of a cell tower,
based on the distance between measurements belonging to the cell. We start by
simplifying our original problem definition by making some assumptions. Then we
present the sub-routines and complete algorithm for estimating a cell tower location
based on distance between measurements. The algorithm and it’s sub-routines are
briefly summarized in table and [£.2] After this we will experiment with the
different parameters involved in the algorithm. We end the chapter by concluding
that utilizing distance between measurements will not estimate accurate cell tower
locations for large cell sector angles.

Algorithm Abbrev. | Description Sect.
Cell Tower Local- | D-CTL | Estimates the cell tower location of a cell | [4.5
ization based on by utilizing distance between measurements.
Distance Uses the following sub-routines: D-DL, CS,

FS, D-CD.

Table 4.1: Cell Tower Localization based on Distance (D-CTL).

4.1 Small Angles

Let us simplify our problem definition by assuming that cells broadcast in a narrow
sector, say 10°, and not 120°. We also assume that RSS is not available and that the
maximum distance for measurements from the cell tower is 113. In that case the
following is a reasonable heuristic.

Distance as Parameter We assume that RSS is not available, so we will utilize
distance between the measurements of a cell to estimate the cell tower location.

16

Sub-routine Abbrev. | Description Sect.
Direction Line | D-DL | Computes a line between the two measure- | 4.2

based on Dis- ments that are furthest apart from each other,
tance chosen from n? randomly picked pairs of mea-
surements.
Compute Sec- CS Used within FS. Based on the line computed | 4.3
tor by D-DL, computes the actual cell sectors we
try to fit the measurements within.
Find Sector FS Based on the line computed by D-DL, finds a | |4.3

cell sector every measurement fits within.
Cell Direction | D-CD | Based on two estimated cell sectors computed | |4.4
based on Dis- by FS, guesses which one is the best choice
tance based on distance.

Table 4.2: Sub-routines for the D-CTL algorithm.

4.2 Sub-Routine: Direction Line based on Dis-
tance (D-DL)

L] *a
T e
™)

(a) The square represents (b) Only the measurements (c) D-DL has computed

the cell tower, the two lines are shown. lgirection from the measure-
represents the cell edges, ments, which is represented
and the dots represents the by the purple line.
measurements.

Figure 4.1: A generated cell with a 10° sector angle and 20 measurements.

Figure displays a generated cell with a 10° cell sector and 20 randomly
distributed measurements. The angles of the cell edges of this particular cell is 200°
and 210°. This means the angle of each measurement from the cell tower is between
200° and 210°. We now assume we do not know the location of the cell tower or the
angles of the cell edges, as displayed in figure [£.1b] We ask the following question:
To witch direction of the measurements is the cell tower located, when we only know
the location of the measurements? We can easily guess the answer by looking at the
figure, but we need to come up with an answer algorithmically.

We present the first sub-routine of the D-CTL algorithm: Direction Line based
on Distance (D-DL). The purpose of D-DL is to estimate the direction from the
measurements the cell tower is located. It does that by iterating over n? pairs of

17

measurements and finds the pair with the largest distance between them. D-DL then
forms a line lgirection With the two measurements as endpoints. See figure [1.1d

D-DL takes as input M and n, where M is the set of measurements for a cell. First,
it declares the variables epi, eps and dg;fference = 0 for storing the two measurements
with the current largest distance between them, and that distance. For each of
the following n iterations it randomly picks a measurement from M, compares the
distance between it to n other randomly picked measurements from M, and stores
the largest distance and the pair of measurements representing it in ep;, eps and
dgifference- The algorithm outputs the line lgrection With ep; and ep, as endpoints.
See algorithm [T}

| Algorithm 1: Direction Line based on Distance (D-DL) |

input: M and n
output: Ldirection

Declare variables epy,eps and dg;fference = 0
for 0 ton
randomly pick a measurement a € M
for 0 ton
randomly pick a measurement b € M such that a # b
if the distance between a and b is larger than the distance currently
stored in dg;f ferences
store a in ep;, b in eps, and the distance between them in dg;f ference
return g, cction With ep; and ep, as endpoints

Algorithm 1: Direction Line based on Distance (D-DL).

Notations Intruduced in This Section:
M: The complete set of measurements for a cell.
n: D-DL compares the distance between n? pairs of measurements.

epy, epo: In D-DL, this is where the two measurements with the largest distance
between them, are stored.

dgif ference: In D-DL, this is where the largest distance between two measurements is
stored.

lgirection: The line that represents the estimated direction of the cell.

4.3 Sub-Routines: Compute Sector (CS) and Find
Sector (FS)

We now assume we have used D-DL to compute [y ection With ep; and epy as it’s
endpoints, and that we can extend g cction tO either side. lgrection provides infor-

18

(a) The purple line represents lgirection-
The blue and pink squares and lines rep-
resent the two estimated cell sectors and

(b) The black dots represent the measure-
ments. The blue and pink squares and
lines represent the estimated cell sectors

cell towers solutions. and cell towers solutions.

Figure 4.2: A generated cell with a 10° sector angle and 20 measurements.

mation as to which direction from the measurements we estimate the cell tower to
be located. Since we have no more information about the measurements than their
locations, we cannot know if the correct cell tower is located by ep; or eps. We
therefore compute estimated cell sectors with cell tower locations for both endpoints.
See figure f.2a] The FS sub-routine is run twice, once for each endpoint. We will
describe the sub-routine by assuming the correct cell tower is located by ep;.

We present the second and third sub-routine of the D-CTL algorithm: Compute
Sector (CS) and Find Sector (FS). The purpose of CS and FS is to compute a cell
sector Cheyristic by one of the endpoints of [ection, S0 that each measurement m € M
fits within it. See rule number 1 presented in section [3.1 FS computes Cheyristic
by doing several iterations. For each iteration, if each m does not fit within the
currently computed cell sector, F'S makes a new call to CS with an extended version
of lgirection, Which computes a new cell sector.

CS takes as input lgrection and o, where « is the cell sector angle. It starts by
rotating lgirection around ep; in both directions, by and angle of ¢. Then, it returns
Cheuristic With ep; as the cell tower location, and the two lines obtained from rotating
lgirection as cell edges.

| Algorithm 2: Compute Sector (CS) |
iHPUt: ldirection7 «Q
output: Cheuristic

rotate lgection around ep; in both directions, by an angle of 5
return C,,istic With epy as cell tower location and the two
lines obtained from the rotations as cell edges

Algorithm 2: Compute Sector (CS).

FS takes as input M, lgirection, Qeztend, and «, where degieng iS a constant. It starts
by declaring the variable Cj,eyristic. Then it makes a call to CS to compute the initial
estimated cell sector with the original ep; as the cell tower location, and stores it
in Cheuristic- Then it does several iterations. For each iteration, if each m does not
fit within Cheyristic it extends lgirection DY €p1 by a constant length deppeng. We ask

19

the reader to think about it as moving ep; a constant length, away from ep,, along
an extended lgirection. Then a new call is made to CS with the new g ection as input.
The iterations stop when each m fits within Ceyristic.

| Algorithm 3: Find Sector (FS)
iHPUt: M7 ldirectiona demtenda «
OUtPUt : Cheuristic

declare variable Cheyristic
run CS with lg;ection and a as input, and store output in Cheyristic
while every measurement m € M does not fit within Cheyristic,
extend lgirection Dy €p1 by constant length degienq, and
run CS with lgrection and « as input, and store output in Cheyristic
return Oheum'stic

Algorithm 3: Find Sector (FS).

As stated above, we apply F'S on both endpoints of I, ection, thereby computing
two estimated cell sector solutions. See figure 4.2b|

Notations Intruduced in This Section:

Cheuristic: An estimated cell sector.
m: A measurement € M.
a: The cell sector angle.

eztends FS extends lgirection by the value of degieng for each iteration.

4.4 Sub-Routine: Choose Direction based on Dis-
tance (D-CD)

We now assume we have used D-DL to compute lg;rection With ep; and epsy as it’s
endpoints, and used FS to compute two estimated cell sector solutions Cheyristict and
Cheuristica. Now we want to choose one of them as the final estimated solution for cell
sector with corresponding cell tower location. We propose the following hypothesis:

20

e
e
[]

(a) The black square and lines represent (b) The black dots represent the mea-
the correct cell tower and cell sector. The surements. The pink square and lines
black dots represent the measurements. represent the chosen estimated cell sector
The purple line represents lgirection. 1he and cell tower solution.

blue and pink squares and lines represent

the two estimated cell sectors and cell

towers solutions.

Figure 4.3: A generated cell with a 10° sector angle and 20 measurements.

Hypothesis 1 In a cell sector, the further away from the cell tower we get,
the distance between the two lines forming the cell edges [; and [, increases.
See figure [4.4] A perfect line [to give an impression of which direction the
cell is pointing would intersect the cell tower and go between [y and [, such
that the distance from [to [; and the distance from [to I always are equal.
This means that measurements further away from the cell tower may be
further away from [, than those close to it. Now consider the two endpoints
of [, lep; and lepy, and our randomly distributed measurements. Let S; be
the subset of measurements closer to lep; than lepy, and Sy be the subset
of measurements closer to lepy than lep;. We calculate the mean mean, of
the least possible distances from the measurements in Sy to [, and the mean
meansy of the least possible distances from the measurements in Sy to [. We
claim that if mean; < means, then lep; is the endpoint of [at the correct
cell tower location. If meany < meany, then leps is the endpoint of [at the
correct cell tower location. We claim the hypothesis works for every a >= 10
and o <= 120.

We apply this hypothesis to cells we are generating. We are not equipped with
such a perfect direction line [, so we use lgirection With endpoints ep; and ep,, instead.
This means we will calculate the mean of the least possible distances from the
measurements closer to ep; than ep,, and the mean of the least possible distances
from the measurements closer to eps than ep;. It is very likely that g ection Will nOt
intersect the correct cell tower location, but one of the endpoints will be close to it.
We assume the lg;ccrion that is passed on to this sub-routine is the one computed by
D-DL. The extension part in FS was only performed internally in that sub-routine.

We present the fourth sub-routine of the D-CTL algorithm: Choose Direction
based on Distance (D-CD). The purpose of D-CD is to determine if Cheypistict OF
Cheuristic2 18 the better choice for a final estimated cell sector solution. It does this by
applying hypothesis 1 on the measurements and lg;ccrion. The endpoint of g ection
corresponding to the lesser of the calculated means is the endpoint presumed to be

21

lep 2

lep 1

Figure 4.4: The mean of the least possible distances from the measurements in S; to
[are very likely to be smaller than the mean of the least possible distances from the
measurements in Sy to [.

closest to the correct cell tower location. It compares the distance from this endpoint
to the cell tower locations of Cheyristict and Cheyristica. See figure [£.3al Whichever
cell tower location is closest will be chosen as the best estimated cell tower location.
See figure [4.3b

D-CD takes as input M, n, lgirection With endpoints ep; and eps, Cheyristict and
Cheuristic2- 1t starts by selecting n random measurements S € M. It then divides
S into two subsets; the measurements that are closer to ep; than eps, and the
measurements that are closer to epy than ep;. D-CD then calculates the means
of the least possible distances from the measurements in the two subsets of .S, to
lgirection. For the subset of S with the lesser mean, D-CD chooses the one of Cheyristict
or Cheuristicc Whose cell towers location is closest to the corresponding endpoint of
Liirection- See algorithm [

Notations Intruduced in This Section:

n: In this section, n was used differently than in section 4.2] Here, n is the number
of randomly chosen measurements S € M

Cheuristicts Cheuristico: The two estimated cell sectors computed by FS.

l1, lo: The two cell edges of the cell in figure [1.4]

[: The line that intersects the correct cell tower location in figure and goes exactly
in between [; and [s.

lep1, lepy: The two endpoints of [.

S: The set of n randomly chosen measurements € M.

22

| Algorithm 4: Cell Direction based on Distance (D-CD)

IHPUt: Ma n, ldirection7 Cheuristich CheuristicQ
OUtPUt: Cheuristicl or Cheuristic2

pick n random measurements S € M
let the measurements € S closer to ep; than epy; be Si, and the
measurements € S closer to epy than ep; be Sy
calculate the mean mean; of the least possible distances from the
measurements in Sy t0 lgirection
calculate the mean meansy of the least possible distances from the
measurements in Sy t0 Lgirection
if mean,; < means,
return Chyisiic1 if it’s cell tower location is closer to ep; than the cell
tower location of Cheyristica, Or return Cheyristico if it’s cell tower
location is closer to ep; than the cell tower location of Cheyristict
if mean, < meany,
return Cje,,istic1 if it’s cell tower location is closer to ep, than the cell
tower location of Cheyristico, Or return Cheyristico if it’s cell tower
location is closer to epy than the cell tower location of Cheyristic

Algorithm 4: Cell Direction based on Distance (D-CD).

S1, So: The two subsets of measurements where each are closer to one endpoint of [
Or lgirection, than the other.

mean;, meany: The means of the least possible distances from the measurements in
Sl and SQa to [or ldirection~

4.5 Algorithm: Cell Tower Localization based on
Distance (D-CTL)

We will now combine the algorithms defined in section [4.2] and into one
complete algorithm for localizing cell towers based on distance: The Cell Tower
Localization based on Distance (D-CTL) algorithm. See algorithm [5

4.6 Scaling d. tend

The Find Sector sub-routine performs several iterations. For each iteration it attempts
to fit every measurement within a computed cell sector which is based on lgirection- If
at least one measurement does not fit, F'S extends lg ection by the value of degieng. See
section [4.3] In this section we want to investigate if different values of deyieng affect
the accuracy of estimated cell tower locations. This knowledge is important in order
to improve accuracy of cell tower localization and if time constraints are present.

