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Abstract. Numerical techniques for computing the harmonic content of a
finite amplitude sound beam are analysed and tested. A test problem is
introduced, and we find that the analysis of our numerical methods
with the help of this test problem also explains the behaviour of the
numerical methods on the problem from acoustics. Three different
routines for solving the acoustical problem are presented, and test

results that may guide us in choosing the most efficient routine and a

reasonable step size, are given.
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LIST OF SYMBOLS

A = See eq.(2.2)

A1,B1 = See eq.(2.7)

a = Radius of the source

an'bn = Fourier coefficients (See eq.(1.2))

CD = Isentropic speed of sound at ambient values of

pressure and density

h = Discretization in x-direction
IMAX = Number of mesh points across the axis
k = Step size in t-direction (Test problem)

= Step size in o-direction (Problem from acoustics)

lD = Shock formation distance for a plane wave

NUMLI = Number of harmonics in calculation

p = Acoustic pressure normalized to peak amplitude on the
source

pabs = Parameter of absorption = urU

Phon = Par:meter of nonlinearity = rO/lD

r = k/h

Ty = Rayleigh distance

s = Abbreviation for (1+0)

T = (1+a)p

= See eq. (2.8)

t = Time
X = Dimensionless coordinate across axis =
2 2.1/2
X S
( 1 * X, ) /las)
x1,x2,z = Dimensional cartesian coordinates, z along the

direction of propagation

o = Linear absorption coefficient
w = Frequency of source
= See eq. (2.11)
g - Dimensionless coordinate along acoustic axis z/rU

1 = Dimensionless retarded time, w(t—z/cu) - x2/s



1. Introduction.

The propagation of a nonlinear sound beam generated by a circular
piston is considered. An equation obtained in 1971 by Kutznetsov [14]
provides an excellent model for the combined effects of nonlinearity,
diffraction and absorption. Throughout the 1970's there appeared 1in
the Soviet 1literature a large volume of work based on Kutznetsovs
equation. Bakhvalov and coworkers [3,4,5] presented numerical
solutions, but not in the practical case of a circular piston. A
numerical procedure for solving Kutznetsovs equation was given by

Zhileikin [171].

In Norway the mathematicians Naze Tjotta and Tjetta and coworkers
[6,9,10,11] studied analytical solutions 1in the case of weak
nonlinearity. Aanonsen [1] developed a numerical procedure for
calculating the harmonic content of the sound beam in the case of
moderate nonlinearity. This procedure was used by Aanonsen et al. [2]
to consider the nearfield of a finite amplitude sound beam. Hamilton
et al. [12] introduced a transformation which facilitated numerical
evaluation of the sound beam through the transition zone and into the

farfield region.

In our notation Kutznetsovs equation is written

2%t 837 1, p 371t
=p —y + — V. T + el s (1.1)
900t abs g 4 X 2s 0T
where
2 32 19
v2 =97, + 19
X dx? X dx

and o is the coordinate along the acoustic axis, x the coordinate
across the axis, T retarded time, s=(1+ag), T=(1+0)p , where p is

dimensionless pressure, parameter of absorption, and p

pabs non
parameter of nonlinearity. The first term on the right hand side 1is
due to absorption, the second to diffraction and the third to

nonlinearity. If a solution of equation (1.1) 1is sought in the form



T =

cos{nt) + b _sin(nTt)) (1.2)
i n

nMsg

(a
1 n

the following set of coupled equations are obtained.

—_n . 2
= -p na_ - V., b
do abs n 4ns X'n
n n-1 00
+p — [ L(a b )+ L[ (b a - ab )]
non 25 p=1 NP P pz=p+1 P P-N p p-n
(1.3)
ob 1 2
—n - -p nb +—7 V.oa
do abs 4nsc XN
n 1 n-1 0
+p — [— L(b b -a - L (a_a +b )]
non 2s 2 p=1 n-p p n-p p p:n+1 p p-n p p-n

In order to solve system (1.3) both Zhileikin and Aanonsen used finite
difference techniques. Zhileikin applied Crank-Nicolsons method while
Aanonsen integrated the absorption term and the diffraction term by a
fully implicit method and the nonlinear term by an explicit method. In
sec. 2 we introduce a test problem which is a simplification of (1.3).
The simplified system only accounts for diffraction, but this term
have to be integrated with care in the case of a piston source. The
numerical techniques applied to the test problem are analysed, and
this analysis also gives insight in why the techniques behave as they

do on problem (1.3).