23

| Algorithm 5: Cell Tower Localization based on Distance (D-CTL)

|

inplﬂ:: M7 n, deztend; «
output: An estimated cell tower location

declare varible g ection

run D-DL with M and n as input and store the output in lg;cction

declare variables Cheuristict and Cheuristic2

run FS with M, lgirection, destena and « as input, compute estimated cell
sector solution for endpoint ep; of lgirection, and store the output in
Cheuristicl

run FS with M, lgirection, destena and « as input, compute estimated cell
sector solution for endpoint epy of 1y ection, and store the output in
CheuristicQ

declare variable Cheyristic

run D'CD Wlth M; n, ldirection) Cheuristicl and Cheuristic2 as input and
store the output in Cheyristic

return the cell tower location of Cheyristic

See rule number 3 presented in section If deyteng is too large, FS extends lgirection
too far, and the estimated cell tower location might be further away than neccessary.
If deyteng is too small, FS does more iterations than neccessary, thus increasing the
running time of the algorithm needlessly. We test and compare D-CTL with different
values of deypeng. The average error values are displayed in the chart in figure [4.5]

Algorithm 5: Cell Tower Localization based on Distance (D-CTL).

We use the following values of deziena:

dextend = 2
dextend = 4
dextend = 8
deztend = 16
dextend = 32
dextend = 64

We use the following constant parameters:

® Tincude (Maximum distance for each measurement from the cell tower, will be

We clearly see from the chart in figure that the average error increases
when dezienq is increasing. From these average error values we conclude that using

a = 10°

defined in the next section) = 113

24

07
asé
aoé
751
701
asé

Errar €0 '

55

407 S
| T
[-
35 : f/,f’
- e
7 —_ @ 0
4 B 16 3z &4

d_axiend

Figure 4.5: The chart displays how the average error increases when deyieng is
increasing. See section for the definition of d..enq. Each average error sample
is based on the errors of 1000 generated cells. See section for the definition
of M. See section [4.2] and for the definition of n. For example, the red line
displays average error values for different values of dg ieng When cells are generated
with M = 20 and D-CTL is run with n = 20.

Aeztend = 2 OF degieng = 4 is the best choice when we want to compute as accurate
cell tower locations as possible. To decide which one to use further we measure the
worst case running time. The assumtion is that D-CTL will run for a longer time
with degtend = 2 than degiena = 4. The worst case running time will occur when
we generate cells with M = 100, and run the D-CTL algorithm with n = 80 and
deztend = 2. @ and Tineude are still constants. See the blue graph in figure [4.5 The
average running time with these parameters was 0.51ms. Because this running time
is so small, we conclude that we can use degteng = 2 for further computations of
estimated cell tower locations.

4.7 Scaling Maximum Distance from Cell Tower

In the real world, the measurements within a cell can be either very close to the cell
tower, or very far away. In this section we want to investigate if different values of a
cell tower’s maximum range affect the accuracy of the estimated cell tower locations.
We do this by scaling the maximum distance that a measurement can by located
from the cell tower. We ask the reader to think about this as a radius from the cell
tower. Every measurement within this radius will be included in the computations.
Will call this radius ri,cude. We test and compare D-CTL with different values of
Tinclude- L he average error values are displayed in the chart in figure We use the
following values of 7,cpude:

25

® Tinciude = 30
® Tinciude = 70
Tinclude = 113
Tinctude = 160
® Tinciude = 200
We use the following constant parameters:
e a=10°
® destend = 2
207

701

801

50| "
Errar | //
407
3o e
| o
201 __,/-,-f
1
07
30 0 113 160 200

r_includa

Figure 4.6: The chart displays how the average error increases when 7;,cu4e 18
increasing. Fach average error sample is based on the errors of 1000 generated cells.
See section 4.2 for the definition of M. See section 4.2l and [4.4] for the definition of n.
For example, the red line displays average error values for different values of 7;,c1ude
when cells are generated with M = 20 and D-CTL is run with n = 10.

We clearly see from the chart in figure that the average error increases when
Tinclude 1S increasing. The reason for this is simple. When 7;,¢44e increases, the cell
sector grows; the distance between the cell edges increases when 7;,cu4e 1S increasing.
This means the randomly distributed measurements have a larger area to spread out
on. This means the F'S algorithm potentially needs to extend lgi ection further to be
able to fit them all within a cell sector.

26

Notations Intruduced in This Section:

Tinclude: Eovery measurement of a cell that is within the value of r;,cuqe from the
correct cell tower location is included when using D-CTL to estimate the cell
tower location.

4.8 Increasing Cell Sector Angle

Up until now we have utilized the distance between the measurements of a cell to
estimate the cell tower location, and we have only focused on cells with a cell sector
angle o = 10°. This has only been a simplification of our original problem. The
original problem definition involves estimating cell tower locations when a = 120°.
We ask the following question: How will larger values of « affect the accuracy of
estimated cell tower locations computed with D-CTL? We test and compare D-CTL
with different values of . The average error values are displayed in two different
charts in figure [4.7 and The difference between the charts is the value of 7;,ciude-
The chart in figure has 7pcuge = 113. The chart in figure has 7incude = 200.
We use the following values of a:

e a=10°
o o =45°
o a=90°
o o =120°

We use the following constant parameters for the chart in figure |4.7}
® destend = 2

® Tinclude = 113

We use the following constant parameters for the chart in figure [4.8}
® destend = 2

® Tinciude = 200

As we can see from figure and [4.8] the graphs make a big jump in average
error between 45° and 90°. To understand this sudden increase, we must look into the
geometry of our problem. Recall that the sub-routine D-DL in the D-CTL algorithm
utilizes the longest distance between two measurements to compute lgiection. Also
keep in mind that we still are assuming the measurements within a cell sector are
randomly distributed. We also assume that r;,.uq4e is properly large. When a cell
sector angle o = 10°, the distance between the cell edges is smaller than 7;,cude,
which means the D-DL algorithm will compute a reliable direction line. This is also
the case for a = 45°. See figure [£.9a] When « increases beyond a certain point, the

27

Errar

Cell Sector Angle

Figure 4.7: The chart displays how the average error increases when « is increasing.
See section for the definition of . Each average error sample is based on the
errors of 1000 generated cells. See section for the definition of M. See section
[4.2] and for the definition of n. For example, the red line displays average error
values for different values of o when cells are generated with M = 20 and D-CTL is
run with n = 20.

distance between the cell edges will be larger than 7,cuqe. See figure [£.9b] This
means that D-DL will compute a lgection that gives a completely wrong impression
of the direction of the cell. See figure and [£.10b] We clearly need to come up
with a better approach for estimating cell tower locations for cells with large cell
sector angles.

4.9 Chapter Review

In this chapter we have step by step developed an algorithm for estimating a cell
tower location based on the distance between the cell’s measurements. In addition,
we have tested the algorithm on different values of different parameters to get an
understanding of how the algorithm scales. Based on the several tests we conclude
that D-CTL performs poorly on cells with cell sector angles of 120°.

28

W =20, n=20
W =100
M=100
M=100, n=20
W =100, n=80
M=20, n=10

1
, =10

=3 =]

n=640

Errar

Cell Sectar Angle

Figure 4.8: The chart displays how the average error increases when « is increasing.
See section for the definition of . Each average error sample is based on the
errors of 1000 generated cells. See section for the definition of M. See section
and [4.4] for the definition of n. For example, the red line displays average error
values for different values of o when cells are generated with M = 20 and D-CTL is
run with n = 20.

r_include

r_include

r_include r_include

(a) Cell sector with a = 45° (b) Cell sector with o = 90°

Figure 4.9: When « increases beyond a certain point, the distance between the cell
edges will get larger than r;,cude-

29

.
» ?. ""
_
".'.' "‘:.-q.
. "‘.I.i.i..
y e o
* L1 e "1'; -
e ¥ Tam
. ll:.'-::-“t
L] o .
®

(a) The black square and lines represent (b) The black dots represent measure-

the correct cell tower location and cell ments. The purple line represents
edges. The black dots represent mea- ldgirection- The pink square and lines rep-
surements. The purple line represents resent the estimated cell tower location
lgirection.- and cell edges.

Figure 4.10: Generated cell with @ = 90° and M = 100. We attempt to estimate a
cell tower location with the D-CTL algorithm.

30

Chapter 5

Cell Tower Localization based on
Received Signal Strength
(RSS-CTL)

In this chapter we develop an algorithm for estimating the location of a cell tower,
based on the RSS values among measurements belonging to the cell. We start
by presenting RSS as the new parameter. Then we present the sub-routines and
complete algorithm for estimating a cell tower location based on RSS values among
measurements. The algorithm and it’s sub-routines are briefly summarized in table
and 5.2} After this we will experiment with the different parameters involved in
the algorithm, and deadzones. We end the chapter by concluding that utilizing RSS
estimates more accurate cell tower locations than by utilizing distance.

Algorithm Abbrev. | Description Sect.

Cell Tower Local- | RSS-CTL | Estimates the cell tower location of a cell | |5.5

ization based on by utilizing difference in RSS among mea-

RSS surements. Uses the following sub-routines:
RSS-DL, CS, FS, RSS-CD.

Table 5.1: Cell Tower Localization based on RSS (RSS-CTL).

5.1 Large Angles: Estimating Cell Tower Loca-
tion based on Received Signal Strength (RSS)

We will now step away from the simplification of our problem definition. The original
problem definition concerns cell sector angles o = 120°. As we saw in section [4.8]
the average error increased when « increased, when we used D-CTL to estimate cell
tower locations. For a = 120° D-CTL performed poorly. This means we need to
come up with another way to estimate cell tower locations for large values of . We

31

Sub-routine Abbrev. | Description Sect.
Direction Line | RSS-DL | Computes a line between the two measure-| [5.2
based on RSS ments whose difference in RSS values are the
largest, chosen from n? randomly picked pairs
of measurements.

Compute Sec- CS Used within FS. Based on the line computed | 4.3

tor by RSS-DL, computes the actual cell sectors
we try to fit the measurements within.
Find Sector FS Based on the line computed by RSS-DL, finds | 4.3

a cell sector every measurement fits within.
Cell Direction | RSS-CD | Based on two estimated cell sectors computed | 5.4
based on RSS by FS, guesses which one is the best choice
based on RSS.

Table 5.2: Sub-routines for the RSS-CTL algorithm.

introduce the parameter Received Signal Strength (RSS). For the duration of this
chapter we will assume that o = 120° and that RSS is available.

RSS as Parameter We assume that each measurement is equipped with RSS.
We will now utilize RSS instead of distance between measurements to estimate cell
tower locations. To do this we need to give each measurement a RSS value upon
generation. See section [3.2] The sub-routines that utilize RSS are very similar to

the ones described in section [4.2] [4.3] and [4.4]

5.2 Sub-Routine: Direction Line based on RSS
(RSS-DL)

Just as in section [£.2] we want to estimate to which direction of the measurements
the cell tower is located. See figure [5.1al and [5.1b, Measurements close to the cell
tower have large RSS values, and measurements far away have small RSS values. We
utilize this property to compute lgirecrion for cells with o = 120°.

We present the first sub-routine: Direction Line based on RSS (RSS-DL). The
purpose of RSS-DL is to estimate the direction from the measurements the cell tower
is located. It does that by iterating over n? pairs of measurements and finds the pair
with the largest difference in RSS between them. RSS-DL then forms a line lg ection
with the two measurements as endpoints. See figure [5.1d

The only difference from the D-DL sub-routine is that RSS-DL compares RSS
values between two measurements instead of distance. See algorithm [6]

Notations Intruduced in This Section:

RS'S: The strength of the signal from a cell tower that is received by a mobile device.

32

(a) The square represents
the cell tower, the two lines
represent the cell edges,
and the dots represent the

- . aw
-'.: . ., e,
"o - *e . .
. . . v e
* " " - .
] ::?" .1-“ [::?: ’:ﬂ
* . ' . .
. ® e .' ! .; : - e -"—.-"j.' .."“
d _
. e o:f‘ . . oot ..o .
LI T . . e,
""I-r - - u’:‘"‘ *a

(b) Only the measurements
are shown.

(c) RSS-DL has computed
lgirection from the measure-
ments, which is represented
by the purple line.

measurements.

Figure 5.1: A generated cell with a = 120° and M = 100.

| Algorithm 6: Direction Line based on RSS (RSS-DL)
input: M, n
OUtPUt: ldirection

Declare variables ep;,eps and rssg;fference = 0
for 0 to n
randomly pick a measurement a € M
for 0 ton
randomly pick a measurement b € M such that a # b
if the difference in RSS between a and b is larger than the difference in
RSS currently stored in 7554;f ference, store a in epy, b in eps, and the
difference in RSS between them in r554¢ ference
return g, c.tion With ep; and ep, as endpoints

Algorithm 6: Direction Line based on RSS (RSS-DL).

T554if ference: L he difference in RSS between two measurements.

5.3 Sub-Routines: Compute Sector (CS) and Find
Sector (FS)

We now assume that we have used RSS-DL to compute g ection. Just as in section
we use the CS and FS sub-routines to compute two estimated cell sectors. See
figure and We do not alter these algorithms in any way.

33

(a) The purple line represents g ection-
The blue and pink squares and lines rep-
resent the two estimated cell sectors and
cell towers solutions.

(b) The black dots represent measure-
ments. The blue and pink squares and
lines represent the two estimated cell sec-
tors and cell towers solutions.

Figure 5.2: A generated cell with v = 120° and M = 100 .

5.4 Sub-Routine: Choose Direction based on RSS

(RSS-CD)

(a) The black square and lines represent
the correct cell tower and cell sector. The
black dots represent the measurements.
The purple line represents Iy ecction. Lhe
blue and pink squares and lines represent
the two estimated cell sectors and cell
towers solutions.

(b) The black dots represent the mea-
surements. The pink square and lines
represent the chosen estimated cell sector
and cell tower solution.

Figure 5.3: A generated cell with a 10° sector angle and 20 measurements.

34

We now assume we have used RSS-DL to compute lgection and used FS to
compute two estimated cell sector solutions Cheyristict and Cheyristic2. Just as in
section 4.4 we want to choose one of them as the final estimated cell sector solution
with a corresponding cell tower location. See figure [5.3a] and [5.3b] To do this we
take advantage of hypothesis 1 described in section [4.4] with some alterations. In the
hypthesis we calculate the mean of the least possible distances from measurements
to [. [was the line that would perfectly give an impression of which direction the cell
tower was pointing. Now, we take advantage of the fact that measurements closer to
the cell tower have a stronger RSS than those further away.

We present the fourth sub-routine: Choose Direction based on RSS (RSS-CD).
The purpose of RSS-CD is to determine if Cheyristict OF Cheuristico 18 the better choice
for an estimated cell sector solution. The sub-routine is very similar to the D-CD
sub-routine, but we calculate the means differently. We calculate the mean mean,
of the RSS values of the measurements in S; and the mean mean, of the RSS values
of the measurements in S,. See algorithm [7]

Algorithm 7: Cell Direction based on RSS (RSS-CD) |

lnput: M7 n, ldirection7 Cheuristicb Cheuristic2
OUtput: Cheuristicl or CheuristicZ

pick n random measurements S € M
let the measurements € S closer to ep; than eps be Si, and the
measurements € S closer to ep, than ep; be S
calculate the mean mean; of the RSS values of the measurements in S;
calculate the mean meansy of the RSS values of the measurements in S5
if mean,; < means,
return Chyisiic1 if it’s cell tower location is closer to ep; than the cell
tower location of Cheyristica, Or return Cheyristico if it’s cell tower
location is closer to ep; than the cell tower location of Cheyristicl
if mean, < meany,
return Cje,,istic1 if it’s cell tower location is closer to ep, than the cell
tower location of Cheyristico, Or return Cheyristico if it’s cell tower
location is closer to epy than the cell tower location of Cheyristic

Algorithm 7: Cell Direction based on RSS (RSS-CD).

Notations Intruduced in This Section:
meany, meansg: In this section, mean, and mean, was used differently than in

section .4l Here, mean; and means are the means of the RSS values of the
measurements in S; and Sy, respectively.

35

5.5 Algorithm: Cell Tower Localization based on
RSS (RSS-CTL)

We will now combine the sub-routines defined in section [5.2] and into
one complete algorithm for localizing cell towers based on RSS: The Cell Tower
Localization based on RSS (RSS-CTL) algorithm. See algorithm [§|

| Algorithm 8: Cell Tower Localization based on RSS (RSS-CTL) |
iDPUt: M7 n, de:):tenda Q
output: An estimated cell tower location

declare varible g ection

run RSS-DL with M and n as input and store the output in lgrection

declare variables Cheuristict and Cheyristico

run FS with M, lgirection, destena and « as input, compute estimated cell
sector solution for endpoint ep; of lgiection, and store the output in
Cheuristicl

run F'S with M, lgrections deztena and « as input, compute estimated cell
sector solution for endpoint epy of lgirection, and store the output in
CheuristicQ

declare variable Cheyristic

run RSS-CD with M, n, lgrections Cheuristict and Cheuristic2 as input and
store the output in Cheyristic

return the cell tower location of Cheyristic

Algorithm 8: Cell Tower Localization based on RSS (RSS-CTL).

5.6 Scaling d. cnd

In section [4.6] we ran the D-CTL algorithm on cells with o = 10°, for different values
of doyteng. Now do the same on cells with o« = 120°. In addition, we will run both
D-CTL and RSS-CTL for comparison. We test and compare D-CTL and RSS-CTL
with different values of deyseng. The average error values are displayed in the chart in
figure 5.4l We use the following values of deztena:

L4 de:ctend =2
L4 de:ctend =4

L dextend =38

L4 dextend =16
L deztend =32
L4 deztend = 64

36

We use the following constant parameters:
o o= 120°

® Tinclude = 113

W D-CTL, M=1C
RSS-CTL, M
RSS-CTL, M

W D-CTL, M=1C
D-CTL, M=20. n=10

[l RSS-CTL, M n=20
D-CTL, M=1C
RSS-CTL, M .

Il D-CTL. M=20, n=20
D-CTL, M=1C

RSS-CTL, M=20, n=20

Errar

d extend

Figure 5.4: The chart displays how the average error increases when degieng 1S
increasing, for both the D-CTL and RSS-CTL algorithms. See section [4.3] for the
definition of degeng. Each average error sample is based on the errors of 1000
generated cells. See section [£.2] for the definition of M. See section [4.2]and [£.4] for the
definition of n. For example, the red line displays average error values for different
values of dgyeng when we run RSS-CTL with n = 80 and cells are generated with
M = 100.

We clearly see from the chart in figure that the average error increases when
dertend 18 increasing, just as in the chart in figure The average error values from
running D-CTL are higher than those from running RSS-CTL, but this is just as
expected when o = 120°. Recall that we found the average running time when we
generated cells with M = 100, 7;pqude = 113 and o = 10° and ran D-CTL with
n = 80 and dezteng = 2, in section 4.6, 7;,qude and a were constants. This was the
most time consuming scenario, and was to justify further use of deyieng = 2. The
average running time for this scenario was 0.51ms.

Now we do the same for cells with o« = 120°. The assumption is that the D-CTL
and RSS-CTL algorithms will run for a longer time with de,seng = 2, but on the
other hand will compute the most accurate estimated cell tower locations. The worst
case time will occur when we generate cells with M = 1000, and run the D-CTL and
RSS-CTL algorithms with n = 640 and deztend = 2. @ and r;,u4e are still constants.
See the light blue and light green graphs in the chart in figure [5.4, The average
running time with these parameters for D-CTL was 11.88ms. The average running

37

time for RSS-CTL was 10.24ms. Because these average times are so small, we
conclude that we can use degzeng = 2 for further computations of estimated cell tower
locations.

5.7 Scaling Maximum Distance from Cell Tower

In section |4.7| we ran the D-CTL algorithm on cells with o = 10°, for different values
of Tinetude- Now we do the same on cells with o = 120°. In addition, we will run both
D-CTL and RSS-CTL for comparison. We test and compare D-CTL and RSS-CTL
with different values of r,u4e. The average error values are displayed in the chart
in figure [5.5] We use the following values of 7, ciude:

® Tinclude = 30

® Tinclude = 70

® Tinciude = 113

® Tinciude = 160

® Tinciude = 200

We use the following constant parameters:
e o =120°

® deytend = 2

The graphs in the chart in figure |5.5 are very similar to the graphs in the chart
in figure [4.6] It is interesting to see that the average error for RSS-CTL increases
more slowly than the average error for D-CTL. This strengthen our conclusion that
RSS-CTL computes more accurate cell tower locations than D-CTL for cells with
a = 120°.

5.8 Deadzones

To properly simulate a cell we need to consider that there may be areas within the cell
sector where no measurements are recorded. We call such areas deadzones. In reality,
deadzones can occur for several different reasons. For example, a deadzone can occur
behind a tall hill that completely blocks the signal. Or if there is a lake within
the cell sector, this may potentially form a deadzone. Due to potential deadzones’
variation in size, shape and location, they are difficult to simulate. For simplicity we
will simulate deadzones as circular shapes, but vary the size and location within the
cell sector. See figure and [5.6D] and section [3.2] This strategy also stimulates
the fact that for example only 40% of a lake is within a sell sector.

We ask the following question: Does the D-CTL and RSS-CTL algorithms perform
worse when deadzones are present within cell sectors? We test and compare D-CTL

38

220
200

Il D-CTL, M=1000, n=640
[l RS5-CTL, M=1000, n=160
D-CTL. M=10
RSS-CTL, M)
Il O-CTL. M=100, n=20
RSS-CTL 1
-+ |l RS5-CTL
a I RS5-CTL
/ D-CTL, M=100
- _—% H RSSCTL M
— D-CTL, M=20

e D-CTL, M<20, n=10

180

1601

1401

120

Errar |
1001

r_includa

Figure 5.5: The chart displays how the average error increases when 7;,qu4e 1S
increasing, for both the D-CTL and RSS-CTL algorithms. See section for the
definition of ry,quge. Each average error sample is based on the errors of 1000
generated cells. See section for the definition of M. See section |4.2| and
for the definition of n. For example, the red line displays average error values for
different values of 7;,qu4e When we run D-CTL with n = 640 and cells are generated
with M = 1000..

(a) rg, =30 (b) rq, =40

Figure 5.6: Two generated cells, each with a deadzone.

and RSS-CTL with different values of the deadzone radius r4,. The average error
values are displayed in two different charts in figure and [5.8. The difference
between the charts is the value of 7;,u4.. The chart in figure has 7;ncude = 113.
The chart in figure has 7;pcude = 200. We use the following values of 74, :

o ry, =10
o 14, =20
® 74, =30
o 74, =40

39

We use the following constant parameters for the chart in figure
o o= 120°
4 demtend =2

® Tinclude = 113

nsg———— - — .
110 ; e e— -
—a

1051
1001
a5 |
o0 D-CTL. M

|)-CTL, M=100, n=20
854 . P R .

| W D-CTL, M=1000, n=160

Error 80 RSS-CTL, M=100, n=20

B RSS-CTL, M=1000, n=160
70O
65 1
&0 |
55 |
50 1
45
P S S B

0 20 3o 40

Deadzone radius

Figure 5.7: The chart displays how the average error does not change significatly
when 74, is increasing, for both the D-CTL and RSS-CTL algorithms. Each average
error sample is based on the errors of 1000 generated cells. See section for the
definition of M. See section and for the definition of n. For example, the red
line displays average error values for different values of r4, when we run D-CTL with
n = 20 and cells are generated with M = 100.

We use the following constant parameters for the chart in figure [5.8
o o= 120°

® deytend = 2

® Tinclude = 200

As we can see from figure and [5.8 the average error does not change signifi-
cantly when we include larger and larger deadzones in the cell sectors. We therefore
conclude that both D-CTL and RSS-CTL can estimate just as good cell tower
locations when deadzones are present, as when deadzones are not present.

Notations Intruduced in This Section:

rq.: The radius deciding the size of a deadzone.

40

2107

20— 3
1301
180
1701
1601 B RSS-CTL, M=1000, n=160
1501 T Il DO-CTL, M=100, n=20
B ol RSS-CTL, M=100, n=20
| D-CTL. M=1000, n=160
130
1201
101 :
— I
100 |
a0 |
N N S B
10 20 an 40

Deadzone radius

Figure 5.8: The chart displays how the average error does not change significatly
when rg, is increasing, for both the D-CTL and RSS-CTL algorithms. Each average
error sample is based on the errors of 1000 generated cells. See section for the
definition of M. See section [4.2] and [4.4] for the definition of n. For example, the red
line displays average error values for different values of r,, when we run RSS-CTL
with n = 160 and cells are generated with M = 1000.

5.9 Chapter Review

In this chapter we have step by step developed an algorithm for estimating cell tower
locations based on the RSS values among each cell’s measurements. In addition,
we have tested the algorithm on different values of different parameters to get an
understanding of how the algorithm scales. Based on the several tests we conclude
that RSS-CTL estimates more accurate cell tower locations than D-CTL. In chapter
[7 we will test both algorithms on real data. We want to keep testing D-CTL in
addition to RSS-CTL as this can be an alternative if RSS is not available in the
measurements.

41

Chapter 6

Understanding the OpenCelllD
Data Set

We have developed two algorithms for localizing cell towers: the D-CTL and RSS-
CTL algorithms. Now we want to test them on real data. In this chapter we explain
how we retrieve data from OpenCelllD.org. We discuss the format and structure of
the data, and how we select proper subsets to test the two algorithms on.

The subsets we test D-CTL and RSS-CTL on was downloaded April 4th 2015.
As new measurements are added and since OpenCellID always strives to improve
their data, the OpenCellID database is constantly updated.

6.1 Initiating Data Retrieval

To access the data we need an API-key, which is easily retrievable from the Open-
CellID administrators. This key needs to be included every time we want access to
data on OpenCelllD.org. Obtaining the key is very simple. We only need to register
on the site with our name and email.

When we have the API-key there are two ways to access the data. The first way
is to download a copy of the entire database to a computer piece by piece. The only
restriction on this approach is a specific number of times a day we are allowed to
download different pieces of the database for free. The number of times vary for the
different pieces, but we can download all of the pieces at least once a day.

The second approach is performing HT'TP GET or POST requests to the Open-
CellID database. This approach lets us query for very specific parts of the database
by adding parameters to the request. Those contributing to OpenCellID can do this
as much as they want. Others need to pay for it. We were considered contributors
for doing the research contained in this thesis.

We take advantage of both approaches. The first approach is handy when we want
to compute statistics and get an overview of the data. For example finding out how
many cells have been registered in Norway, or how many that use the broadcasting
technology GSM worldwide. The second approach is more useful when we want to
target small subsets of the database. Then we do not wish to traverse every piece of

42

the entire database every time.

6.2 The Data Objects

The OpenCellID data is structured as follows. There are cell and measurement
objects. Measurement objects are created from data collected by users, as mentioned
in section [[.LTI When a collected measurement is for a cell that has not been seen
before, a new cell object is created. Several of the cell object’s data fields are updated
each time a new measurement for the cell is added. See figure [6.1] for an example of
a cell with two measurements. Table [6.1] and display the cell and measurement
objects with corresponding data fields.

{
"cell": {
"lon": 20.42,
"lat": 51.2,
"mee": 260,
"mnc": 2,
"lac": 52702,
"cellid": 59350690,
"averageSignalStrength": -90,
"range": 123,
"samples": 2,
"changeable": true,
"radic": "UMTS",
"rnc": 905,
"gid": 40610
}e
"measurements”: [
1
"id": "52d3db7ccd214d12357b9fee”,
"lon": 20.42,
"lat": 51.2,
"mec": 260,
"mnc": 2,
"lac": 52702,
"ecellid": 59350690,
“"created at": 1399614776134,
"measured_at": 1398477214000,
"signal": =90,
"rating": 10.1,
"speed”": 20.4,
"direction": 90.8,
"radio": "uMTS",
"rnc": 905,
"gid": 40610

"id": "52d3db7ccd214d12357b9ff2",
"lon": 20.42,

"lat": 51.2,

"mee": 260,

"mne": 2,

"lac": 52702,

"cellid": 59350690,

"created at": 1380559325000,
"measured at": 1379477219000,
"signal": =90,

"radio": "UMTS",

"ronc": 905,

"cid": 40610,

"psc": 2

Figure 6.1: A cell object with two measurement objects, given in JSON .