In a wuserdocumentation by Berntsen and Vefring [7] three subroutines

were presented for solving the problem

“n . _ 2 ;
Py c(n,o)an + k(n,o)Vlbn + 111(n,0.1.9)
(1.4)
b 2 .
5:“ = —c(n.o)bn - k(n,o)Vﬁan + 112(n,0,g,g)
This system 1is a convenient generalisation of (1.3). The three

subroutines differ in the way the Laplacian is approximated. In sec. 3
the three subroutines are compared. In sec. 4 we study the choice of

step size in o-direction.



2. Analysis of two numerical technigues on a test problem.

In Jain[13] and Richtmeyer[15] the solution of the system of partial

differential equations

dv a%w
ot X’
” 0<x<1, t0 (2.1)
ow o v
ot X
subject to 1initial conditions v(x,0)=v0(x). w(x,0)=wu(x), and
boundary conditions v(U,t)=fD(t). v(1,t)=f1(t), w(U,t)=gn(t).

w(1,t)=g1(t), is studied. We hoped that the methods developed for
solving (2.1) would be applicable to our system (1.3), since (2.1) may
be considered as an simplification of (1.3), and we will therefore

describe a solution technique due to Richtmeyer [15].

We introduce some notation used by Fairweather and Gourlay[8]

Q = A = (2.2)

(2.1) may then be rewritten

29 , 2% )
— = — 2.3
ot Ox

A rectangular network of points with mesh sizes h and k in the x and t
directions respectively, where Nh=1 1is superimposed on the region
0<x<1, t20. The values of the functions v(x,t),w(x,t) and Qi(x,t) at
the mesh points x=ih,t=nk(i=0,1,...,N;n=0,1,....) are given by
Vi,n'wi,n and Qi,n respectively.

When we apply Crank-Nicolsons method[16] to (2.3), we obtain the

algorithm used by Richtmeyer in the form



(1 - £ rasl e, = (1 + £ rasd e, i=1,...,N-1 (2.4)

1,n+1 i,n
2 2
where r=k/h , I 1s the 2*2 unit matrix and & 1s the wusual central
X

difference operator in the x-direction.

In each time step we have to solve a system of (N-1) linear equations

for the (N-1) unknowns

Q. = i=1,...,N-1 (2.5)

A1 W = B W + ¢ (2.6)

b e 9 ]T, m=n,n+1, and ¢ 1s a constant vector
1.,m N-1,m

arising from the boundary conditions. A1 and B1 are given by

where W = [Q
m

A =1+ 3T B, = I - §xT (2.7)

where T is a block tridiagonal matrix given by

2A  -A
-A 2A -A
T = (2.8)
-A 2A -A
-A 2A

The block tridiagonal system (2.6) may be solved by the well known
algorithm described in Richtmeyer[15] where also the stability

properties of the algorithm are proved to be very satisfactory.

If we integrate the nonlinear terms in (1.3) by an explicit difference
formula, the described method for solving (2.1) may also be applied to
(1.3). If we compare this method with the method described by Aanonsen

[1], the two methods differ in two ways:



1. Richtmeyers method wuses an implicit 2nd order approximation 1in
o-direction, whereas Aanonsen uses a fully implicit first order

approximation.

2. The numbering of the linear equations is different. If we use the
notation (2.2), we turn the wide band matrix in [1] into a narrow band
matrix which «can be solved by a direct equation solver.In [1] an
iterative solution technique is used for solving the linear system of
equations appearing in each step in o-direction. In order to make the
iterations converge we have to impose constraints on the step size 1in
o-direction (r<€1/2). When we apply Rictmeyers method, we have no such
constraints on the step size, and moreover the solution of (2.6) 1is
very stable. Tests show that we get W to almost full machine

N+1
precision.