43

Data field Description
radio Network type. Either GSM, UMTS, LTE or CDMA.
mcc Mobile Country Code.
net Mobile Network Code (MNC) for GSM, UMTS and LTE.
System IDentification number (SID) for CDMA.
area Location Area Code (LAC) for GSM and UMTS.
Tracking Area Code (TAC) for LTE.
Network IDentification number (NID) for CDMA.
cell Cell ID (CID) for GSM and LTE.
UTRAN Cell ID/LCID for UMTS.
Base station IDentifier number (BID) for CDMA.
unit Primary Scrambling Code (PSC) for UMTS.
Physichal Cell ID (PCI) for LTE.
Empty for GSM and CDMA.
lon Longitude in degrees between -180.0 and 180.0.
lat Latitude in degrees between -90.0 and 90.0.
range Estimated cell range, in meters.
samples Total number of the cell’s measurements.
changeable If 1: The lon,lat values have been calculated from available mea-
surements.
If 0: The lon,lat values are correct - no measurements have been
used to calculate it.
created The first time the cell was seen and added to the database.
updated The last time the cell was seen, and thus updated.
averageSignal | Average signal strength for all the cell’s measurements.

Table 6.1: Overview of the OpenCellID Cell object, as defined at [1].

6.3 Overview of the Data

As we can see from table [6.1] and both cells and measurements contain several
data fields. To us, they are not all relevant.

Identification A cell is identified with four different values; mecc, net, area and cell.
These tell us which country, which cellular network provider, the area within that
country, and which ID belongs to the cell, respectively. Both cell and measurement
objects have these four data fields. Each measurement belonging to a cell will have
the same identification values. The only way to tell two measurements apart is by
comparing for example longitude and latitude values, or created values. On the other
hand, we never need to target one measurement individually. We are always iterating
over a set of measurements. The longitude and latitude values of the measurements
will clearly be very important to us when estimating cell tower locations.

44

Data field | Description
mcc Mobile Country Code.
net Mobile Network Code (MNC) for GSM, UMTS and LTE.
System IDentification number (SID) for CDMA.
area Location Area Code (LAC) for GSM and UMTS.
Tracking Area Code (TAC) for LTE.
Network IDentification number (NID) for CDMA.
cell Cell ID (CID) for GSM and LTE.
UTRAN Cell ID/LCID for UMTS.
Base station IDentifier number (BID) for CDMA.
lon Longitude in degrees between -180.0 and 180.0.
lat Latitude in degrees between -90.0 and 90.0.
signal Signal level in dBm or as defined in |14, section 8.5].
measured | When the measurement was registered.
created When the measurement was added to the database.
rating GPS quality/accuracy information in metres.
speed Speed of the phone when the measurement was registered.
direction | Heading direction of the phone when the measurement was registered.
radio Network type. Either GSM, UMTS, LTE or CDMA.
ta Timing advance; only for GSM and LTE.
rne Radio Network Controller; only for UMTS.
cid Cell ID (short); only for UMTS.
psc Primary Scrambling Code; only for UMTS.
tac Tracking Area Code; only for LTE.
pci Physical Cell ID; only for LTE.
sid System Identifier; only for CDMA.
nid Network Identifier; only for CDMA.
bid Base station ID; only for CDMA.

Table 6.2: Overview of the OpenCellID Measurement object, as defined at |1].

Known Correct Cell Tower Locations As mentioned in section[I.1} OpenCellID
estimates the cell tower location for a cell by calculating the mean of the longitudes
and latitudes of the cell’s measurements. But there are some exceptions. The
changeable data field tells us whether the cell tower location has already been
computed using available measurements or not. If the changeable value is 0, the
location given for the cell tower is correct. In this case OpenCelllD has been
given access to data about correct cell tower locations from certain cellular network
providers in certain countries. The countries this concerns is Russia, Germany and
Poland. We learned this by writing a piece of code that iterates over every cell in
the OpenCellID database, checks the changeable value for ever cell, and stores the
mcc value of every cell where this value is 0. Among the stored mcc values were only
the ones for Russia, Germany and Poland. To know that certain cells contain the

45

correct location of the cell tower will be very valuable to us when testing the D-CTL
and RSS-CTL algorithms. This lets us compare our estimated cell tower locations to
the correct cell tower locations so we can know to which degree the algorithms work.

6.3.1 Filtering the Data

We need a strategy for how to create subsets of the OpenCelllD data to test the
D-CTL and RSS-CTL algorithms on. As of January 2015, their database contained
almost 7 million unique cell towers and 1.2 Billion crowdsourced measurements.
This means we must rule out parts of the data we do not need, thus narrowing
down to what we do need. When we have traversed the pieces of the downloadable

database and found the cells we want to use, we will download their corresponding
measurements through HTTP GET.

GSM To test D-CTL and RSS-CTL we need to choose subsets from the database
to test them on. Considering the radio data field is a good first step. This field tells
us if a cell uses either the GSM, UMTS, LTE or CDMA technology to broadcast
it’s signal. Table shows how the entire dataset of available cells is distributed
with respect to the radio data field. We learned these numbers by writing a piece
of code that counts all the cells using GSM technology, counts all the cells using
UMTS technology, and so on. As we can see from table [6.3] the OpenCellID database
contains most cells that uses GSM technology. Since we have no deep knowledge
about the data, we conclude that this type of cell is the most favorable type to test
the D-CTL and RSS-CTL algorithms on.

radio Number of cells
GSM 4,098,870
UMTS | 3,342,507

LTE 32,782

CDMA | 30,016

| Total | 7,504,176 |

Table 6.3: Distribution of OpenCellID cells over broadcasting technology.

Known Correct Cell Tower Locations We are also interested in cells where
the data field changeable has the value 0, since these cell tower locations are correct.
We wrote a piece of code that found the distribution of GSM cells, whose changeable
values are 0, over the three countries Russia, Germany and Poland. The distribution
is displayed in table [6.4]

Measurements per Cell FEach cell object has a sample field. We will use this
when downloading cells through HTTP GET. This field gives us control over the
amount of measurements each cell has, and we can adjust our subsets of test cells

46

Country | Number of cells
Russia 48,444
Germany | 41,374

Poland | 235,121

| Total | 324,939 |

Table 6.4: Distribution of OpenCelllD GSM cells per country whose changeable
values are 0.

accordingly by configuring the parameters in the HT'TP GET requests. When
choosing the subsets to test the D-CTL and RSS-CTL algorithms on we keep a
similar tactic as when we tested them on generated data in chapter] and 5| We
want to see how they perform when different amounts of measurements are available
per cell. One problem arised when downloading data by performing HTTP GET
requests. The sample values of the cells in the downloadable pieces of the database
were in many cases not equal to the actual number of measurements available when
performing HTTP GET requests. For example, if a cell in the downloadable database
had the sample value 100, the actual amount of available measurements for that cell
when requesting them through HTTP was 500. This made it difficult to request
cells with the intended amount of measurements. In addition to this, the maximum
number of measurements that can be retrieved for a cell thrugh HTTP is 1000.
When we request measurements for a cell that has more than 1000, we get back 1000
randomly chosen measurements.

6.3.2 Cleaning Up and Validating the Data

Before we use D-CTL and RSS-CTL on the data we need to clean it up due to the
fact that the OpenCellID database contains a lot of bad measurements. When each
measurement for a cell has been through the clean-up process we will also validate
the complete cell to ensure it has the correct properties.

Tinciude Validates Distance from Measurement to Cell Tower We look at
the location of where the measurement was registered. A cell tower cannot broadcast
infinitely far, and some measurements are too far away from the cell it belongs to
for it to be valid. See for an example figure [6.2] That is why we re-introduce the
parameter 7j,qude- 1f @ measurement is further away from the correct cell tower
location than the value of 7;,.u4e, We do not include it when running the D-CTL
and RSS-CTL algorithms. When we do not know the correct cell tower location,
we calculate the mean of the measurements’ longitudes and latitudes, and use this
geometric center of the measurements as origo for r,cuqe. Macro-cell is the type of
cell with the strongest broadcasting capabilities. The standard theoretical range for
the macro-cell is 35 kilometers [26]. We use this distance as a maximum 7;,uqe value
when validating a measurement’s distance to it’s cell tower. We will also experiment
with lower limits of this parameter.

47

MCC: 260
MNC: 2
LAC: 47140
cell ID; 24491

latitude: 52.907778
longitude: 23.505000

24 measuraments: CSV | KML

=
el
-]

-H, ¥ I

Figure 6.2: A cell in Poland with one measurement in Libya

Received Signal Strength We need to validate each measurement’s RSS. As
described in table [6.2] the RSS of a measurement is in either dBm or a number
between 0 and 31 (both included) as defined in [14, section 8.5]. The dBm value
of cell signals are always negative. |14} section 8.5] defines a mapping from the
negative dBm values to positive numbers. See table [6.5] As we can see from this
table, RSS can have the positive values 0 to 31 in addition to negative dBm values.
Measurements with RSS values larger than 31 will not be considered valid. When
running the D-CTL and RSS-CTL algorithms on cells that have measurements with
RSS values from 0 to 31, we translate these to dBm values. The formula is simple. If
x is a positive RSS value not smaller than 0 and not larger than 31, the dBm value
of x can be calculated like this: (2 x) — 113.

Received Signal Strength Values among a Cell’s Measurements We need
to consider the total number of different RSS values among every measurement
belonging to a cell. If we are using RSS-CTL to compute an estimated cell tower
location, we need at least two different RSS values among the measurements. See
algorithm [0} Since the pairing of measurements in RSS-CTL is done randomly we

48

[14, section 8.5] dBm
B 0 -113 dBm or less
1 -111 dBm
2...30 -109...-53 dBm
31 -51 dBm or greater
99 not known or not detectable

Table 6.5: Received Signal Strength comes in two formats. Here is the mapping
between them.

may need more than two different RSS values, especially when n is small. That is
why we use 3 as a threshold when validating the number of RSS values among a
cell’s measurements.

Mumin and My,e: We want to control the number of measurements per cell when
estimating cell tower locations. That is why we operate with a minimum number
Mpin and maximum number m,,,, of measurements per cell when runing D-CTL

and RSS-CTL on a set of cells.

Notations Intruduced in This Section:

MominsMmaz: 1he minimum and maximum number of measurements per cell when
runing D-CTL and RSS-CTL on a set of cells.

6.4 Test Data: Cells where Correct Cell Tower
Locations are Known

For our test data of cells with correct cell tower locations, we downloaded 2036 of
the 324,939 cells described in table [6.4] including corresponding measurements. We
form the set S.oree With these 2036 cells. The amount of measurements per cell
ranges from approximately 70 to 1000.

We now summarize the validation procedure for a cell € S.pret. For each
measurement belonging to the cell, it is approved if the following two properties hold:

e the distance to the correct cell tower location is less than or equal to 7i,ciude-

e the RSS value is less than or equal to 31 (if it is greater than or equal to 0 and
less than or equal to 31, we translate it to the corresponding dBm value).

After evaluating all the measurements belonging to the cell, the cell is approved
if the following two properties hold:

e the total number of different RSS values among the measurements is greater
than or equal to 3.

49

e the total number of measurements is not less than m,,;, and not greater than

Mmaz-

Notations Intruduced in This Section:

Secorrects A set containing 2036 random real cells with correct cell tower locations.

6.5 Test Data: Cells where Correct Cell Tower
Locations are Not Known - Bergen City Cen-
ter

We want to estimate cell tower locations for a familiar area. To accomplish this task
it was very natural for us to choose the Bergen City Center. To locate the cells
corresponding to this area, we had to decide minimum and maximum longitude and
latitude values, thereby creating a square around the Bergen City Center. Then we
traversed all of the cells in the OpenCellID database, and located the ones within
the square area. We tried to find a way to narrow down the Bergen City Center
cells by using the area data field. See table According to various blogposts, the
different cellular network providers use different area code schemes, and usually do
not publish these. In addition, the area codes change regularly. Thus we could not
use the area data field to accomplish this.

The area confined within the square area resulted in 597 cells, with corresponding
measurements. We form the set Speyger, With these cells. The amount of measurements
per cell ranges from 1 to 1000. We use almost the same validation procedure as for
correct cells in section [6.4

We now summarize the validation procedure for a cell € Spepgen. For each
measurement belonging to the cell, it is approved if the following two properties hold:

e the distance to the geometric center of all measurements is less than or equal
to Tinclude-

e the RSS value is less than or equal to 31 (if it is greater than or equal to 0 and
less than or equal to 31, we translate it to the corresponding dBm value).

After evaluating all the measurements belonging to the cell, the cell is approved
if the following two properties hold:

e the total number of different RSS values among the measurements is greater
than or equal to 3.

e the total number of measurements is not less than 10 (D-CTL and RSS-CTL
need a minimum amount of measurements to work properly).

Notations Intruduced in This Section:

Shergen: A set containing 597 real cells located in the Bergen City Center.

20

6.6 Chapter Review

In this chapter we have described the real cell and measurement data provided by
OpenCellID. We have discussed the process of how to retrieve it from OpenCelllD’s
database, and what we must do with it before actually using it to test the D-CTL
and RSS-CTL algorithms. The entire database is large, complex, and has many
flaws. Understanding it’s complexity and problems was very time-consuming.

o1

Chapter 7

Running the D-CTL and RSS-CTL
Algorithms on OpenCelllD Data

We will now estimate cell tower locations of real cells by using D-CTL and RSS-CTL
on the OpenCellID data subsets Scorrect and Spergen. We define the following two
primary goals for this chapter:

1. With the cells in S.oprect, We want to test the accuracy of our two algorithms
by comparing their estimated cell tower locations to the correct ones.

2. With the cells in Speygen, we want to propose new estimated cell tower locations
as alternatives to the existing suggested cell tower locations.

Even though we made strong arguments that RSS-CTL results in more accurate
results than D-CTL in chapter [5], we still want to run D-CTL on real cells as this
algorithm can be an alternative if RSS is not available in the measurements. We
remind the reader that an overview and description of D-CTL and corresponding
sub-routines can be found in table and An overview and description of
RSS-CTL and corresponding sub-routines can be found in table [5.1] and [5.2]

We will compare the performance of our two algorithms with the algorithm
currently used by OpenCellID. This computes a cell tower location by calculating
the mean of the longitudes and latitudes of the cells’ measurements. As we discussed
in section this approach is no good as the estimated cell tower will be located
in the middle of the measurements. The cell tower should be located so that each
measurement lies to some direction of the cell tower within a 120° cell sector, as
described in figure [1.1} That is why we also will calculate the maximum number of
a cell’s measurements that can be fit within a 120° cell sector, when the cell tower
location is estimated with the approach currently used by OpenCellID. When we show
results we will provide the average percentage M,,;ss of the number of measurements
that could not be fit within a 120° cell sector. The D-CTL and RSS-CTL algorithms
are designed so that M,,;s always is 0%.

52

Notations Intruduced in This Section:

M,iss: The average percentage of the number of measurements that could not be fit
within a 120° cell sector, for multiple cells.

7.1 Parameters

There are several parameters we wish to scale when running D-CTL and RSS-CTL.
These are the same paremeters we experimented with in chapter [4 and [o]

n In the sub-routines D-DL, D-CD, RSS-DL and RSS-CD, n plays important roles.
See table [£.2] and When running D-CTL and RSS-CTL we want to learn if small
values of n result in as accurate estimated cell tower locations as large values of n.

deztena In the sub-routine FS, lgirection 18 extended by a distance degseng until every
measurement of a cell fits within the cell sector. When running D-CTL and RSS-CTL
we want to learn if large values of d. eng result in as accurate estimated cell tower
locations as small values of dezieng. When estimating cell tower locations for real cells,
the values of d.zieng are much lower than when we estimated cell tower locations for
generated cells in chapter [4] and 5] The reason for this is the difference between a
Cartesian coordinate system and longitude/latitude coordinates. For example, in a
Cartesian coordinate system 0.001 is a very small distance, but in longitude/latitude
coordinates it is 111.2 meters.

Tinclude When validating measurements, we decline those that are further away than
Tinclude Kilometers. See section [6.3.2] When running the D-CTL, RSS-CTL and
OpenCellID algorithms we want to learn if using small values of 7;,.uq4e result in
more accurate estimated cell tower locations than using large values of r,cu4e. Even
though measurements far away from the correct cell tower location are completely
valid, we want to exclude them from the computations to see how that affects the
errors of estimated cell tower locations.

Mpnin a0d My,e, When running the D-CTL, RSS-CTL and OpenCellID algorithms
on real cells we want to learn if the accuracy of estimated cell tower locations differs
when the cells have different amounts of measurements. See section If mopin =
100 and my,q, = 200, we run the D-CTL, RSS-CTL and OpenCellID algorithms on
cells that have not less than m,,,;, and not more than m,,,, measurements. In section
[7.3] and we experiment with the set of real cells Seorpect. In these sections
we will use the following values of m;, and Myee: M = 100/Mypee = 200,
Munin = 450/Mpae = 550 and My = 900/Myue: = 1000. In section we
experiment with the set of real cells Spergen. In this section we will estimate cell
tower locations for each cell in the set that has not less than 10 measurements. This
means we use My, = 10/Mypq, = 100.

93

7.2 The Haversin Formula

Our planet has the shape of a sphere. To calculate distances from one point to
another on the surface of a sphere, we need a bit more complex formula than the
one we use with a regular Cartesion coordinate system. We will use the Haversin
Formula [9, page 161]:

haversin(4) = haversin(¢s — ¢1) + cos(¢1) cos(¢2) haversin(Ay — ;)

b
where

1—cos(6)

e haversin is the haversin function: haversin(f) = sin®(%) = =52,

e d is the distance between the two points,

e 1 is the radius of the sphere,

e ¢, and ¢, is the latitude of point 1 and latitude of point 2, and
e)\, and), is the longitude of point 1 and longitude of point 2

We will not incorporate this directly into the D-CTL and RSS-CTL algorithms.
When running the two algorithms on real cells we are imagining that we are dealing
with a flat surface. But we will use this formula when calculating the errors and
when excluding measurements with respect to ri,cude-

7.3 Testing on Cells where Correct Locations are
Known: Constant d..;.,q and 7;,ciude

In this section we test our algorithms on cells where the correct cell tower locations
are known. The purpose of these tests are to measure the accuracy of the estimated
cell tower locations by comparing them to the correct locations. We keep deztend
and 7;,qude constant to get an understanding of how only different values of n affect
the accuracy of the estimated cell tower locations. We will experiment with these
parameters in section [7.4] and [7.5]

We run and compare the D-CTL, RSS-CTL and OpenCellID algorithms on
Secorrect- We use the following consant parameters:

hd demtend = 0.001

® Tinclude = 35km

o4

n | D-CTL | RSS-CTL
10 | 7.9km 4.7km

20 | 8.1km 4.0km OpenCelllD | M,,;ss
40 | 7.8km 3.8km 2.8km 38.9%

80 | 7.6km 3.9km (b) Overview of average error and M,

(a) Overview of average errors when run- when running the OpenCellID algorithm.
ning the D-CTL and RSS-CTL algo-
rithms.

Table 7.1: Overview of average errors of estimated cell tower locations of cells in
Secorrect When my,;,, = 100 and My, = 200. These m,,;, and M, values amounted
to 241 cells.

n | D-CTL | RSS-CTL
10 | 13.8km 10.1km
20 | 14,3km | 9.9km
40 | 14.5km 9.7km OpenCellID | M,,;ss
80 | 14.2km 9.7km 2.2km 39.4%
160 | 13.5km 9.8km
320 | 13.2km 9.8km

(b) Overview of average error and M,ss
when running the OpenCelllD algorithm.

(a) Overview of average errors when run-
ning the D-CTL and RSS-CTL algo-

rithms.

Table 7.2: Overview of average errors of estimating cell tower locations of cells in
Seorrect When my,, = 450 and m,,., = 550. These My, and m,,.. values amounted
to 266 cells.

n | D-CTL | RSS-CTL
10 | 16.4km | 13.3km
20 | 17.3km | 13.0km
40 | 17.6km | 12.7km
80 | 17.2km | 12.7km

160 | 16.6km | 12.7km
320 | 16.1km | 12.8km (b) Overview of average error and M,ss
640 | 15.8km 13.2km when running the OpenCelllD algorithm.

OpenCellID | M, ;s
2.7km 37.7%

(a) Overview of average errors when run-
ning the D-CTL and RSS-CTL algo-
rithms.

Table 7.3: Overview of average errors of estimated cell tower locations of cells in
Seorrect When my,;, = 900 and My, = 1000. These m,,;,, and M., values amounted
to 308 cells.

95

Analysis

The OpenCellID algorithm has the lowest average error for all three min/Mmas
intervals. See table and [7.3] The M,,;ss values tells us that this algorithm
estimated cell tower locations that on average will not cover 38.9%, 39.4% and 37.7%,
respectively.

As we can see there is a clear gap between the average error values of D-CTL
and RSS-CTL. We can also see that the average errors increase when the amount
of measurements per cell increases. This confirms our results from running the two
algorithms on generated test data in chapter [4 and [5

There are no strong correlation between the value of n and average error values of
D-CTL, or n and average error values of RSS-CTL. In table [7.1a] [7.2a] and [7.3a] the
average errors for both D-CTL and RSS-CTL change very little with respect to the
different values of n. There seems to be no pattern to predict whether the average
error values will increase or decrease when scaling n. Though we might argue that
both D-CTL and RSS-CTL have slightly lower average errors at maximum n than
minimum n.

These unpredictable average error values from D-CTL and RSS-CTL tells us
several things. First, our randomization procedure when computing lgection I
algorithm [I] and [6| works. Even with a low n and a large amount of measurements
per cell, the algorithms manage to compute viable direction lines. We can see this
by looking at the small and unpredictable changes in average error as n increases.
If the randomization procedure did not work, we would expect the average errors
to be much higher for small values of n than for large values of n. Secondly, the
average error values increase when m,,;, and m,,, increase. This means that a larger
number of measurements per cell results in larger error values. This again means
that, on average, a cell with a large amount of measurements has them spread out
on a larger area than a cell with a smaller amount of measurements. This conclusion
is based on how much algorithm [3| has to extend lgection t0 be able to compute a
cell sector every measurement will fit within.

The average error from the OpenCelllD algorithm is also unpredictable as it
decreases from table to table but increases from table to table [7.30]

This unpredictability for all three algorithms tells us that the measurements
are randomly distributed within their cells. There are no patterns explaining the
distribution.

7.4 Testing on Cells where Correct Locations are
Known: Scaling d.,;.,s and Measuring Time

In this section we test our algorithms on cells where the correct cell tower locations are
known. The purpose of these tests are to measure the accuracy of the estimated cell
tower locations by comparing them to the correct locations. We will now experiment
with different values of deyeng to get an understanding of how this parameter affects
the accuracy of the estimated cell tower locations.

26

We run and compare the D-CTL and RSS-CTL algorithms with different values
of deztend, ON Seorrect- We use the following constant parameters:

® Tinclude = 35km

Using a too small value of dcnq is one of the factors that potentially can increase
the time it takes to estimate a cell tower location due to the increased number of
iterations in algorithm [3] We experimented with and discussed dezseng theoretically
in section and [5.6l We use the following five values of deztend:

® deytend = 0.1

® deytena = 0.01

® deytena = 0.001

® deytena = 0.0001
® deytena = 0.00001

We will also measure the average running times for D-CTL and RSS-CTL. To narrow
down the amount of average running times we have to keep track of, we focus on
the worst case. That is when the average running time will be largest. In this case
the worst case is when we run the two algorithms with dezseng = 0.00001 and a large
value of n.

For the following estimations of cell tower locations we will not use the OpenCelllD
algorithm. The parameter d..i.,q does not affect the cells, only the D-CTL and
RSS-CTL algorithms, so the OpenCelllD algorithm would produce exactly the same
average errors as in section [7.3]

n | D-CTL | RSS-CTL
10 | 12.1ms 23.8ms
20 | 8.3ms 24.0ms
40 | 5.4ms 24 .0ms
80 | 3.1ms 23.2ms

Table 7.4: Overview of average running times for D-CTL and RSS-CTL when
deztena = 0.00001. These are for M, = 100/mypq, = 200.

Analysis

In the charts in figure [7.1], and [7.3], the average errors for deyena = 0.01 and
deztena = 0.00001 is approximately equal. This means using deyieng = 0.01 will result
in just as accurate estimated cell tower locations as when using d.zseng = 0.00001.
This is very relevant with regard to time constraints. We want the computation
of a cell tower location to take as little time as possible, so we wish to use the
largest value of dyeng as possible. In table and [7.5], the average running times

o7

RSS-CTL, n=10
D-CTL, n=40
I RS5-CTL, n=40
D-CTL, n=10

Errar

0.1 0,01 0,001 0.0001 0,000

d_saxtand

Figure 7.1: Overview of average errors of estimated cell tower locations of cells in

Secorrect; When my,;, = 100 and My, = 200. These My, and My, values amounted
to 241 cells.

B jmmmm e jmmmm e j
21000~ . . 5
20000%,

120001 " M RS3-CTL n=10

18000 > s A o oy ST

17000 RSS-CTL, n=40

15000 . MDCTL n=10
RSS-CTL, n=20

Error 15000

14000
13000+ ----
12000

! ! | M RE5-CTL, n=160
11000 e

! M D-CTL, n=40
10000 '
1
8000 : . i
0.1 0.0 0.001 0,0001 0.00001

d_saxtand

Figure 7.2: Overview of average errors of estimated cell tower locations of cells in

Scorrects When my,, = 450 and my,q, = 550. These M and my,,, values amounted
to 266 cells.

for dezteng = 0.00001 are not large enough for us to consider using a larger value of
deniend. But in table and the average running times for degzeng = 0.00001 is
getting high. That is why we will use deyieng = 0.0001 for further computations of
estimated cell tower locations with D-CTL and RSS-CTL.

In the charts in figure and [7.3] the average errors from running D-CTL are
spread out more than in the chart in figure[7.1, with respect to Error. We cannot see

o8

Table 7.5: Overview of average running times for D-CTL and RSS-CTL when

n | D-CTL | RSS-CTL
10 | 87.9ms | 130.3ms
20 | 67.3ms | 125.9ms
40 | 39.7ms | 127.4ms
80 | 33.2ms | 129.6ms
160 | 25.2ms | 129.0ms
320 | 17.8ms | 128.3ms

deztena = 0.00001. These are for m,;, = 450/Mypa, = 550.

24000
1

1
23000

a2000 R | M D-CTL, n=10
W D-CTL, n=20
21000 D-CTL, n=80
20000 D-CTL, n=160
12000 I D-CTL, n=40
RSS-CTL, n=20

13000
Errar 17000
16000
15000
14000
13000
12000
11000

10000
01

Figure 7.3: Overview of average errors of estimated cell tower locations of cells in
Scorrect, When my,i;, = 900 and m,,q, = 1000. These m,,;, and m,,., values amounted

to 308 cells.

S — |

0.0

0,001

d_axtand

0.0001

B RS5-CTL, n=80

RE5-CTL, n=160

D-CTL, n=320

Il RSS-CTL, n=320

D-CTL, n=5640
B RSS-CTL, n=40

RE5-CTL, n=640

R35-CTL, n=10

0.00001

n\deztena | 0.00001 | 0.0001 1\ deztena | 0.00001 | 0.0001
10 428 9ms | 42.0ms 10 537.0ms | 56.3ms

20 285.8ms | 30.9ms 20 508.5ms | 50.6ms

40 195.8ms | 20.1ms 40 505.3ms | 51.2ms

80 146.4ms | 15.3ms 80 526.9ms | 49.9ms
160 120.3ms | 13.4ms 160 507.8ms | 53.0ms
320 109.9ms | 12.6ms 320 536.8ms | 56.2ms
640 66.2ms | 17.6ms 640 522.7ms | 63.9ms

(a) Average running times for D-CTL. (b) Average running times for RSS-CTL.

Table 7.6: Overview of average running times for D-CTL and RSS-CTL when
deztena = 0.00001 and deyieng = 0.0001. These are for my,i, = 900/Mypnq: = 1000.

29

any pattern where the lowest n results in the highest average error and the largest n
results in the lowest average error, or vice versa. This means the spread simply must
be caused by the heuristic choices throughout the D-CTL and RSS-CTL algorithms.

7.5 Testing on Cells where Correct Locations are
Known: Scaling 7;,ude

In this section we test our algorithms on cells where the correct cell tower locations are
known. The purpose of these tests are to measure the accuracy of the estimated cell
tower locations by comparing them to the correct locations. We will now experiment
with different values of 7;,.u4e to get an understanding of how this parameter affects
the accuracy of the estimated cell tower locations.