We have tried to use Richtmeyers method to solve equation (1.3). The
initial conditions in (1.3) are typically discontinuous, and the
numerical solution 1is highly oscillatory. In [8] (2.1) is used as a

test problem together with the initial and boundary conditions

Q(x,0) 0<x<1

(2.9)

Q(0,t) Q(1,t) = t20

This problem has a theoretical solution, see [8]. However, if we

replace (2.9)with



Q(x,0) = 0¢x<0.1 & 0.9¢x<0.1
0
1
Q(x,0) = 0.1<x<0.9 (2.10)
1
0
Q(o,t) = Q(1,t) = t20
0

and solve this problem with Richtmeyers method, here also unphysical
oscillations appeared in the solution. We replaced the 2nd order
method with the fully implicit method and solved the same problem. The
oscillations then disappeared completely. In fig 2.1 we plot the
numerical approximations to vi(x,0.2) given by the two methods, h=0.05

and k=0.00125. The plots for wi(x,0.2) are similar.
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Fig 2.1, A comparison of the 2nd order method and the fully implicit

method on problem (2.10).



The explanation of this phenomena must lie in the stability properties
of the two methods. 1In [15] von Neumanns technique for studying

stability properties is applied on the 2nd order method. They define
.2
w = 4rsin (Bh/2) (2.11)

The amplification matrix is then

1 - w2/4 w
1

G = (2.12)

—
1 1 + w /4 2
-w 1 - w /4

The eigenvalues of G1 lie on the wunit circle, and the numerical

solution is always stable.

We have used the same technique to study the stability properties of

the fully implicit method applied to (2.1), and the amplification

matrix is
1 w
1
G, = —— (2.13)
2 1 +w
-w 1
The eigenvalues of this matrix are
1 £ iw A | 1 ( )
A - 2.14
1,2 1 + w2 1,2 1 + w?

and thus, for PBh close to odd multiples of w, we should have a
dramatic (and unphysical) numerical damping when we apply the fully

implicit method.

When we apply this method to (2.1) with the initial and boundary
conditions given in (2.10), the damping effect 1is almost negligible
compared to what could be expected from (2.14). We have therefore
applied the matrix method, see [16], in order to study in more detail
the stability properties of the two methods. The eigenvectors of the
matrices A1 and B1 in (2.7) are the same as the -eigenvectors of the

matrix T. Using the theory in [16] we find the eigenvalues of T to be
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A, * t4isin’ (sT/2N)  $=1,2,....N-1 (2.15)

and the corresponding eigenvectors to be

isin(sw/N)
#sin(sw/N)
isin(2sw/N)

+sin(2sw/N)

Vis = . s=1,2,...,N-1 (2.16)
isin((N-2)sw/N)
+sin((N-2)sm/N)
isin((N-1)sw/N)
+sin((N-1)sw/N)

The eigenvalues of A1_1B1 will then be

1 F 2risin2(sn/2N)
A= 5 $=1,2,...,N-1 (2.17)
s 1 % 2risin” (sw/2N)

which lie on the unit circle.

When we apply the fully implicit method on (2.1), the corresponding

system of linear equations may be written

A, W = B, W + ¢ (2.18)

where A2 = I + rT and B2 = I. The eigenvalues of A2—1B2 will now be

.2
1 £ 4risin (smw/2N)
AN = g s=1,2,...,N-1 (2.19)
18 1 + 16r sin (sw/2N)

This means that we get the damping predicted from (2.14), but the
damping will be dependent of s, and we will take a closer look at what

this means.
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We may use the eigenvectors (2.16) to expand the initial values of Q.
If the initial values are represented as a slowly varying function,
the function may be represented well by the first few terms (small
values of s). The highly oscillating -eigenvectors will almost be
missing, and the 2nd order method will prohibit growth of these terms.
The use of the fully implicit method will on the other hand cause no
dramatic damping for reasonable r's since only the smallest values of
s are interesting. For instance when we apply the fully implicit
method on (2.1) with initial conditions (2.9) (k=0.00125 and h=0.05),
we would expect the theoretical damping of the first eigenvector(s=1)
to be 0.9999242 per step and the corresponding damping of the last
eigenvector(s=N-1) to be 0.5785. If we integrate to t=0.02, the
average damping is .9999152 which is very close to what we expected
for the first eigenvector. Here we measured the solutions in the rms

norm

i 2,1/2,,1/2
ol =[(q )% " /u (2.20)

2 . .
where q=(v2+w2)1/ and M 1is the number of meshpoints. On the other

hand if the initial values are represented by a step function, as 1is
the case in our application, the higher oscillating eigenvectors are
used in a much greater extent to represent the initial values. If we
use the 2nd order method, these Gibbs oscillations will be maintained
in the numerical solution. If we use the fully implicit method, these
unwanted oscillations will be damped. The fully implicit method acts
as a filter on the higher harmonics and this explains why Aanonsen
found through his numerical experiments the fully implicit method to
be the best choice. When we apply the fully implicit method on (2.1)
with initial conditions (2.10) (k=0.00125 and h=0.05) and integrate
to t=0.02, the average damping is .99804. Here the damping 1s clearly
greater than in the previous case. However by the time we get to
t=0.02 the higher harmonics have lost much of their strength, and the
damping per step will be reduced as we proceed. The damping per step
from t=0.02 to t=0.04 is .9997859 and from t=0.04 to t=1.0 it 1is
.9999153.
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To conclude we would 1like to vremark that the insight gained by
studying our methods on the test problem (2.1) has given us a deeper
understanding of why the methods behave as they do on our problem
(1.3). The oscillations appearing when we solve (1.3) with Richtmeyers
method, stem from the initial conditions and not from the extra terms
in (1.3). The fully implicit method is for reasonable values of r an
appropriate method for solving (1.3). This 1s 1in agreement with
Aanonsens experience. On the other hand we want to keep Richtmeyers
numbering of the equations to get a narrow band solution matrix in
each step in o-direction. We will then be relieved from the

constraints on the step size which Aanonsens method suffers from.



3. Choice of difference operator and step size in x-direction.

In a userdocumentation by Berntsen and Vefring [7] three subroutines
for solving (1.4) are given. The three subroutines differ in the way

the Laplacian is approximated. Table 1 shows the algebraic formulas

used
TABLE 1
Finite difference formulas on a uniform grid
Finite
difference
formula u u
X XX
Three point (-u. _+u. _)/2h (u. _-2u.+u. )/h2
1i-1 1+1 1-1 1 1+1
Five point (ui_2—8ui_1+8ui+1 (—ui_2+16ui_1—30u:L2
-ui+2)/12h +15ui+1—ui+2)/12h
Seven point (—ui_3+9ui_2—45ui_1 (2ui_3-27ui_2+270ui_1
+45ui+1-9ui+2+ui+3)/50h -490ui+270ui+21-27ui+2

+2U. )/180h
1+3

To compare accuracy and computational efficiency we state a

testproblem.
. 2
sin(x”) when 0<x<1
a1(x,o=0) =
0 when 1<x<8
(3.1)
cos(xz) . when 0<x<1
b1(x,o=0) B

0 when 1<{x<8



az(x,o=0) = 0
0<x<8
bz(x,o=0) = 0
cont.(3.1)
a (x=8,0) = 0
n
o>0,n=1,2
b (x=8,0) = 0
n

The terms c(n.o),k(n,o),il1(n,o,a,g) and ilz(n,o.g,g) are defined
. -6 -2
accord o (1.3 Lt = 4.4x10 and = 3.4x10
cc ing to | ) with pabs b,bx pnon X

The parameters of absorption and nonlinearity are chosen relatively
small because we want diffraction to be the major effect. The number
of harmonics retained in the calculations are two. Solutions to this
problem are computed using different subroutines and different
discretization in the x-direction. In all cases k 1is 3.5x10_4. In the
experiments described in this and the next section, we adjust k by

multiplying by (1+0)2 as we proceed in order to keep k/(h2(1+c)2)

constant, see (1.3).
The numerical solutions are computed by marching step by step in the
o-direction. For each step and each harmonic nonlinear terms have to

be calculated and a system of linear equations have to be solved.