We run and compare the D-CTL, RSS-CTL and OpenCelllD algorithms with
different values of 7,ciude; ON Seorrect- We use the following constant parameters:

® dertena = 0.0001

How will the average errors look if we use values lower than 35 kilometers for 7;,cude?
Recall that the value of 7,44 decides if a measurement is too far away from the
correct cell tower location or not, to be included when estimating the cell tower
location. Initially it was to help exclude invalid measurements as figure [6.2| shows an
example of. Forcing the D-CTL and RSS-CTL algorithms to exclude measurements
that are valid but just far away from the cell tower, will most likely result in lower
average errors. This is because algorithm [3| will not need to extend lg;rcction as far
to be able to fit the remaining measurements. On the other hand, the amount of
available measurements to compute lg;rection from, in the first place, is reduced just
as much. We experimented with and discussed 7;,qu4e theoretically in section
and 5.7 We use the following five values of 7i,ude:

® Tinclude = 35km
® Tinclude = 25km
® Tinclude = 15km
® Tinclude = 10km
® Tinclude = S5km
® Tinclude = 2km

We will not time these computations since we can be sure we will not exceed the
running times given in section [7.4, as we are not lowering deyend-

For these computations, the amount of cells used will vary for each reduction of
Tinclude- Lhis is because we are excluding more and more of each cells’ measurements
the lower 7;,qude gets. This means for example that a cell satisfying m,;, and my,q.

60

at Tincude = 39 kilometers might not at 7;,0u4e = 25 kilometers. The number of cells
used to compute estimated cell tower locations for each value of r;,cuqe 1S given in
parenthesis below the value of 7;,.u4c in the charts.

Since the amount of measurements for a cell is changing when 7,4 decreases,
the average errors from running the OpenCellID algorithm is also changing. The
line in the graph called OpenCelllD shows the average errors from running the
OpenCellID algorithm for each value of r,cuqe. This also means the value of M,
changes. The values of M,,;ss for each value of 7,uqe for all three My, /Mpmas
intervals are shown in table

Tinclude \Mmin — Mmaz | 100-200 | 450-550 | 900-1000
35km 38.9% | 39.4% 37.7%
25km 39.2% | 40.0% 38.6%
15km 39.4% | 41.1% 38.8%
10km 39.6% | 42.6% 38.5%
Skm 40.9% | 44.1% 37.3%
2km 43.1% | 43.8% 39.5%

Table 7.7: M,,;ss for each value of r;,qude When m,,;, = 100 and m,,.. = 200,
Myin = 450 and My,q. = 550 and m,,;, = 900 and My, = 1000.

10000
Q000

BO00 5
M O-CTL, n=80

' [l R55-CTL, n=20

D-CTL, n=40

R85-CTL, n=40

i [l R5S-CTL, n=10
OpenCellD

W RSS-CTL, n=80
D-CTL, n=10
D-CTL, n=20

35000 25000 15000 10000 5000 2000
(241} (242) (248) (247} (248} (387}

r_includa

Figure 7.4: Overview of average errors of estimated cell tower locations of cells in
Scorrect; When my,:;, = 100 and my,q, = 200.

Analysis

For some values of 7;,u4e, the number of cells used to compute average errors is lower
than preferred, especially for 7,quqe = 2 kilometers in the chart in figure [7.6] Recall

61

. M D-CTL, n=40
, , | B RSS-CTL, n=320
SN N S R beeeoeeeeeeeeel M D-CTL, n=10
= RSS-CTL, n=160

___________________________ RSS-CTL, n=20
! | B RSS-CTL, n=80
a7 mocrn=s2
7 M D-CTL, n=160
~iEE—— Tl OpenCellD

Errar

RSS-CTL, n=40
|l D-CTL, n=80
s M D-CTL, n=20
035EII.'!D 25000 15000 10000 S000 2000
(266} (271} (271} (273} (228} (115}
r_include

Figure 7.5: Overview of average errors of estimated cell tower locations of cells in
Scorrect; When my,:;, = 450 and My, = 550.

OpenCellD
D-CTL, n=20

| M RSS-CTL, n=640
| [R8S-CTL, n=320
1 I R35-CTL, n=10
------------ foooooeoee-e-d [D-CTL, n=640

---------------- t=----------4 [l D-CTL, n=10

------- o ERSS-CTL, n=40
D-CTL, n=40

. ! ! v :
35000 25000 15000 10000 5000 2000
{308} {301} {278} [245) {143} (58)

r_includs

Figure 7.6: Overview of average errors of estimated cell tower locations of cells in
Scorrect; When m,;, = 900 and m,,q, = 1000.

that the maximum number of measurements we can download for one cell through
HTTP is 1000, even if OpenCelllD has more measurements for that cell in their
database. When we are running D-CTL and RSS-CTL with 7,004 = 2 kilometers
and M, = 900 we are dependent of cells that have 900 or more measurements
within a radius of 2,000 meters from the correct cell tower location. As we can see
from figure [7.6] only 58 of the cells in Seorreet had that property. On the other hand,
the average error graphs in all three charts in figure [7.4] [7.5 and [7.6] behave similar
with respect to Error. Thus we can argue that 58 cells was enough.

62

The average errors computed throughout this section are giving us very valuable
information. Just as expected there is a gap between the average errors from D-CTL
and RSS-CTL for 7;,cuqe = 35 kilometers. We already knew this from our findings in
section [7.3]and [7.4] What we could only project, but not know, is that the graphs for
the two different algorithms would converge for lower values of 7;,cude. This means
that a lot of the pairs of measurements we choose when computing lg,ection in D-DL
with rieude = 35 kilometers, form lines between them that are far from projecting
the actual directions of the cells. We discussed this in theory in section 4.8 When
we reduce 7ipqude it seems that we prevent D-DL from choosing two measurements
that form such a poor direction line. Or we have excluded all of the measurements
that could cause such a poor direction line.

Reducing r;,quq4e results in lower average errors which are better results if we
want to estimate cell tower locations as close as possible to the correct cell tower
locations. This is essential if the goal is to use the estimated cell tower locations in
other applications, such as localizing mobile devices. See section and chapter
2l Now a dilemma occurs. Is it correct to exclude measurements to produce low
errors? First we must consider the fact that the purpose of D-CTL and RSS-CTL
is to estimate the location of cell towers we do not know the correct locations of.
So how would we know if a measurement is far away from the cell tower or not,
in that case? One possibility is to look at the signal strength, but this might not
be a safe parameter. RSS can be affected by obstacles like buildings, other signals
flowing through the air, or even the signal receiver in the mobile device. In short,
this parameter may lie. Another possibility is to calculate the mean of the longitudes
and latitudes of each cells’ measurements, and use this as an origo for excluding
measuremens that are too far away.

But do we want to exclude measurements from the computations? We must
remember that we are developing heuristics. In most cases it is very difficult to say
how far away our estimated cell tower locations are from the correct ones. We must
base our results and conclusions on the data that is available to us. If we manage
to estimate a cell tower location so that every measurement belonging to the cell
are not too far away from this location, and fits within the cell sector, our heuristic
works. See the rules in section 3.1l We can still calculate the distance from each
measurement to the estimated cell tower location after this has been computed. If
some measurements seems to be too far away from the estimated cell tower location,
we can exclude them and run the algorithm again.

7.6 Bergen City Center: Estimating Cell Loca-
tions when These are Not Known

In this section we run RSS-CTL on cells where the correct cell tower locations are

not known. The purpose of these tests are to suggest alternative cell tower locations

to the suggested locations that already exist for the test cells. We will suggest new
cell tower locations for the cells in Spergen.

63

We use the following constant parameters:
® Mmin = 10

® My = 1000

degtena = 0.0001

Tinclude = 35km

if a cell’s amount of measurements | M| is equal to or larger than 80, n = 80
e if a cell’s amount of measurements |M]| is less than 80, n = |M|

In section we described Spergen. The number of cells in this set is 597. After
running the validation procedure on each of the 597 cells, we are left with 120 cells.
This is mostly because many of the cells has less than 10 measurements. The upside
of this is that the map of Bergen will not be overly crowded with cell tower locations.

Analyzing Two Estimated Cell Tower Locations

« .
%"%n - & S”aﬂ%(,

f% <, > w‘*’f .

E Smlarl fment . e e 1
&

Sl e j'

“ rn2 ‘@Y

Bypa
= "aig

(a) The focus is on the cell tower location (b) The focus is on the cell tower location
as estimated by OpenCellID. as estimated by RSS-CTL.

Figure 7.7: Cell 242-1-11011-12302. The blue circles represent measurements. The
light blue marker represents the cell tower location as estimated by OpenCelllD. The
pink marker represents the cell tower location as estimated by RSS-CTL.

In figure [7.7a] and [7.70] we can see one of the cells from Sy gen. Measurements,
estimated cell tower location by OpenCelllD and estimated cell tower location by
RSS-CTL are shown. There is really no way of knowing how accurate the location
estimated by RSS-CTL is. But if we look closely, we can see that it estimated the
cell tower to be located just where Gulating Lagmannsrett is located. This is a large
building that contains a court of law. A rooftop seems like an excellent spot for

64

a cellular network provider to place a cell tower, because of the hight. The cell
tower location estimated by OpenCellID is much less likely. The green area where
OpenCellID estimated the location to be is a lawn, with no high structures. We
therefore conclude that RSS-CTL estimated a likely cell tower location for this cell.

®) ©
-
5 1
8 g 5P
aﬁ"é\ 2 G5
P =} e &
7T 22 y
@ n Qg ;
Y 5 n o g y &
& ! & g5
& S& & g
f F A ‘f 5 ';f
£ i £ o
L i
o8 F&
[g
Bl 5
L i
z %
. g g
7 ‘ 5 . ; y
i 2 o
. @ Am)
s 1> o 1%)

/ B0 - “
10 L i, (] 1 1 5
o 72 o ? !
76 5 s 5 & 7 5 @)
% & Y A SN L¥ 4 YA SN
o Rl s & o s PN

(a) The focus is on the cell tower location (b) The focus is on the cell tower location
as estimated by OpenCelllD. as estimated by RSS-CTL.

Figure 7.8: Cell 242-2-11011-40768. The blue circles represent measurements. The
light blue marker represents the cell tower location as estimated by OpenCellID. The
pink marker represents the cell tower location as estimated by RSS-CTL.

In figure [7.8a] and [7.8b] we can see another cell from Syepgen. OpenCellID estimated
the cell tower location of this cell to be in the middle of the water. That is not an
accurate estimation. We can see that RSS-CTL estimated the cell tower location of
this cell to be on dry land, which makes it a more likely location.

Estimating Cell Towers for the Bergen City Center

Figure shows a map of the Bergen City Center. Not all of the 120 estimated cell
tower locations are shown. Some are outside of the figure boundaries. We chose to
not show the old cell tower locations estimated by OpenCellID as that would have
made the map very crowded. In addition, it would have been very difficult to clarify
which new and old estimated cell tower locations belonged to the same cell.

We immediately see that some of the cell tower locations estimated by RSS-CTL
cannot be very accurate as they are located in water areas. There may be several
reasons for this, one being the algorithm itself. Based on the available measurements,
RSS-CTL has not been able to estimate a valid cell tower location. Another possible
reason is the distribution of the measurements belonging to each cell. It is clear that
RSS-CTL works best when a cell’s measurements are randomly distributed within
the cell sector. If the measurements are distributed in any other way, that affects
the accuracy of the estimated cell tower location. Especially combined with a low

65

\ak:evér';' c”ﬁ::%‘%%
" @
e

LY
lhmuanisl\ur:n_ennbém§mumelen .#l =
L e A Be
WY,
t

j e

> " N

Damsgérdsfielet - &

3a55m g

Figure 7.9: Overview of 97 estimated cell tower locations of cells in Spergen. The
estimated cell tower locations are computed by RSS-CTL.

number of measurements. Last, RSS-CTL base it’s estimated cell tower location on
RSS values among measurements. If these values do not reflect the distance each
measurement is located from the cell tower, that will affect the estimated cell tower
location.

7.7 Chapter Review

In this chapter we have presented and compared average errors of estimated cell
tower locations of real cells, computed by the D-CTL, RSS-CTL and OpenCelllD
algorithms. We have experimented with different values for several parameters to
learn how the algorithms scale. We have also used RSS-CTL to estimate cell tower
locations in the Bergen City Center. To improve the D-CTL and RSS-CTL algorithms
we need to analyze some cells and consider some of the more regular measurement
distribution patterns. We also need to pay attention to the individual measurements
that are causing high errors. These are probably the ones furthest away from the
correct cell tower locations. Or the ones far from the other measurements belonging
to the same cell, possibly close to the cell edges.

66

Chapter 8

Analysis and Improvements

In this chapter we analyze two cells with different measurement distribution patterns.
We run the D-CTL, RSS-CTL and the OpenCellID algorithms on both cells and
anylyze their estimated cell tower locations. Next we propose how D-CTL and
RSS-CTL can be improved. We end the chapter by concluding the thesis.

8.1 Analyzing Measurement Distributions

In chapter 7| we presented average errors of estimated cell tower locations from
running the D-CTL, RSS-CTL and OpenCellID algorithms. We ask the following
question: What is affecting the average errors of estimated cell tower locations? We
will now analyze the measurement patterns and estimated cell tower locations of two
different cells with correct cell tower locations. One where the measurements are
scattered and one where they are more structured.

The following parameters are used when running the algorithms on the two cells:

e n=28&0
o derieng = 0.0001

® Tinclude = 35km

8.1.1 Pattern 1: Cell with Scattered Measurements
We analyze the following cell, which is displayed in figure

MCC: 262
NET: 7
AREA: 30605

CELL: 342

67

Figure 8.1: Cell 262-7-30605-342.

Measurements Analysis As we can see from figure [8.1], the measurements of
this cell is scattered to all directions of the correct cell tower location, which is
represented by the light blue marker. We immediately notice the measurement far
away from the cell tower, in the lower left corner. This measurement is approximately
60 kilometers away from the correct cell tower location. Assuming that 7,qude
is active, with maximum value equal to 35 kilometers, this measurement will be
marked as invalid and will not be considered when running D-CTL, RSS-CTL or
the OpenCellID algorithm. See section [6.3.2] The measurements in the upper right
corner is approximately 32 kilometers away from the correct cell tower location, and
will be considered when 7;,quqe = 35 kilometers.

D-CTL

We run D-CTL on the cell. The result is displayed in figure where the pink
marker represents the estimated cell tower location. The error is 33.5 kilometers.

Figure 8.2: Cell 262-7-30605-342. D-CTL has estimated a cell tower location.

68

By examining the estimated cell tower location we can see that the sub-routine
D-DL has computed a lgection between the two measurements furthest apart from
each other. After this the sub-routine FS computed two cell sectors. The sub-routine
D-CD has chosen one of the two cell sectors with corresponding cell tower location,
but the wrong one. We designed D-CD so it would pick the cell sector whose cell
tower location was closest to the correct cell tower location. It clearly did not do
that. Figure 8.3 shows both of the two estimated cell tower locations computed by
FS. In theory, the one to the left in the figure was supposed to be chosen by D-CD.
Why was it not?

To answer this question we must look into D-CD. This sub-routine assumes that
the measurements are randomly distributed within the correct cell sector. In this
cell, they are not. Look at the estimated cell tower location to the right in figure 8.3
The little cluster of measurements at that location is really close to that estimated
cell tower location. The rest of the measurements are closer to the estimated cell
tower location to the left, and more spread out. Say we calculate the mean of the
least possible distances from the few mesurements closer to the estimated cell tower
location to the right in the figure, to lgection. Then we calculate the mean of the
least possible distances from the mesurements closer to the estimated cell tower
location to the left in the figure, to lgirection. 1t is very likely that the former mean is
lesser than the latter. That is why D-CD fail.

) } 7y
i ¢ e
Huckeswagen ™ /""/_: i
‘ y I T (A e
. 7_‘,.—7"_':,;- = Kierspe
A e
Meinerzhagen X
Marienheide.
(8 256)]

Figure 8.3: Cell 262-7-30605-342. We show both estimated cell tower locations
computed by FS during the execution of D-CTL.

RSS-CTL

We run RSS-CTL on the cell. The result is displayed in figure [8.4] where the pink
marker represents the estimated cell tower location. The error is 22.6 kilometers.
Here, RSS-DL computed a completely different [y ection than D-DL. We can see
that the two sub-routines computed two versions of lg;.cction that are close to be
perpendicular to each other.

RSS-CTL worked as it was supposed to. RSS-DL found the two measurements
with the largest difference in RSS. Then two possible estimated cell sectors with

69

Figure 8.4: Cell 262-7-30605-342. RSS-CTL has estimated a cell tower location.

corresponding cell tower locations were computed by FS. One of them were chosen
by RSS-CD. But the error is still very large. Why is that?

Figure [8.5] shows both of the two estimated cell tower locations computed by FS.
We clearly see that RSS-CD in fact chose the estimated cell tower location closest
to the correct cell tower location. The reason for the large error can be found by
examining the measurements. After RSS-DL computed g ection in the current way,
FS had to extend it by a large distance to be able to fit the group of measurements
far to the right in figure [8.5 within a 120° cell sector. If RSS-DL had computed a
Lairection 100king more like the one D-DL computed in figure [8.3] the error would have
been decreased.

OpenCellID Algorithm

We run the OpenCellID algorithm on the cell. The result is displayed in figure
where the pink marker represents the estimated cell tower location. The error is 2.6
kilometers.

It is not strange this approach gave the estimated cell tower location with the
lowest error. The measurement distribution of this cell, where they are scattered to
every direction of the correct cell tower location, is perfect for this kind of estimation
approach.

70

Figure 8.5: Cell 262-7-30605-342. We show both estimated cell tower locations
computed by FS during the execution of RSS-CTL.

P T

Figure 8.6: Cell 262-7-30605-342. The OpenCellID algorithm has estimated a cell
tower location.

.

Conclusion

This cell is clearly omnidirectional. We draw this conclusion from the fact that the
measurements are localized in every direction from the correct cell tower location,
and not within a 120° cell sector. The D-CTL and RSS-CTL algorithms were not
designed to estimate cell tower locations for this kind of cell. Estimated cell tower
locations from these two algorithms on this kind of cell will very often have large
errors. For omnidirectional cells, Weighted Centroid is a better alternative. See

71

section 222,11

8.1.2 Pattern 2: Cell with Structured Measurements
We analyze the following cell, which is displayed in figure [8.7}

MCC: 260

NET: 1

AREA: 29001

CELL: 22095

Zaklady” T . “Boruszowice
o TR . {) -5

g
@

Figure 8.7: Cell 260-1-29001-22095.

Measurement Analysis As we can see from figure the measurements of this
cell are more structured than the cell analyzed in section [8.1.1 They are clearly
within a 120° cell sector from the correct cell tower location, which is represented by
the light blue marker. This cell almost appear forged by the way these measurements
form an almost straight path.

D-CTL

We run the D-CTL algorithm on the cell. The result is displayed in figure 8.8, where
the pink marker represents the estimated cell tower location. The error is 0.925
kilometers.

We can see that the D-CTL algorithm has worked as it is supposed to. The
estimated cell tower is located by the measurement at the end of the measurent
path close to the upper boundary of the figure. This means D-DL chose the two
measurements furthest apart from each other to be the endpoints of lgirection. Then

72

Figure 8.8: Cell 260-1-29001-22095. D-CTL has estimated a cell tower location.

FS computed the two estimated cell sectors, and D-CD picked the one whose cell
tower location was closest to the correct cell tower location. Figure [8.9] which
displays both of the two estimated cell tower locations computed by FS, confirms
this hypothesis.
3\;;\&:: ..‘ ; -, ' .ﬁfﬂ:ll _ 3 .
Ll O = 2 " Boruszowic

Figure 8.9: Cell 260-1-29001-22095. We show both estimated cell tower locations
computed by FS during the execution of D-CTL.

Even though the error is small and the D-CTL algorithm works as expected, there
are still room for improvements. Recall that the D-CTL and RSS-CTL algorithms
assume measurements are randomly distributed within their respective cell sectors.
When the measurements form an almost straight path such as these do, with no
measurements above or below the path, the D-CTL algorithm will always estimate
the cell tower location to be at one of the ends of the path. This time, the error is

73

only small because the correct cell tower location is close to the one of the ends of the
path. If some measurements were to be located away from the path, the algorithm
would have had other measurements to base g ection ON.

RSS-CTL

We run RSS-CTL on the cell. The result is displayed in figure [8.10] where the pink
marker represents the estimated cell tower location. The error is 0.922 kilometers.

RS pRmEEE R / w

Boruszowic

ooy
g
=]
&

Figure 8.10: Cell 260-1-29001-22095. RSS-CTL has estimated a cell tower location.

RSS-CTL estimated the cell tower location to be almost at the same spot as
D-CTL did. This is as expected, as the measurements at that spot are the closest ones
to the correct cell tower location, and thus should have the strongest RSS. This means
that RSS-DL successfully computed a lg;ection Detween the pair of measurements
with the largest difference in RSS between them. Then RSS-CD chose the one of the
two estimated cell sectors whose cell tower location was closest to the correct cell
tower location. Figure [8.11) which displays both of the two possible estimated cell
tower locations, confirms this.

The problem is still the assumption of randomly distributed measurements.
When the measurements form an almost straight path, the RSS-CTL algorithm will
estimate the cell tower location to be at one of the ends of the path. RSS-DL will
create lgirection from two measurements in the path. FS will extend lg;,cction to both
directions to compute two cell sectors. When g cction 18 extended as far as to one of
the ends of the path, every measurement will fit within a cell sector.

OpenCellID Algorithm

We run the OpenCelllD algorithm on the cell. The result is displayed in figure [8.12
where the pink marker represents the estimated cell tower location. The error is 2.3
kilometers.

74

Figure 8.11: Cell 260-1-29001-22095. We show both estimated cell tower locations
computed by FS during the execution of RSS-CTL.

Figure 8.12: Cell 260-1-29001-22095. The OpenCellID algorithm has estimated a
cell tower location.

This approach does not work well for this kind of cell. We can see that the
estimated cell tower by this approach is located close to the middle of the path of
measurements. For this kind of measurement pattern the D-CTL and RSS-CTL
algorithms estimate better locations.

Conclusion

D-CTL and RSS-CTL work well on this cell. They manage to estimate cell tower
locations close to the measurements and close to the correct cell tower location.
There are still room for improvements. Estimated cell tower locations at one of
the ends of such a path-like measurement pattern is not necessarily good. For this
specific cell, D-CTL and RSS-CTL estimated cell tower locations not far from the

5

correct cell tower location. But the correct cell tower location might not always be
located that close to the measurements.

8.2 Improvements

We can improve the D-CTL and RSS-CTL algorithms i several ways. Every sub-
routine can be improved so that they all execute their tasks better.

Measurement Distribution

The most fundamental improvement we can do involves learning more about the
measurement distribution for each cell. Say we can algorithmically find out how the
measurements are distributed for a cell. Then we can base choices done throughout
the algorithms on this information. It is clear that D-CTL and RSS-CTL works
better on some cells than others. For example would Weighted Centroid work much
better on omnidirectional cells than our two algorithms. See section and [2.3
This means information about measurement distribution even will help with the
choice of which algorithm that would be most effective.

Another reason for learning more about each cell’s measurement distribution is
to detect the individual measurements within cells that will affect the accuracy of
estimated cell tower locations negatively. We saw examples of such measurements in
figure 8.1l We did try one approach for detecting such measurements. The purpose
of Tinciude 18 to exclude measurements that are too far away to be valid. See section
[6.3.2] We also experimented with different values of 7cuqe in section to see how
that would affect the accuracy of estimated cell tower locations. But this approach is
simple and rough. We need an approach that can single out individual measurements
that will affect the accuracy of the algorithms negatively, no matter how far away
they are or to which direction they are located, from the correct cell tower location.

It would also help if the information included in measurements were more complete.
In advance of running D-CTL and RSS-CTL on real cells in chapter [7] we had to run
a validation procedure for each measurement and each cell. The validation procedures
are described in section and [6.5] These procedures lead to an exclution of many
measurements and cells. Recall that several data fields for a cell are dependent of
information included in measurements. So if measurements were more complete,
they could have provided additional and more accurate information about the cell
tower location. Take for example the ta (Timing Advance) data field included in the
measurement object described in table This is one of the data fields very few
measurements has recorded values for. The timing advance value corresponds to the
length of time a signal takes to reach the cell tower from a mobile device. To utilize
this could have been an even more accurate way than utilizing RSS, to estimate cell
tower locations.

76

D-DL/RSS-DL

D-DL and RSS-DL are the two most important sub-routines in D-CTL and RSS-CTL,
respectively. These sub-routines form the basis for where a cell tower location will
be estimated to be. These sub-routines compute the line I ection from two chosen
measurements. Sometimes they compute very poor lines, often as a result of bad
luck when randomly pairing the measurements. One improvement is to upgrade the
sub-routines to sample more than one lgyection. By comparing multiple direction
lines we can find those that stand out and decrease the chance of choosing a poor
lgirection- Or we can take multiple direction lines and compute some sort of average
direction line from these.

FS/CS

CS has a very specific task, and is difficult to improve. F'S on the other hand can be
improved. Recall that F'S performs several iterations. For each iteration we check if
each measurement of a cell fits within a cell sector computed by CS based on lg;ection-
If not, then Iy ection 18 extended and a new cell sector is computed by CS. When
checking if each measurement fits within a computed cell sector, an improvement is
to also rotate the cell sector around the corresponding estimated cell tower location.
Then FS also checks if each measurement fits when the cell sector rotates. When
changing the angles of the cell edges like this, we might elliminate the need to extend
lgirection DY @ good distance. The reason for not being able to fit each measurement
is not always because they cannot be fit within a 120° cell sector from the current
estimated cell tower location. It is often because of the angles of the cell edges. This
is just because of an unlucky computation of I cction-

D-CD/RSS-CD

D-CD and RSS-CD are not part of the process of computing the estimated cell
sectors and cell tower locations. The purpose of these sub-routines is to decide which
one of the estimated cell sectors with corresponding cell tower locations, are the best.
Improving these sub-routines would involve giving them more information to base
their decisions on. As of now, D-CD and RSS-CD operate with the parameter n
to choose a subset of measurements to use when deciding which cell sector is the
best. In section [7.4] we measured running times for D-CTL and RSS-CTL. We found
out that computing an estimated cell tower location with one of the algorithms,
takes very little time. We can therefore with good conscience use every measurement
belonging to a cell, and not just a subset, when deciding which estimated cell sector
to pick. This also applies to D-DL and RSS-DL.

Multiple Cells Considered Together During Computation

Until now we have only considered cells individually when computing estimated
cell tower locations. There are several ways to consider multiple cells together to
potentially improve the accuracy of the locations. The techniques described in

7

section [2.2.1] and [2.2.2] are examples of techniques that include the consideration
of multiple cells together. The difference from the problems those techniques are
solutions to, and our problem, is that they are based on measurement data collected
with wardriving. We ask the following question: How can we consider multiple cells
together based on measurement data from OpenCellID?

Cells Share Cell Tower We can apply the third step in the Bounding Technique
described in section [2.2.1, Tower-based Regrouping, to our problem. In this step,
cells that share a cell tower is considered together, thus simulating a 360° cell. When
the measurements within these cells are combined, the Weighted Centroid algorithm
can estimate the cell tower location with good accuracy. The problem with the
data provided by OpenCelllD is that we cannot know which cells share a cell tower.
OpenCellID states that the identification number for each cell says something about
which cell tower it belongs to, but there are too many identification schemes among
the cellular network providers in each country to be able to know how to look for it.
This is the data field cell in table In addition to this, it is impossible to know if
cells are missing or just do not exist as OpenCelllD does not have an overview of
every cell in the world. When searching for a cell to complete a 360° radius around
a cell tower, we cannot know whether it exists in the database or not.