Table 2 shows the computational cost of the different subroutines.

TABLE 2

Flops per step in ag-direction

Linear system Nonlinear terms
Three point 26X IMAX*NUMLI + BXNUMLI**x2%IMAX
Five point 60* IMAX*NUMLI + BXNUMLI**2*IMAX

Seven point 111*IMAX*NUMLI + BXNUMLI**2%IMAX




IMAX defines the number of mesh points in x-direction and NUMLI the

number of harmonics.

We define
p. = (a 2 + b 2)1/2/(1+0)
1 1 1
(3.2)
_ 2 2.1/2
p, = (a2 + b2 ) /(1+0)

where p1,p2 are the normalized peak pressure amplitudes for the
fundamental and second harmonic respectively. The step size across the
axis was halved until the difference between to consecutive solutions
were nonsignificant. The results from computations with the seven
point approximation and h=0.1875x10-2 were taken as an estimate of

the exact solution and defines p1e and pZe'

Amplitudes at 0=0.5,1.0 and 1.5 were compared. Only results at 0=1.0
are shown. The results for ¢=0.5 and 0=1.5 are similar. Table 3 shows

the results for the primary.

TABLE 3
”p1—p1e"rms

-1 -1 =4

h 0.60 x 10 0.30 x 10 0.15 x 10
i . -2 -2 -3

Three point 0.85 x 10 0.84 x 10 0.83 x 10
Five point 0.42 x 1072 0.26 x 1072 0.84 x 1073
Seven point 0.42 x 1072 0.25 x 1072 0.84 x 1073

Results for the second harmonic are shown in Table 4
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TABLE &
sz-p2enrms

=1 -1 -1

h 0.60 x 10 0.30 x 10 0.15 x 10
. -4 -4 -4

Three point 0.70 x 10 0.86 x 10 0.18 x 10
; ! -3 -4 -4

Five point 0.10 x 10 0.66 x 10 0.21 x 10
. - -4 -4

Seven point 0.10 x 10 3 0.66 x 10 0.21 x 10

We are aware that this 1s a very limited experiment. The results
presented in tables 3 and & are, however, representative for what we

have observed for other choices of parameters.

The most obvious conclusion is that there is nothing to gain by using
the seven point approximation. In Hamilton et al. [12] they remark
that it is most efficient to use the seven point approx. In [12],
however, they use an iterative solution technique for the systems of
linear equations, and the extra cost in going from a three point

approximation to a seven point approximation is negligible.

To choose between the three point approximation and the five point
approximation is more difficult. The cost of wusing the five point
approximation with h=0.06(0.03) is almost equal to the cost of using
the three point approximation with h=0.03(0.015) when only a few
harmonics are retained in the solution. From tables 3 and 4 we see
that in 3 out of & cases the three point approximation 1is more
reliable than the five point approximation we get to the same cost.
This indicates that the best choice is the three point approximation.
However, as the number of harmonics increases we see from Table 2 that
the work with computing the nonlinear terms becomes dominant and if we
use the five point approximation, we can hope to achieve the same
accuracy with a smaller IMAX. (As we see from Table 4 this 1s not

always the case.)
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4., Choice of step size in o-direction.