Grid or Hexagon Another way to improve the estimated cell tower locations is
to look at the estimated locations of several cell towers within an area. We evaluate
the estimated locations of each individual cell tower relative to the other cell towers.
Recall that section describes a technique where each cell tower is placed on
a grid, and every cell tower’s location is re-evaluated when a new one is added to
the grid. In addition, we described a theoretical structure of cell towers as a system
of hexagons in section [1.3.1, Evaluating cells as an organized system can help us
estimate individual cell tower locations based on more than individual cell data. The
measurements provide valuable information for this task. Lets assume the closest
cell tower to a large subset of the measurements within a cell, is the cell tower the
measurements belong to. Then, if we have estimated another cell tower’s location
to be closer to each measurement in that subset, we get a contradiction. See figure
B.13al Naturally, the direction of the cell sectors also has to be considered. See figure
B.13b] Thus, the cell tower locations can be adjusted so that the system of cells is
valid. But can we assume cells are organized relative to each other in the first place?
In section we briefly discussed theoretical locations of cell towers compared to
locations in reality. We mentioned several factors affecting the practical locations of
cell towers. In addition to this, time is important to consider. The demand for good
reception has been growing vastly the last decades, and new cell towers must be
added to satisfy this demand. Adding new cell towers over time makes it difficult to
maintain a theoretical system of cells. For example, new infrastructure like buildings
or tunnels may prevent a former cell tower location from still being beneficial, or
even an option. Or a sudden growth in population within an area may require a
new cell tower location that does not match the theoretical system. This means we

78

cannot take a theoretical cell system for granted in reality.

oY s
[] - o
. . J
.l s . ° ° (R
° .u - .. il o' ®
a
7 ..:.. - . .. s ®
...-.' o s =
a [] : . L] ..
L] -
(a) Too much overlap. Cell tower loca- (b) Measurements are closer to another
tions need to be re-adjusted. cell tower than their own, but the cells

have different directions.

Figure 8.13: Examples of how two cell towers can and cannot be located relative to
each other.

8.3 Conclusion

In section [1.2] we defined the research questions for this thesis. With this thesis we
wanted to:

e briefly identify existing techniques and approaches for localizing cell towers,
and

e develop our own algorithm for estimating cell tower locations and test it on
real data provided by OpenCellID.

In chapter [2| we presented two papers, each containing a technique for localizing
cell towers based on measurement data obtained from wardriving. We could not
find any related work concerning localization of cell towers based on measurement
data obtained from crowdsourcing. But we discussed if and how the wardriving data
techinques could be applied to crowdsourced data. The conclusion was that the
crowdsourced data provided by OpenCelllD did not have the neccessary properties
for this to be possible.

In chapter [4 and [5] we developed two algorithms, D-CTL and RSS-CTL, for
localizing cell towers based on data obtained from crowdsourcing. The two algorithms
are very similar. D-CTL utilizes the distance between a cell’s measurements. RSS-
CTL utilized the RSS values among a cell’s measurements. We have tested the two
algorithms on theoretical generated test data in chapter 4 and [f], and on real data
provided by OpenCellID in chapter We knew the correct cell tower locations
on both occasions. We measured the accuracy of the algorithms by comparing the
estimated cell tower locations to the correct cell tower locations. With both generated

79

and real data, RSS-CTL estimated the most accurate cell tower locations. We also
estimated cell tower locations with RSS-CTL for the Bergen City Center area.

In this chapter we have analyzed two cells with different measurement distribution
patterns. We let D-CTL, RSS-CTL and the OpenCelllD algorithm estimate cell
tower locations for both cells. We then analyzed how the algorithms computed the
estimated locations and compared them to each other. In the end we proposed
several ways of how D-CTL and RSS-CTL can be improved further.

80

Bibliography

B N CE AN AN e et

[11]

[12]

URL: www.opencellid.org.
URL: www.opensignal.com.
URL: www.cellmapper.net.

URL: http://www.oracle.com/technetwork/ java/javase/downloads/
index.htmll

URL: http://www.eclipse.org.
URL: http://www.apple.com/macbook-air.
URL: WWW. json.org,.

Robert A. Adams and Christopher Essex. Calculus, A Complete Course. Tth.
Pearson Education, 2009.

Glen van Brummelen. Heavenly Mathematics: The Forgotten Art of Spherical
Trigonometry. Princeton University Press, 2013.

N. Bulusu, J. Heidemann, and D. Estrin. “GPS-less low-cost outdoor localiza-
tion for very small devices”. In: Personal Communications, IEEE 7.5 (Oct.
2000), pp. 28-34. 1sSN: 1070-9916. DO1: 10.1109/98.878533.

Ruth Cowell. War Dialing and War Driving: An QOverview. Paper. Global
Information Assurance Certification. URL: http://www.giac.org/paper/
gsec/863/war-dialing-war-driving-overview/101791.

Enrique Estellés-Arolas and Fernando Gonzélez-Ladrén-De-Guevara. “To-
wards an Integrated Crowdsourcing Definition”. In: Journal of Information
Science 38.2 (Apr. 2012), pp. 189-200. 1SsN: 0165-5515. por: 10 . 1177 /
0165551512437638. URL: http://dx.doi.org/10.1177/01655651512437638.

R.H. Frenkiel. “Cellular radiotelephone system structured for flexible use of dif-
ferent cell sizes”. Pat. US4144411 A. Incorporated Bell Telephone Laboratories.
Mar. 1979. URL: http://www.google.no/patents/US4144411|

ETSI 3rd Generation Partnership Project. T'S 127 007. Tech. rep. European
Telecommunications Standards Institute (ETSI).

T. He et al. “Range-free Localization Schemes for Large Scale Sensor Networks”.
In: Proceedings of the ACM 9th Annual International Conference on Mobile
Computing and Networking. MobiCom '03 (2003), pp. 81-95. DOI: 10.1145/
938985.938995. URL: http://doi.acm.org/10.1145/938985.938995.

81

www.opencellid.org
www.opensignal.com
www.cellmapper.net
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org
http://www.apple.com/macbook-air
www.json.org
http://dx.doi.org/10.1109/98.878533
http://www.giac.org/paper/gsec/863/war-dialing-war-driving-overview/101791
http://www.giac.org/paper/gsec/863/war-dialing-war-driving-overview/101791
http://dx.doi.org/10.1177/0165551512437638
http://dx.doi.org/10.1177/0165551512437638
http://dx.doi.org/10.1177/0165551512437638
http://www.google.no/patents/US4144411
http://dx.doi.org/10.1145/938985.938995
http://dx.doi.org/10.1145/938985.938995
http://doi.acm.org/10.1145/938985.938995

[16]

[17]

[18]

[19]

[20]

[21]

22]

[24]

[25]

[26]

J. Hightower and G. Borriello. “Location systems for ubiquitous computing”.

In: Computer 34.8 (Aug. 2001), pp. 57-66. 1SSN: 0018-9162. DOI: |10.1109/2.
940014.

B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins. Global Positioning
System: Theory and Practice. 5th ed. Springer-Verlag Wien, 2001. 1SBN: 978-3-
7091-6199-9. por: 10.1007/978-3-7091-6199-9.

L. Hu and D. Evans. “Localization for Mobile Sensor Networks”. In: Proceedings
of the ACM 10th Annual International Conference on Mobile Computing and
Networking. MobiCom 04 (2004), pp. 45-57. DOI: 10.1145/1023720.1023726.
URL: http://doi.acm.org/10.1145/1023720.1023726.

Natallia Kokash. “An Introduction to Heuristic Algorithms”. 2005. URL: http:
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.105.8050&
rep=repl&type=pdf|

Kurose and Ross. Computer Networking: A Top-Down Approach. 6th. Pearson
Education, 2013.

Mo Li and Yunhao Liu. “Rendered Path: Range-Free Localization in Anisotropic
Sensor Networks With Holes”. In: Networking, IEEE/ACM Transactions on
18.1 (Feb. 2010), pp. 320-332. 1SSN: 1063-6692. DOI: |10.1109/TNET . 2009 .
2024940.

L.M. Ni et al. “LANDMARC: indoor location sensing using active RFID”. In:
Pervasive Computing and Communications, 2003. (PerCom 2003). Proceedings
of the First IEEE International Conference on. Mar. 2003, pp. 407-415. DOTI:
10.1109/PERCOM.2003.1192765.

D. Niculescu and B. Nath. “Ad hoc positioning system (APS) using AOA”.
In: INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE
Computer and Communications. IEEE Societies. Vol. 3. Mar. 2003, 1734-1743
vol.3. DOI: 110.1109/INFCOM.2003.1209196.

Drago Niculescu and Badri Nath. “DV Based Positioning in Ad Hoc Networks”.
English. In: Telecommunication Systems 22.1-4 (2003), pp. 267-280. 1SsN: 1018-
4864. DOI: [10.1023/A:1023403323460. URL: http://dx.doi.org/10.1023/
A7%,3A1023403323460.

Andreas Savvides, Chih-Chieh Han, and Mani B. Strivastava. “Dynamic Fine-
grained Localization in Ad-Hoc Networks of Sensors”. In: Proceedings of the
7th Annual International Conference on Mobile Computing and Networking.
MobiCom ’01. Rome, Italy: ACM, 2001, pp. 166-179. 1SBN: 1-58113-422-3.
DOI: 10.1145/381677.381693. URL: http://doi.acm.org/10.1145/381677.
381693l

A. Varshavsky et al. “Are GSM Phones THE Solution for Localization?” In:
Mobile Computing Systems and Applications, 2006. WMCSA °06. Proceedings.
7th IEEE Workshop on. Aug. 2006, pp. 34-42. DOI: 10.1109/WMCSA.2006. 2.

82

http://dx.doi.org/10.1109/2.940014
http://dx.doi.org/10.1109/2.940014
http://dx.doi.org/10.1007/978-3-7091-6199-9
http://dx.doi.org/10.1145/1023720.1023726
http://doi.acm.org/10.1145/1023720.1023726
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.105.8050&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.105.8050&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.105.8050&rep=rep1&type=pdf
http://dx.doi.org/10.1109/TNET.2009.2024940
http://dx.doi.org/10.1109/TNET.2009.2024940
http://dx.doi.org/10.1109/PERCOM.2003.1192765
http://dx.doi.org/10.1109/INFCOM.2003.1209196
http://dx.doi.org/10.1023/A:1023403323460
http://dx.doi.org/10.1023/A%3A1023403323460
http://dx.doi.org/10.1023/A%3A1023403323460
http://dx.doi.org/10.1145/381677.381693
http://doi.acm.org/10.1145/381677.381693
http://doi.acm.org/10.1145/381677.381693
http://dx.doi.org/10.1109/WMCSA.2006.2

[27] Jie Yang et al. “Accuracy Characterization of Cell Tower Localization”. In:
Proceedings of the 12th ACM International Conference on Ubiquitous Com-
puting. UbiComp ’10. Copenhagen, Denmark: ACM, 2010, pp. 223-226. ISBN:
978-1-60558-843-8. DOIT: 10.1145/1864349.1864384. URL: http://doi.acm.
org/10.1145/1864349.1864334.

[28] Yuan Zhang et al. “Base Station Localization in Search of Empty Spectrum
Spaces in Cognitive Radio Networks”. In: MSN 2009, The Fifth International
Conference on Mobile Ad-hoc and Sensor Networks, Wu Yi Mountain, Fujian,
China , December 14-16, 2009. 2009, pp. 94-101. DOI: 10.1109/MSN. 2009 . 66.
URL: http://dx.doi.org/10.1109/MSN.2009.66.

83

http://dx.doi.org/10.1145/1864349.1864384
http://doi.acm.org/10.1145/1864349.1864384
http://doi.acm.org/10.1145/1864349.1864384
http://dx.doi.org/10.1109/MSN.2009.66
http://dx.doi.org/10.1109/MSN.2009.66

	Contents
	List of Algorithms
	Introduction
	Motivation and Background
	Applications

	Research Questions
	Fundamental Terminology
	Cell
	Measurement

	Thesis Outline

	Related Work
	Localization of Mobile Devices
	Localization of Cell Towers based on Data Collected with Wardriving
	Paper 1: Accuracy Characterization of Cell Tower Localization Yang
	Paper 2: Base Station Localization in Search of Empty Spectrum Spaces in Cognitive Radio Networks localizationDevice1

	Localizing Cell Towers based on Data Collected with Crowdsourcing

	Background for our Algorithm Development
	Heuristics
	Generating Test Data
	Error
	Chart Notations
	Implementation Details
	Localizing Cell Towers Theoretically

	Cell Tower Localization based on Distance (D-CTL)
	Small Angles
	Sub-Routine: Direction Line based on Distance (D-DL)
	Sub-Routines: Compute Sector (CS) and Find Sector (FS)
	Sub-Routine: Choose Direction based on Distance (D-CD)
	Algorithm: Cell Tower Localization based on Distance (D-CTL)
	Scaling dextend
	Scaling Maximum Distance from Cell Tower
	Increasing Cell Sector Angle
	Chapter Review

	Cell Tower Localization based on Received Signal Strength (RSS-CTL)
	Large Angles: Estimating Cell Tower Location based on Received Signal Strength (RSS)
	Sub-Routine: Direction Line based on RSS (RSS-DL)
	Sub-Routines: Compute Sector (CS) and Find Sector (FS)
	Sub-Routine: Choose Direction based on RSS (RSS-CD)
	Algorithm: Cell Tower Localization based on RSS (RSS-CTL)
	Scaling dextend
	Scaling Maximum Distance from Cell Tower
	Deadzones
	Chapter Review

	Understanding the OpenCellID Data Set
	Initiating Data Retrieval
	The Data Objects
	Overview of the Data
	Filtering the Data
	Cleaning Up and Validating the Data

	Test Data: Cells where Correct Cell Tower Locations are Known
	Test Data: Cells where Correct Cell Tower Locations are Not Known - Bergen City Center
	Chapter Review

	Running the D-CTL and RSS-CTL Algorithms on OpenCellID Data
	Parameters
	The Haversin Formula
	Testing on Cells where Correct Locations are Known: Constant dextend and rinclude
	Testing on Cells where Correct Locations are Known: Scaling dextend and Measuring Time
	Testing on Cells where Correct Locations are Known: Scaling rinclude
	Bergen City Center: Estimating Cell Locations when These are Not Known
	Chapter Review

	Analysis and Improvements
	Analyzing Measurement Distributions
	Pattern 1: Cell with Scattered Measurements
	Pattern 2: Cell with Structured Measurements

	Improvements
	Conclusion

	Bibliography