Before we discuss how to choose step sizes on our problem (1.3), we
will study the effect of varying the discretisation on the test
problem (2.1). When we apply the fully implicit method, the
eigenvectors are given by (2.16) and the eigenvalues by (2.18). The

parameter defining the damping is

"

wis) = 4rsin2(sn/2N) $s=1,2,...,N-1 (4.1)

(4.1) gives the impression that the damping is a parameter of r=k/h2.
This is however only to some extent true. The first eigenvalue 1is a

function of
.2 .2 2
w(1) = 4rsin” (w/2N) = 4rsin (wh/2) = km (4.2)

and we see that the damping of the first eigenvector is a function of
k( and not of h). This means that if we reduce h, we do not have to
reduce k to keep r unchanged if we are conserned about the damping of

the first eigenvector only.

As we have seen in sec.2 only the lower harmonics are maintained in
the numerical solution when we apply the fully implicit method, and
the above comment on the first harmonic also to some extent applies to
the other lower harmonics. This means that if we want the same damping
when we reduce h, we can almost keep k unchanged. For_small values of

h we can thus expect relatively large values of r to give a reasonable

damping.

We have run our problem (1.3) with p = p = 0 for two values of h
abs non

and different values of k to illustrate this effect. Since p = 0

non
only the fundamental 1is present in the sound beam. The problem 1is

integrated to o=1. We define the damping to be the rms norm, see
(2.20), of the numerical solution measured at o=1 divided to the rms
norm of the initial values. The damping is affected both by the

diffraction and the numerical damping caused by the use of the fully
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implicit method. In order to study the effect of increasing k or r,
relative damping is also defined. We define the relative damping to be
the rms norm of the numerical solution for a specific k measured at
0=1 divided to the rms norm of the numerical solution for k=3.5*10—5

measured at o=1.Tables 5 and 6 show the damping for h=0.03 and h=0.096

respectively.
TABLE 5
Damping for h=0.03
r= 3.8x10°%  3.exto”! 3.ex10t®  3.exi0®! 3.exiot?
k= 3.5x10 > 3.5x10° "¢ 3.5%x10° 0 3.5x10 2 3.5x10" "
Damp. 0.6406 0.6398 0.6369 0.6201 0.5408
Rel. Damp. 1.0000 0.9989 0.9943 0.9681 0.8443
TABLE 6
Damping for h=0.096
r= 3.8x1073  3.8x107%2  3.ext0”!  3.8x10"%  3.8x10"]
K= 3.5x107°  3.5x107" 3.5x10°3  3.5x10° 2 3.5%107
Damp. 0.6776 0.6691 0.6606 0.6420 0.5495
Rel. Damp. 1.0000 0.9873 0.9749 0.9474 0.8109

From tables 5 and 6 we observe that for h constant the damping
increase with increasing r . This is in agreement with the results

from the analysis of the test problem in sec. 2.

When r 1is increased the high frequency components are killed and we

expect the damping to be characterized mainly by k, and we see that

for k=3.5><10_1 the damping for h=0.03 is almost equal to the damping
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for h=0.096. When we reduce k, the damping for h=0.03 tends to be

greater than the corresponding damping for h=0.096.

From Table 6 we see that the relative damping for h=0.096 and
r=3.B)<10_1 is 0.9749. From Table 5 we find that the relative damping
for h=0.03 and r=3.8x10_1 is 0.9989 and for r=3.8 it 1s 0.9943. This
i1llustrates that for small values of h the damping will be acceptable
for greater values of r. The step sizes used in [12] are h=0.03 and

g (r:3.8x10_1). Table 5 shows that the extra damping

k=3.5x10
introduced by multiplying this k by 10 is quite small. This suggests
that computations can be performed with reasonable accuracy when we

choose k to be 3.5)(10-3 thus reducing the computation time by 907.



5. Conclusions.

The main achievement in this report we consider to be the analysis of
two numerical techniques with help of a test problem. This analysis
has given wus a much better understanding of why the numerical
techniques perform as they do also on the problem (1.3) from
acoustics, and we believe that this insight may be used to improve the

numerical techniques even further.

From a practical point of view the main achievement is that the
restriction on the step size 1in o-direction appearing in [1] 1is
removed. This means that for reasonable discretizations in x-direction
we may use approximately 10 times larger step sizes and thereby save

the same amount of computer time.
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